Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Dig Liver Dis ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38744557

RESUMO

OBJECTIVES: This study presents a novel computer-aided diagnosis (CADx) designed for optically diagnosing colorectal polyps using white light imaging (WLI).We aimed to evaluate the effectiveness of the CADx and its auxiliary role among endoscopists with different levels of expertise. METHODS: We collected 2,324 neoplastic and 3,735 nonneoplastic polyp WLI images for model training, and 838 colorectal polyp images from 740 patients for model validation. We compared the diagnostic accuracy of the CADx with that of 15 endoscopists under WLI and narrow band imaging (NBI). The auxiliary benefits of CADx for endoscopists of different experience levels and for identifying different types of colorectal polyps was also evaluated. RESULTS: The CADx demonstrated an optical diagnostic accuracy of 84.49%, showing considerable superiority over all endoscopists, irrespective of whether WLI or NBI was used (P < 0.001). Assistance from the CADx significantly improved the diagnostic accuracy of the endoscopists from 68.84% to 77.49% (P = 0.001), with the most significant impact observed among novice endoscopists. Notably, novices using CADx-assisted WLI outperform junior and expert endoscopists without such assistance. CONCLUSIONS: The CADx demonstrated a crucial role in substantially enhancing the precision of optical diagnosis for colorectal polyps under WLI and showed the greatest auxiliary benefits for novice endoscopists.

2.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 289-295, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38710512

RESUMO

Objective To evaluate the toxicology of targeting human epidermal growth factor receptor-2 chimeric antigen receptor T (HER2-CAR-T) cells and to provide a safety basis for the clinical evaluation of HER2-CAR-T cell therapy. Methods The recombinant lentiviral vector was used to generate HER2-CAR-T cells. Soft agar colony formation assay was used to observe the colony formation of HER2-CAR-T cells, and the colony formation rate was statistically analyzed. The HER2-CAR-T cell suspension was co-incubated with rabbit red blood cell suspension, and the hemolysis of red blood cells was evaluated by direct observation and microplate reader detection. The HER2-CAR-T cell preparation was injected into the ear vein of male New Zealand rabbits, and the stimulating effect of HER2-CAR-T cells on the blood vessels of the animals was observed by staining of tissue sections. The vesicular stomatitis virus envelope glycoprotein (VSV-G) gene of pMD 2.G vector was used as the target sequence, and the safety of the lentiviral vector was verified by real-time fluorescence quantitative PCR. The heart, liver, lung, and kidney of mice receiving HER2-CAR-T cell infusion were collected, and the lesions were observed by HE staining. Results The HER2-CAR-T cells were successfully prepared. These cells did not exhibit soft agar colony formation ability in vitro, and the HER2-CAR-T cell preparation did not cause hemolysis in New Zealand rabbit red blood cells. After the infusion of HER2-CAR-T cells into the ear vein of New Zealand rabbits, no obvious vascular stimulation response was found, and no specific amplification of VSV-G was detected. No obvious lesions were found in the heart, liver, lung and kidney tissues of the treatment group. Conclusion The prepared HER2-CAR-T cells have reliable safety.


Assuntos
Receptor ErbB-2 , Receptores de Antígenos Quiméricos , Animais , Humanos , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Coelhos , Camundongos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Masculino , Imunoterapia Adotiva/métodos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Vetores Genéticos/genética , Lentivirus/genética , Feminino
3.
Cell Metab ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38569557

RESUMO

Activating Nrf2 by small molecules is a promising strategy to treat postmenopausal osteoporosis. However, there is currently no Nrf2 activator approved for treating chronic diseases, and the downstream mechanism underlying the regulation of Nrf2 on osteoclast differentiation remains unclear. Here, we found that bitopertin, a clinical-stage glycine uptake inhibitor, suppresses osteoclast differentiation and ameliorates ovariectomy-induced bone loss by activating Nrf2. Mechanistically, bitopertin interacts with the Keap1 Kelch domain and decreases Keap1-Nrf2 binding, leading to reduced Nrf2 ubiquitination and degradation. Bitopertin is associated with less adverse events than clinically approved Nrf2 activators in both mice and human subjects. Furthermore, Nrf2 transcriptionally activates ferroportin-coding gene Slc40a1 to reduce intracellular iron levels in osteoclasts. Loss of Nrf2 or iron supplementation upregulates ornithine-metabolizing enzyme Odc1, which decreases ornithine levels and thereby promotes osteoclast differentiation. Collectively, our findings identify a novel clinical-stage Nrf2 activator and propose a novel Nrf2-iron-ornithine metabolic axis in osteoclasts.

4.
Int J Surg ; 110(4): 2055-2064, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38668658

RESUMO

BACKGROUND AND AIM: Current treatments for refractory benign esophageal strictures (BESs) often take several years and have poor effects. The authors propose a novel method of self-help inflatable balloon (SHIB) and evaluate its efficacy and safety. METHODS: A prospective, multicenter study was conducted from January 2019 to March 2022. All enrolled patients were diagnosed with refractory BESs and received SHIB. The primary endpoint was the clinical success rate at 12 months after removing SHIB. The secondary endpoints were the number of days of placing SHIB, and changes from baseline in BMI and health-related quality of life at 1, 3, 6, and 12 months. RESULTS: The clinical success rate was 51.2% (21/41) with the median days of placing SHIB being 104.0 days (range: 62.0-134.5 days), which was higher in the endoscopic group compared to the caustic and surgery groups (63.3 vs. 28.6% vs. 0, P=0.025). All patients (100%) showed significant improvement in dysphagia scores during placing SHIB. Although 20 patients (48.8%) experienced recurrent stricture, the median stricture length was decreased (P<0.001) and the median intervention-free interval was prolonged (P<0.001). In all patients, the mean BMI at and health-related quality of life at 1, 3, 6, and 12 months were significantly increased compared with baseline (P<0.05). On multivariate analysis, stricture etiology and wearing time were independent predictors of recurrent stricture. CONCLUSIONS: The SHIB has high efficacy and safety in treating refractory BESs of different origins, especially for endoscopic resection. Stricture etiology and wearing time were independent predictors of recurrent stricture.


Assuntos
Estenose Esofágica , Qualidade de Vida , Humanos , Estenose Esofágica/terapia , Estenose Esofágica/cirurgia , Masculino , Estudos Prospectivos , Feminino , Pessoa de Meia-Idade , Resultado do Tratamento , Adulto , Idoso , Esofagoscopia/métodos , Esofagoscopia/instrumentação
5.
Cancer Sci ; 115(4): 1129-1140, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351514

RESUMO

Oncolytic viruses (OVs) possess the unique ability to selectively replicate within tumor cells, leading to their destruction, while also reversing the immunosuppression within the tumor microenvironment and triggering an antitumor immune response. As a result, OVs have emerged as one of the most promising approaches in cancer therapy. However, the effective delivery of intravenously administered OVs faces significant challenges imposed by various immune cells within the peripheral blood, hindering their access to tumor sites. Notably, neutrophils, the predominant white blood cell population comprising approximately 50%-70% of circulating white cells in humans, show phagocytic properties. Our investigation revealed that the majority of oncolytic vaccinia viruses (VV) are engulfed and degraded by neutrophils in the bloodstream. The depletion of neutrophils using the anti-LY6G Ab (1-A8) resulted in an increased accumulation of circulating oncolytic VV in the peripheral blood and enhanced deposition at the tumor site, consequently amplifying the antitumor effect. Neutrophils heavily rely on PI3K signaling to sustain their phagocytic process. Additionally, our study determined that the inhibition of the PI3Kinase delta isoform by idelalisib (CAL-101) suppressed the uptake of oncolytic VV by neutrophils. This inhibition led to a greater presence of oncolytic VV in both the peripheral blood and at the tumor site, resulting in improved efficacy against the tumor. In conclusion, our study showed that inhibiting neutrophil functions can significantly enhance the antitumor efficacy of intravenous oncolytic VV.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Vírus Oncolíticos/fisiologia , Vaccinia virus/fisiologia , Neutrófilos/patologia , Terapia Viral Oncolítica/métodos , Fosfatidilinositol 3-Quinases , Neoplasias/patologia , Microambiente Tumoral
6.
Cell Death Dis ; 15(2): 111, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316760

RESUMO

Osteoclasts consume an amount of adenosine triphosphate (ATP) to perform their bone resorption function in the development of osteoporosis. However, the mechanism underlying osteoclast energy metabolism has not been fully elucidated. In addition to glucose, glutamine (Glu) is another major energy carrier to produce ATP. However, the role of Glu metabolism in osteoclasts and the related molecular mechanisms has been poorly elucidated. Here we show that Glu is required for osteoclast differentiation and function, and that Glu deprivation or pharmacological inhibition of Glu transporter ASCT2 by V9302 suppresses osteoclast differentiation and their bone resorptive function. In vivo treatment with V9302 improved OVX-induced bone loss. Mechanistically, RNA-seq combined with in vitro and in vivo experiments suggested that Glu mediates the role of IL-17 in promoting osteoclast differentiation and in regulating energy metabolism. In vivo IL-17 treatment exacerbated OVX-induced bone loss, and this effect requires the participation of Glu or its downstream metabolite α-KG. Taken together, this study revealed a previously unappreciated regulation of IL-17 on energy metabolism, and this regulation is Glu-dependent. Targeting the IL-17-Glu-energy metabolism axis may be a potential therapeutic strategy for the treatment of osteoporosis and other IL-17 related diseases.


Assuntos
Reabsorção Óssea , Glutamina , Interleucina-17 , Osteoclastos , Osteoporose , Humanos , Trifosfato de Adenosina/metabolismo , Reabsorção Óssea/metabolismo , Diferenciação Celular , Metabolismo Energético , Glutamina/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Osteoclastos/metabolismo , Osteogênese , Osteoporose/metabolismo , Ligante RANK/metabolismo
7.
Cell Mol Immunol ; 21(3): 213-226, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38177245

RESUMO

Despite the tremendous progress of chimeric antigen receptor T (CAR-T) cell therapy in hematological malignancies, their application in solid tumors has been limited largely due to T-cell exhaustion in the tumor microenvironment (TME) and systemic toxicity caused by excessive cytokine release. As a key regulator of the immunosuppressive TME, TGF-ß promotes cytokine synthesis via the NF-κB pathway. Here, we coexpressed SMAD7, a suppressor of TGF-ß signaling, with a HER2-targeted CAR in engineered T cells. These novel CAR-T cells displayed high cytolytic efficacy and were resistant to TGF-ß-triggered exhaustion, which enabled sustained tumoricidal capacity after continuous antigen exposure. Moreover, SMAD7 substantially reduced the production of inflammatory cytokines by antigen-primed CAR-T cells. Mechanistically, SMAD7 downregulated TGF-ß receptor I and abrogated the interplay between the TGF-ß and NF-κB pathways in CAR-T cells. As a result, these CAR-T cells persistently inhibited tumor growth and promoted the survival of tumor-challenged mice regardless of the hostile tumor microenvironment caused by a high concentration of TGF-ß. SMAD7 coexpression also enhanced CAR-T-cell infiltration and persistent activation in patient-derived tumor organoids. Therefore, our study demonstrated the feasibility of SMAD7 coexpression as a novel approach to improve the efficacy and safety of CAR-T-cell therapy for solid tumors.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Animais , Humanos , Camundongos , Citocinas/metabolismo , Imunoterapia Adotiva , Neoplasias/terapia , NF-kappa B/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Proteína Smad7/genética , Proteína Smad7/metabolismo , Linfócitos T , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral
8.
Life Sci ; 336: 122254, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977355

RESUMO

AIMS: Gliomas are the most common central nervous system malignancies, with limited therapeutic options and poor prognosis, which are primarily attributed to the "immune desert" microenvironment. Previously, we constructed a three-gene-deleted oncolytic adenovirus (Ad-TD) loaded with non-secreting interleukin-12 (nsIL-12), which could be amplified in tumor cells and induce immunity to suppress tumors. However, the effects of this oncolytic virus on gliomas and their immune microenvironment remain unclear. There is an urgent need for further research. MATERIALS AND METHODS: We constructed a Syrian hamster brain tumor model and demonstrated the efficacy and mechanism of the novel oncolytic virus in treating brain tumors through a series of in vitro and in vivo experiments. We investigated the efficacy and safety (the number of hamsters in each group is either 5 or 10) of the oncolytic virus treatment in Syrian hamsters using a virus-treated group, a control virus-treated group, and a blank control group. KEY FINDINGS: In vitro assays showed that Ad-TD-nsIL-12 could specifically proliferate in brain tumor cells which induce tumor cell apoptosis and intracellular expression of interleukin (IL)-12. Moreover, in vivo experiments demonstrated that Ad-TD-nsIL-12 could effectively inhibit the progression of brain tumors and prolong survival. Ad-TD-nsIL-12 significantly enhanced T-cell infiltration in the brain tumor microenvironment. SIGNIFICANCE: Ad-TD-nsIL-12 can inhibit glioma progression and increase T-cell infiltration in the tumor tissue, particularly infiltration by cytotoxic T cells (CD8+). Ad-TD-nsIL-12 can amplify and produce IL-12, inducing anti-glioma immune responses to inhibit tumor progression.


Assuntos
Neoplasias Encefálicas , Glioma , Terapia Viral Oncolítica , Vírus Oncolíticos , Cricetinae , Animais , Humanos , Vírus Oncolíticos/genética , Interleucina-12/genética , Microambiente Tumoral , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Glioma/terapia , Neoplasias Encefálicas/terapia , Mesocricetus
9.
Adv Sci (Weinh) ; 11(7): e2306203, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38063781

RESUMO

Endogenous essential metal ions play an important role in many life processes, especially in tumor development and immune response. The approval of various metallodrugs for tumor therapy brings more attention to the antitumor effect of metal ions. With the deepening understanding of the regulation mechanisms of metal ion homeostasis in vivo, breaking intracellular metal ion homeostasis becomes a new means to inhibit the proliferation of tumor cells and activate antitumor immune response. Diverse nanomedicines with the loading of small molecular ion regulators or metal ions have been developed to disrupt metal ion homeostasis in tumor cells, with higher safety and efficiency than free small molecular ion regulators or metal compounds. This comprehensive review focuses on the latest progress of various intracellular metal ion homeostasis regulation-based nanomedicines in tumor therapy including calcium ion (Ca2+ ), ferrous ion (Fe2+ ), cuprous ion (Cu+ ), managanese ion (Mn2+ ), and zinc ion (Zn2+ ). The physiological functions and homeostasis regulation processes of ions are summarized to guide the design of metal ion regulation-based nanomedicines. Then the antitumor mechanisms of various ions-based nanomedicines and some efficient synergistic therapies are highlighted. Finally, the challenges and future developments of ion regulation-based antitumor therapy are also discussed, hoping to provide a reference for finding more effective metal ions and synergistic therapies.


Assuntos
Metais , Zinco , Ferro , Íons , Homeostase/fisiologia
10.
Front Immunol ; 14: 1285801, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077392

RESUMO

γδ T cells, a specialized subset of T lymphocytes, have garnered significant attention within the realm of cancer immunotherapy. Operating at the nexus between adaptive and innate immunological paradigms, these cells showcase a profound tumor discernment repertoire, hinting at novel immunotherapeutic strategies. Significantly, these cells possess the capability to directly identify and eliminate tumor cells without reliance on HLA-antigen presentation. Furthermore, γδ T cells have the faculty to present tumor antigens to αß T cells, amplifying their anti-tumoral efficacy.Within the diverse and heterogeneous subpopulations of γδ T cells, distinct immune functionalities emerge, manifesting either anti-tumor or pro-tumor roles within the tumor microenvironment. Grasping and strategically harnessing these heterogeneous γδ T cell cohorts is pivotal to their integration in tumor-specific immunotherapeutic modalities. The aim of this review is to describe the heterogeneity of the γδ T cell lineage and the functional plasticity it generates in the treatment of malignant tumors. This review endeavors to elucidate the intricate heterogeneity inherent to the γδ T cell lineage, the consequential functional dynamics in combating malignancies, the latest advancements from clinical trials, and the evolving landscape of γδ T cell-based oncological interventions, while addressing the challenges impeding the field.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T gama-delta , Humanos , Imunoterapia , Antígenos de Neoplasias , Apresentação de Antígeno , Microambiente Tumoral
11.
Front Immunol ; 14: 1258156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022548

RESUMO

Introduction: Chimeric antigen receptors (CARs) can redirect T cells against antigen-expressing tumors, and each component plays an important role in the function and anti-tumor efficacy. It has been reported that using human sequences or a low affinity of CAR single-chain variable fragments (scFvs) in the CAR binding domains is a potential way to enhance the function of CAR-T cells. However, it remains largely unknown how a lower affinity of CARs using humanized scFvs affects the function of CAR-T cells until recently. Methods: We used different humanized anti-HER2 antibodies as the extracellular domain of CARs and further constructed a series of the CAR-T cells with different affinity. Results: We have observed that moderately reducing the affinity of CARs (light chain variable domain (VL)-based CAR-T) could maintain the anti-tumor efficacy, and improved the safety of CAR therapy both in vitro and in vivo compared with high-affinity CAR-T cells. Moreover, T cells expressing the VL domain only antibody exhibited long-lasting tumor elimination capability after multiple challenges in vitro, longer persistence and lower cytokine levels in vivo. Discussion: Our findings provide an alternative option for CAR-T optimization with the potential to widen the use of CAR T cells.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Anticorpos de Cadeia Única , Anticorpos de Domínio Único , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/metabolismo , Linfócitos T
12.
Biochem Pharmacol ; 218: 115920, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37989416

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a highly aggressive tumor with significant heterogeneity in incidence and outcomes. The role of Neuregulin 1 (NRG1) in ESCC and its contribution to aggressiveness remain unknown. This study aims to investigate the functions and molecular mechanisms of NRG1 in ESCC as well as the treatment strategy for ESCC with overexpression of NRG1. We firstly demonstrated the upregulation of NRG1 and a negative correlation trend between patients' overall survival (OS) and the expression level of NRG1 in esophageal cancer. And then we found NRG1 promoted cell proliferation, migration, inhibited apoptosis, and accelerated tumorigenesis and metastasis in ESCC using cell lines and xenograft models. Furthermore, we discovered that NRG1 activated the NF-κB/MMP9 signaling pathway, contributing to the metastatic phenotype in ESCC. Finally, we show that afatinib (FDA approved cancer growth blocker) could inhibit ESCC with overexpressed NRG1 and down-regulation of NRG1 along with afatinib treatment provides higher efficient strategy. This study uncovers the critical role and molecular mechanism of NRG1 in ESCC tumorigenesis and metastasis, suggesting its potential as a novel biomarker for ESCC treatment.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Afatinib , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Neuregulina-1/genética , Neuregulina-1/metabolismo , Carcinogênese/genética , Transformação Celular Neoplásica , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular
13.
Mol Ther Oncolytics ; 30: 216-226, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37663131

RESUMO

CD19-targeted chimeric antigen receptor-modified T (CD19 CAR-T) cell therapy has been demonstrated as one of the most promising therapeutic strategies for treating B cell malignancies. However, it has shown limited treatment efficacy for diffuse large B cell lymphoma (DLBCL). This is, in part, due to the tumor heterogeneity and the hostile tumor microenvironment. Human interleukin-12 (IL-12), as a potent antitumor cytokine, has delivered encouraging outcomes in preclinical studies of DLBCL. However, potentially lethal toxicity associated with systemic administration precludes its clinical application. Here, an armed CD19 CAR expressing hypoxia-regulated IL-12 was developed (CAR19/hIL12ODD). In this vector, IL-12 secretion was restricted to hypoxic microenvironments within the tumor site by fusion of IL-12 with the oxygen degradation domain (ODD) of HIF1α. In vitro, CAR19/hIL12ODD-T cells could only secrete bioactive IL-12 under hypoxic conditions, accompanied by enhanced proliferation, robust IFN-γ secretion, increased abundance of CD4+, and central memory T cell phenotype. In vivo, adoptive transfer of CAR19/hIL12ODD-T cells significantly enhanced regression of large, established DLBCL xenografts in a novel immunodeficient Syrian hamster model. Notably, this targeted and controlled IL-12 treatment was without toxicity in this model. Taken together, our results suggest that armed CD19 CARs with hypoxia-controlled IL-12 (CAR19/hIL12ODD) might be a promising and safer approach for treating DLBCL.

14.
World J Gastroenterol ; 29(23): 3658-3667, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37398883

RESUMO

BACKGROUND: The expression status of serum and glucocorticoid-induced protein kinase 3 (SGK3) in superficial esophageal squamous cell neoplasia (ESCN) remains unknown. AIM: To evaluate the SGK3 overexpression rate in ESCN and its influence on the prognosis and outcomes of patients with endoscopic resection. METHODS: A total of 92 patients who had undergone endoscopic resection for ESCN with more than 8 years of follow-up were enrolled. Immunohistochemistry was used to evaluate SGK3 expression. RESULTS: SGK3 was overexpressed in 55 (59.8%) patients with ESCN. SGK3 overexpression showed a significant correlation with death (P = 0.031). Overall survival and disease-free survival rates were higher in the normal SGK3 expression group than in the SGK3 overexpression group (P = 0.013 and P = 0.004, respectively). Cox regression analysis models demonstrated that SGK3 overexpression was an independent predictor of poor prognosis in ESCN patients (hazard ratio 4.729; 95% confidence interval: 1.042-21.458). CONCLUSION: SGK3 overexpression was detected in the majority of patients with endoscopically resected ESCN and was significantly associated with shortened survival. Thus, it might be a new prognostic factor for ESCN.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Humanos , Carcinoma de Células Escamosas/cirurgia , Neoplasias Esofágicas/cirurgia , Prognóstico , Células Epiteliais , Estudos Retrospectivos , Proteínas Serina-Treonina Quinases
15.
Toxicology ; 494: 153589, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37419272

RESUMO

Deoxynivalenol (DON) is one of the most serious mycotoxins that contaminate food and feed, causing hepatocyte death. However, there is still a lack of understanding regarding the new cell death modalities that explain DON-induced hepatocyte toxicity. Ferroptosis is an iron-dependent type of cell death. The aim of this study was to explore the role of ferroptosis in DON-exposed HepG2 cytotoxicity and the antagonistic effect of resveratrol (Res) on its toxicity, and the underlying molecular mechanisms. HepG2 cells were treated with Res (8 µM) or/and DON (0.4 µM) for 12 h. We examined cell viability, cell proliferation, expression of ferroptosis-related genes, levels of lipid peroxidation and Fe(II). The results revealed that DON reduced the expression levels of GPX4, SLC7A11, GCLC, NQO1, and Nrf2 while promoting the expression of TFR1, GSH depletion, accumulation of MDA and total ROS. DON enhanced production of 4-HNE, lipid ROS and Fe(II) overload, resulting in ferroptosis. However, pretreatment with Res reversed these changes, attenuating DON-induced ferroptosis, improving cell viability and cell proliferation. Importantly, Res prevented Erastin and RSL3-induced ferroptosis, suggesting that Res exerted an anti-ferroptosis effect by activating SLC7A11-GSH-GPX4 signaling pathways. In summary, Res ameliorated DON-induced ferroptosis in HepG2 cells. This study provides a new perspective on the mechanism of DON-induced hepatotoxicity formation, and Res may be an effective drug to alleviate DON-induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Humanos , Células Hep G2 , Resveratrol/farmacologia , Espécies Reativas de Oxigênio , Compostos Ferrosos
16.
Turk J Gastroenterol ; 34(7): 720-727, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37326152

RESUMO

BACKGROUND/AIMS: Duodenal lipomas are rarely found in the gastrointestinal tract. Most published literature referring to the tumors is limited to case series. There remained issues about the understanding and management of duodenal lipomas to be clarified. We aimed to investigate the clinical and endoscopic features of duodenal lipomas. Additionally, outcomes of endoscopic resection for duodenal lipomas were evaluated. MATERIALS AND METHODS: A total of 29 duodenal lipomas resected endoscopically from December 2011 to October 2021 were included. Clinical characteristics, endoscopic features, and endoscopic ultrasound findings were analyzed retrospectively. The endoscopic resection was performed in 3 ways: hot snare polypectomy, endoscopic mucosa resection, and endoscopic submucosal dissection. RESULTS: Of the 29 duodenal lipomas, 21 were located at the second portion with a mean size of 25.8 mm (range, 7-60 mm). Yamada type IV was the most common macroscopic type in 14 lesions, exhibiting a tendency of forming large peduncles. Seven patients had digestive symptoms. The occurrence of symptoms is associated with the tumor size. Endoscopic ultrasound was performed on 23 duodenal lipomas, of which 20 demonstrated homogenous echogenicity and 3 presented heterogeneous with tubular anechoic region. The endoscopic resection operation was successfully conducted on 29 patients without severe adverse events. The rate of en bloc and endoscopic complete resection was 93.1% and 86.2%, respectively. Recurrence was noted in 1 patient. CONCLUSIONS: Clinical characteristics with typical endoscopic ultrasound features are helpful in duodenal lipomas diagnosis. The endoscopic resection is a safe and effective treatment for duodenal lipomas with considerable long-term outcomes.


Assuntos
Neoplasias Duodenais , Ressecção Endoscópica de Mucosa , Lipoma , Humanos , Endossonografia , Lipoma/cirurgia , Lipoma/patologia , Estudos Retrospectivos , Resultado do Tratamento , Neoplasias Duodenais/patologia , Neoplasias Duodenais/cirurgia
17.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(5): 397-403, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37248833

RESUMO

Objective To investigate a convenient and quantitative solution to activation levels and functional characterization of CAR-T cells by inserting T cell activity-responsive promoter (TARP) nanoluciferase reporter gene system into a lentiviral plasmid containing the gene encoding the chimeric antigen receptor (CAR). Methods The recombinant plasmid was constructed by using whole gene synthesis and molecular cloning techniques. The lentivirus was packaged and was infected with human primary T lymphocytes. Flow cytometry was used to detected the positive rate of lentivirus-infected T cells. The functional characterization of CAR-T cells was identified by luciferase reporter gene system, Western blot, flow cytometry, and small animal live imaging techniques. Results The results of enzyme digestion identification and the plasmid sequencing showed that the recombinant plasmids were constructed, and flow cytometry displayed the normal preparation of CAR-T cells. This system could dynamically respond to the activation of CAR-T cells by luciferase reporter gene system. The functional assay in vitro confirmed that the system could reflect the exhaustion of CAR-T cells, and the small animal live imaging results demonstrated that the system can be used as a tracer of CAR-T cells in mice. Conclusion TARP nanoluciferase reporter gene system provides a more convenient, sensitive and quantitative method for evaluating CAR-T cells activation level, exhaustion phenotype and tracing.


Assuntos
Receptores de Antígenos Quiméricos , Linfócitos T , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Receptores de Antígenos Quiméricos/genética , Regiões Promotoras Genéticas , Imunoterapia Adotiva/métodos
18.
Front Immunol ; 14: 1126969, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923404

RESUMO

Cancer immunotherapy (CIT) has emerged as an exciting new pillar of cancer treatment. Although benefits have been achieved in individual patients, the overall response rate is still not satisfactory. To address this, an ideal preclinical animal model for evaluating CIT is urgently needed. Syrian hamsters present similar features to humans with regard to their anatomy, physiology, and pathology. Notably, the histological features and pathological progression of tumors and the complexity of the tumor microenvironment are equivalent to the human scenario. This article reviews the current tumor models in Syrian hamster and the latest progress in their application to development of tumor treatments including immune checkpoint inhibitors, cytokines, adoptive cell therapy, cancer vaccines, and oncolytic viruses. This progress strongly advocates Syrian hamster as an ideal animal model for development and assessment of CIT for human cancer treatments. Additionally, the challenges of the Syrian hamster as an animal model for CIT are also discussed.


Assuntos
Neoplasias , Vírus Oncolíticos , Cricetinae , Animais , Humanos , Mesocricetus , Modelos Animais , Vírus Oncolíticos/fisiologia , Citocinas , Imunoterapia , Neoplasias/terapia
20.
Front Neurol ; 14: 1080331, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846144

RESUMO

Objectives: Cat-scratch disease (CSD) is an infectious disease caused by Bartonella henselae. The most typical symptom of patients with CSD is regional lymphadenopathy, while central nervous system lesions related to CSD are rare. Here, we present a case of an aged woman with CSD involving the dura mater with a manifestation similar to that of an atypical meningioma. Methods: The patient was followed up by our neurosurgery and radiology teams. Clinical information was recorded, and the pre- and post-operation CT results and magnetic resonance imaging (MRI) changes were collected. The paraffin-embedded tissue was sampled for the polymerase chain reaction (PCR) test. Results: In this study, we present the details of a 54 year-old Chinese woman admitted to our hospital with a paroxysmal headache for 2 years that had worsened in the past 3 months. Brain CT and MRI showed a meningioma-like lesion below the occipital plate. En bloc resection of the sinus junction area was performed. A pathological examination showed granulation tissue and fibrosis with acute and chronic inflammation, granuloma, and central stellate microabscess, which was suspected as the cat-scratch disease. The paraffin-embedded tissue was sampled for a polymerase chain reaction (PCR) test to amplify the corresponding pathogen gene sequence, which was Bartonella henselae. Conclusion: The case in our study underscores the fact that the incubation period of CSD may be very long. On the contrary, CSD can involve the meninges, resulting in tumor-like lesions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA