Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cancer Res ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39186691

RESUMO

Resistance to paclitaxel poses a major obstacle in esophageal squamous cell carcinoma (ESCC) treatment. A better understanding of the mechanisms underlying paclitaxel resistance could help identify prognostic biomarkers and improved therapeutic strategies. In this study, we established a patient-derived xenograft (PDX) model of acquired paclitaxel resistance and used RNA-sequencing to identify galectin-1, encoded by LGALS1, as a key mediator of resistance. Integrative analysis of clinical data and physiological studies indicated that serum galectin-1 levels were elevated in resistant patients and correlated with treatment outcomes before and during taxane therapy. Importantly, exposing cells to serum from resistant patients resulted in increased paclitaxel resistance compared to serum from sensitive patients, which was closely associated with galectin-1 concentrations in the serum. The specific clearance of galectin-1 from resistant patient serum significantly restored paclitaxel sensitivity, and inhibiting galectin-1, through knockdown or the pharmacologic inhibitor OTX008, increased sensitivity to paclitaxel. Galectin-1 inhibition reduced the activity of ß-catenin, thereby inhibiting stem cell properties induced by the Wnt/ß-catenin pathway. Furthermore, galectin-1 regulated MDR1 transcription through increased nuclear accumulation of ß-catenin, thus increasing resistance to paclitaxel. Combining OTX008 with clinical taxane formulations effectively reversed paclitaxel resistance in vitro and in vivo. Elevated galectin-1 levels thus serve as an indicator of response to paclitaxel therapy in ESCC, offering a therapeutic intervention strategy to overcome drug resistance.

2.
JCI Insight ; 9(10)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652547

RESUMO

Esophageal squamous cell carcinoma (ESCC) is the predominant form of esophageal cancer and is characterized by an unfavorable prognosis. To elucidate the distinct molecular alterations in ESCC and investigate therapeutic targets, we performed a comprehensive analysis of transcriptomics, proteomics, and phosphoproteomics data derived from 60 paired treatment-naive ESCC and adjacent nontumor tissue samples. Additionally, we conducted a correlation analysis to describe the regulatory relationship between transcriptomic and proteomic processes, revealing alterations in key metabolic pathways. Unsupervised clustering analysis of the proteomics data stratified patients with ESCC into 3 subtypes with different molecular characteristics and clinical outcomes. Notably, subtype III exhibited the worst prognosis and enrichment in proteins associated with malignant processes, including glycolysis and DNA repair pathways. Furthermore, translocase of inner mitochondrial membrane domain containing 1 (TIMMDC1) was validated as a potential prognostic molecule for ESCC. Moreover, integrated kinase-substrate network analysis using the phosphoproteome nominated candidate kinases as potential targets. In vitro and in vivo experiments further confirmed casein kinase II subunit α (CSNK2A1) as a potential kinase target for ESCC. These underlying data represent a valuable resource for researchers that may provide better insights into the biology and treatment of ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteômica , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Proteômica/métodos , Masculino , Camundongos , Prognóstico , Feminino , Animais , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Pessoa de Meia-Idade , Caseína Quinase II/metabolismo , Caseína Quinase II/genética , Transcriptoma , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Multiômica
3.
J Int Med Res ; 52(3): 3000605241237878, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38530040

RESUMO

OBJECTIVES: We assessed the efficacy of a 3-week primary or salvage caspofungin regimen in patients with chronic obstructive pulmonary disease (COPD) and concomitant proven or suspected invasive pulmonary aspergillosis (IPA). METHODS: Forty-four patients were treated with an initial loading caspofungin dose of 70 mg, followed by a daily dose of 50 mg for 20 days. The main efficacy endpoint was clinical effectiveness. Secondary endpoints included the clinical efficacy of caspofungin after 1 week, therapeutic efficacy based on the European Organization for Research and Treatment of Cancer and Mycoses Study Group Education and Research Consortium (EORTC/MSG) criteria, the sensitivity of different Aspergillus strains to caspofungin in vitro, and the safety of caspofungin. RESULTS: An assessment of 42 patients in the intention-to-treat group revealed efficacy rates of 33.33% within 1 week and 38.10% within 3 weeks. According to the EORTC/MSG criteria, the treatment success rate was 38.10%. The success rate of first-line treatment was 54.76%, whereas salvage treatment had a success rate of 45.24%. No adverse events were reported among the participants. CONCLUSIONS: Caspofungin is effective and safe as an initial or salvage treatment for patients with IPA and COPD.


Assuntos
Aspergilose , Aspergilose Pulmonar Invasiva , Doença Pulmonar Obstrutiva Crônica , Humanos , Caspofungina/uso terapêutico , Aspergilose Pulmonar Invasiva/complicações , Aspergilose Pulmonar Invasiva/tratamento farmacológico , Aspergilose Pulmonar Invasiva/induzido quimicamente , Antifúngicos/efeitos adversos , Equinocandinas/efeitos adversos , Lipopeptídeos/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
4.
Mol Cancer ; 22(1): 208, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38111008

RESUMO

The RAS/mitogen-activated protein kinase (MAPK) signaling cascade is commonly dysregulated in human malignancies by processes driven by RAS or RAF oncogenes. Among the members of the RAF kinase family, CRAF plays an important role in the RAS-MAPK signaling pathway, as well as in the progression of cancer. Recent research has provided evidence implicating the role of CRAF in the physiological regulation and the resistance to BRAF inhibitors through MAPK-dependent and MAPK-independent mechanisms. Nevertheless, the effectiveness of solely targeting CRAF kinase activity remains controversial. Moreover, the kinase-independent function of CRAF may be essential for lung cancers with KRAS mutations. It is imperative to develop strategies to enhance efficacy and minimize toxicity in tumors driven by RAS or RAF oncogenes. The review investigates CRAF alterations observed in cancers and unravels the distinct roles of CRAF in cancers propelled by diverse oncogenes. This review also seeks to summarize CRAF-interacting proteins and delineate CRAF's regulation across various cancer hallmarks. Additionally, we discuss recent advances in pan-RAF inhibitors and their combination with other therapeutic approaches to improve treatment outcomes and minimize adverse effects in patients with RAF/RAS-mutant tumors. By providing a comprehensive understanding of the multifaceted role of CRAF in cancers and highlighting the latest developments in RAF inhibitor therapies, we endeavor to identify synergistic targets and elucidate resistance pathways, setting the stage for more robust and safer combination strategies for cancer treatment.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas B-raf , Humanos , Linhagem Celular Tumoral , Transdução de Sinais , Fosforilação , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo
5.
Minerva Anestesiol ; 89(12): 1082-1091, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38019172

RESUMO

BACKGROUND: Video-assisted thoracic surgery (VATS) is frequently associated with substantial postoperative pain, which may lead to hypopnea. Rescue analgesia using opioids has adverse effects. We aimed to evaluate the effects of rescue analgesia with serratus anterior plane block (SAPB) on moderate-to-severe pain and oxygenation in patients undergoing VATS. METHODS: Eighty patients undergoing VATS and reporting a numeric rating scale (NRS, ranging from 0-10) score of cough pain ≥4 on the first postoperative day were randomized to receive either sufentanil or SAPB for rescue analgesia. The primary outcome was the degree of relief in cough pain 30 min after rescue analgesia. Arterial oxygen pressure (PaO2), opioid consumption after rescue analgesia and the incidence of chronic pain were also assessed. RESULTS: The NRS scores were significantly reduced after rescue analgesia in both groups (Ppaired <0.001). Notably, the degree of relief in cough pain was significantly higher in the SAPB group than that in the sufentanil group (medians [interquartiles]: -3 [-4, -2] vs. -2 [-3, -1], P<0.001). Moreover, patients receiving SAPB exhibited significantly higher PaO2 than those before receiving rescue analgesia (Ppaired=0.007). However, there were no significant differences in the PaO2 before and after receiving rescue analgesia in the sufentanil group. No significant differences in opioid consumption or the incidence of chronic pain were observed between groups. CONCLUSIONS: Rescue analgesia with SAPB on the first postoperative day had a greater effect on pain relief and oxygenation after VATS. However, its long-term effect on chronic pain requires further research.


Assuntos
Analgesia , Dor Crônica , Cirurgia Torácica , Humanos , Sufentanil/uso terapêutico , Analgésicos Opioides/uso terapêutico , Tosse
6.
J Exp Clin Cancer Res ; 42(1): 97, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37088855

RESUMO

BACKGROUND: Although molecular targets such as HER2, TP53 and PIK3CA have been widely studied in esophageal cancer, few of them were successfully applied for clinical treatment. Therefore, it is urgent to discover novel actionable targets and inhibitors. Eukaryotic translational elongation factor 2 (eEF2) is reported to be highly expressed in various cancers. However, its contribution to the maintenance and progression of cancer has not been fully clarified. METHODS: In the present study, we utilized tissue array to evaluate eEF2 protein expression and clinical significance in esophageal squamous cell carcinoma (ESCC). Next, we performed knockdown, overexpression, RNA-binding protein immunoprecipitation (RIP) sequence, and nascent protein synthesis assays to explore the molecular function of eEF2. Furthermore, we utilized compound screening, Surface Plasmon Resonance (SPR), Isothermal Titration Calorimetry (ITC) assay, cell proliferation and Patient derived xenograft (PDX) mouse model assays to discover an eEF2 inhibitor and assess its effects on ESCC growth. RESULTS: We found that eEF2 were highly expressed in ESCC and negatively associated with the prognosis of ESCC patients. Knocking down of eEF2 suppressed the cell proliferation and colony formation of ESCC. eEF2 bond with the mRNA of Topoisomerase II (TOP1) and Topoisomerase II (TOP2) and enhanced the protein biosynthesis of TOP1 and TOP2. We also identified Toosendanin was a novel inhibitor of eEF2 and Toosendanin inhibited the growth of ESCC in vitro and in vivo. CONCLUSIONS: Our findings show that Toosendanin treatment suppresses ESCC growth through targeting eEF2 and regulating downstream TOP1 and TOP2 biosynthesis. eEF2 could be supplied as a potential therapeutic target in the further clinical studies.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas/patologia , Fator 2 de Elongação de Peptídeos/genética , Fator 2 de Elongação de Peptídeos/metabolismo , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética
7.
Signal Transduct Target Ther ; 8(1): 96, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36872366

RESUMO

Constitutive activation of RAS-RAF-MEK-ERK signaling pathway (MAPK pathway) frequently occurs in many cancers harboring RAS or RAF oncogenic mutations. Because of the paradoxical activation induced by a single use of BRAF or MEK inhibitors, dual-target RAF and MEK treatment is thought to be a promising strategy. In this work, we evaluated erianin is a novel inhibitor of CRAF and MEK1/2 kinases, thus suppressing constitutive activation of the MAPK signaling pathway induced by BRAF V600E or RAS mutations. KinaseProfiler enzyme profiling, surface plasmon resonance (SPR), isothermal titration calorimetry (ITC), cellular thermal shift assay, computational docking, and molecular dynamics simulations were utilized to screen and identify erianin binding to CRAF and MEK1/2. Kinase assay, luminescent ADP detection assay, and enzyme kinetics assay were investigated to identify the efficiency of erianin in CRAF and MEK1/2 kinase activity. Notably, erianin suppressed BRAF V600E or RAS mutant melanoma and colorectal cancer cell by inhibiting MEK1/2 and CRAF but not BRAF kinase activity. Moreover, erianin attenuated melanoma and colorectal cancer in vivo. Overall, we provide a promising leading compound for BRAF V600E or RAS mutant melanoma and colorectal cancer through dual targeting of CRAF and MEK1/2.


Assuntos
Neoplasias Colorretais , Melanoma , Humanos , Transdução de Sinais , Quinases de Proteína Quinase Ativadas por Mitógeno
8.
BMC Bioinformatics ; 22(1): 434, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507532

RESUMO

BACKGROUND: One of the major challenges in precision medicine is accurate prediction of individual patient's response to drugs. A great number of computational methods have been developed to predict compounds activity using genomic profiles or chemical structures, but more exploration is yet to be done to combine genetic mutation, gene expression, and cheminformatics in one machine learning model. RESULTS: We presented here a novel deep-learning model that integrates gene expression, genetic mutation, and chemical structure of compounds in a multi-task convolutional architecture. We applied our model to the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets. We selected relevant cancer-related genes based on oncology genetics database and L1000 landmark genes, and used their expression and mutations as genomic features in model training. We obtain the cheminformatics features for compounds from PubChem or ChEMBL. Our finding is that combining gene expression, genetic mutation, and cheminformatics features greatly enhances the predictive performance. CONCLUSION: We implemented an extended Graph Neural Network for molecular graphs and Convolutional Neural Network for gene features. With the employment of multi-tasking and self-attention functions to monitor the similarity between compounds, our model outperforms recently published methods using the same training and testing datasets.


Assuntos
Antineoplásicos , Aprendizado Profundo , Neoplasias , Preparações Farmacêuticas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Genômica , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética
9.
Oncogene ; 40(23): 3942-3958, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33986510

RESUMO

The mortality rate of esophageal squamous cell carcinoma (ESCC) is higher than that of other cancers worldwide owing to a lack of therapeutic targets and related drugs. This study aimed to find new drugs by targeting an efficacious therapeutic target in ESCC patients. Signal transducer and activator of transcription 3 (STAT3) is hyperactive in ESCC. Herein, we identified a novel STAT3 inhibitor, periplogenin, which strongly inhibited phosphorylation of STAT3 at Tyr705. Docking models and pull-down assays revealed that periplogenin bound directly and specifically to STAT3, leading to significant suppression of subsequent dimerization, nuclear import, and transcription activities. In addition, STAT3 knockdown cell lines were insensitive to periplogenin, whereas in contrast, STAT3-overexpressing cells were more sensitive to periplogenin, indicating that STAT3 was a target of periplogenin. Intraperitoneally administered periplogenin exhibited efficacious therapeutic effects in ESCC patient-derived xenograft models and dramatically impaired the phosphorylation of STAT3 and expression levels of STAT3-mediated downstream genes. Thus, our study demonstrated that periplogenin acted as a new STAT3 inhibitor, suppressing the growth of ESCC in vitro and in vivo, providing a basis for its potential application in ESCC treatment and prevention.


Assuntos
Digitoxigenina/análogos & derivados , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Fator de Transcrição STAT3/antagonistas & inibidores , Idoso , Idoso de 80 Anos ou mais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Digitoxigenina/farmacologia , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Taxa de Sobrevida , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Front Cell Dev Biol ; 8: 603472, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330500

RESUMO

Honokiol, a natural compound, derived from Magnolia officinalis, has been shown to have anti-cancer effect in several cancer types. However, the underlying molecular mechanism associated with its anti-cancer properties has not been fully elucidated. In the current study, we showed that honokiol inhibited the growth of melanoma cells in a dose and time-dependent manner. Mechanistically, it directly interacts with keratin 18 (KRT18) protein and induces its degradation through ubiquitination. Furthermore, the expression of KRT18 was found to be higher in melanoma tissues compared to the normal skin tissues. In addition, KRT18 overexpression significantly promoted melanoma cell proliferation and growth. Our results showed that honokiol treatment significantly decreased KRT18 protein level and suppressed the tumor growth in melanoma cell-derived xenograft mice models. Hence, KRT18 plays an oncogenic role in melanoma and honokiol can be an inhibitor for KRT18.

11.
ACS Nano ; 14(8): 9929-9937, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32672440

RESUMO

Electrochemical dechlorination of 1,2-dichloroethane (DCE) is one of the prospective and economic strategies for the preparation of high-value ethylene. However, the exploration of advanced electrocatalysts with high reactivity and selectivity and the identification of their active sites are still a challenge. Herein, a single-atom (SA) Fe-Nx-C nanosheet with the presence of a highly efficient Fe-N4 coordination pattern is reported. The as-prepared single-atom electrocatalyst exhibits a higher reactivity and ethylene selectivity for DCE dechlorination reaction than those of the commercially adopted 20% Pt-C catalyst. By a combination of experiments and theoretical calculations, the atomically dispersed Fe center in the Fe-N4 structure was unveiled to be the dominating active site for electrochemical production of ethylene. Our work would offer an approach for the rational development of SA materials and supply crucial insight into the mechanism of ethylene production through the DCE dechlorination reaction.

12.
Cell Death Dis ; 10(11): 815, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653826

RESUMO

Targeting oncogenic proteins for degradation using proteolysis-targeting chimera (PROTAC) recently has drawn increasing attention in the field of cancer research. Bromodomain and extra-terminal (BET) family proteins are newly identified cancer-related epigenetic regulators, which have a role in the pathogenesis and progression of osteosarcoma. In this study, we investigated the in vitro and in vivo anti-osteosarcoma activity by targeting BET with a PROTAC molecule BETd-260. The results showed that BETd-260 completely depletes BET proteins and potently suppresses cell viability in MNNG/HOS, Saos-2, MG-63, and SJSA-1 osteosarcoma cell lines. Compared with BET inhibitors HJB-97 and JQ1, the activity of BETd-260 increased over 1000 times. Moreover, BETd-260 substantially inhibited the expression of anti-apoptotic Mcl-1, Bcl-xl while increased the expression of pro-apoptotic Noxa, which resulted in massive apoptosis in osteosarcoma cells within hours. In addition, pro-oncogenic protein c-Myc also was substantially inhibited by BETd-260 in the OS cells. Of note, BETd-260 induced degradation of BET proteins, triggered apoptosis in xenograft osteosarcoma tumor tissue, and profoundly inhibited the growth of cell-derived and patient-derived osteosarcoma xenografts in mice. Our findings indicate that BET PROTACs represent a promising therapeutic agent for human osteosarcoma.


Assuntos
Proteínas Reguladoras de Apoptose , Apoptose , Proteínas do Tecido Nervoso , Osteossarcoma , Receptores de Superfície Celular , Animais , Humanos , Camundongos , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Azepinas/farmacologia , Proteína bcl-X/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/patologia , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/genética , Receptores de Superfície Celular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Mol Carcinog ; 58(7): 1248-1259, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31100197

RESUMO

Purpurogallin is a natural compound that is extracted from nutgalls and oak bark and it possesses antioxidant, anticancer, and anti-inflammatory properties. However, the anticancer capacity of purpurogallin and its molecular target have not been investigated in esophageal squamous cell carcinoma (ESCC). Herein, we report that purpurogallin suppresses ESCC cell growth by directly targeting the mitogen-activated protein kinase kinase 1/2 (MEK1/2) signaling pathway. We found that purpurogallin inhibits anchorage-dependent and -independent ESCC growth. The results of in vitro kinase assays and cell-based assays indicated that purpurogallin also strongly attenuates the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway and also directly binds to and inhibits MEK1 and MEK2 activity. Furthermore, purpurogallin contributed to S and G2 phase cell cycle arrest by reducing cyclin A2 and cyclin B1 expression and also induced apoptosis by activating poly (ADP ribose) polymerase (PARP). Notably, purpurogallin suppressed patient-derived ESCC tumor growth in an in vivo mouse model. These findings indicated that purpurogallin is a novel MEK1/2 inhibitor that could be useful for treating ESCC.


Assuntos
Antineoplásicos/farmacologia , Benzocicloeptenos/farmacologia , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclina A2/biossíntese , Ciclina B1/biossíntese , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Camundongos , Preparações de Plantas/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Int J Cancer ; 145(4): 1007-1019, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30887517

RESUMO

Esophageal cancer, a leading cause of cancer death worldwide, is associated with abnormal activation of the AKT signaling pathway. Xanthohumol, a prenylated flavonoid tested in clinical trials, is reported to exert anti-diabetes, anti-inflammation and anticancer activities. However, the mechanisms underlying its chemopreventive or chemotherapeutic effects remain elusive. In the present study, we found that xanthohumol directly targeted AKT1/2 in esophageal squamous cell carcinoma (ESCC). Xanthohumol significantly inhibited the AKT kinase activity in an ATP competitive manner, which was confirmed in binding and computational docking models. KYSE70, 450 and 510 ESCC cell lines highly express AKT and knockdown of AKT1/2 suppressed proliferation of these cells. Treatment with xanthohumol inhibited ESCC cell growth and induced apoptosis and cell cycle arrest at the G1 phase. Xanthohumol also decreased expression of cyclin D1 and increased the levels of cleaved caspase-3, -7 and -PARP as well as Bax, Bims and cytochrome c in ESCC cells by downregulating AKT signaling targets, including glycogen synthase kinase 3 beta (GSK3ß), mammalian target of rapamycin, and ribosomal protein S6 (S6K). Furthermore, xanthohumol decreased tumor volume and weight in patient-derived xenografts (PDXs) that highly expressed AKT, but had no effect on PDXs that exhibited low expression of AKT in vivo. Kinase array results showed that xanthohumol treatment decreased phosphorylated p27 expression in both ESCC cell lines and PDX models. Taken together, our data suggest that the inhibition of ESCC tumor growth with xanthohumol is caused by targeting AKT. These results provide good evidence for translation toward clinical trials with xanthohumol.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Flavonoides/farmacologia , Fase G1/efeitos dos fármacos , Humanos , Camundongos , Camundongos SCID , Propiofenonas/farmacologia , Transdução de Sinais/efeitos dos fármacos
15.
NPJ Precis Oncol ; 1(1): 13, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29872701

RESUMO

To explore the function of ornithine decarboxylase in esophageal squamous cell carcinoma progression and test the effectiveness of anti-ornithine decarboxylase therapy for esophageal squamous cell carcinoma. In this study, we examined the expression pattern of ornithine decarboxylase in esophageal squamous cell carcinoma cell lines and tissues using immunohistochemistry and Western blot analysis. Then we investigated the function of ornithine decarboxylase in ESCC cells by using shRNA and an irreversible inhibitor of ornithine decarboxylase, difluoromethylornithine. To gather more supporting pre-clinical data, a human esophageal squamous cell carcinoma patient-derived xenograft mouse model (C.B-17 severe combined immunodeficient mice) was used to determine the antitumor effects of difluoromethylornithine in vivo. Our data showed that the expression of the ornithine decarboxylase protein is increased in esophageal squamous cell carcinoma tissues compared with esophagitis or normal adjacent tissues. Polyamine depletion by ODC shRNA not only arrests esophageal squamous cell carcinoma cells in the G2/M phase, but also induces apoptosis, which further suppresses esophageal squamous cell carcinoma cell tumorigenesis. Difluoromethylornithine treatment decreases proliferation and also induces apoptosis of esophageal squamous cell carcinoma cells and implanted tumors, resulting in significant reduction in the size and weight of tumors. The results of this study indicate that ornithine decarboxylase is a promising target for esophageal squamous cell carcinoma therapy and difluoromethylornithine warrants further study in clinical trials to test its effectiveness against esophageal squamous cell carcinoma.

16.
ACS Appl Mater Interfaces ; 7(19): 10482-90, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25915174

RESUMO

High sensitivity, selectivity, and reliability have been achieved from ZnSnO3/ZnO nanowire (NW) piezo-nanogenerator (NG) as self-powered gas sensor (SPGS) for detecting liquefied petroleum gas (LPG) at room temperature (RT). After being exposed to 8000 ppm LPG, the output piezo-voltage of ZnSnO3/ZnO NW SPGS under compressive deformation is 0.089 V, much smaller than that in air ambience (0.533 V). The sensitivity of the SPGS against 8000 ppm LPG is up to 83.23, and the low limit of detection is 600 ppm. The SPGS has lower sensitivity against H2S, H2, ethanol, methanol and saturated water vapor than LPG, indicating good selectivity for detecting LPG. After two months, the decline of the sensing performance is less than 6%. Such piezo-LPG sensing at RT can be ascribed to the new piezo-surface coupling effect of ZnSnO3/ZnO nanocomposites. The practical application of the device driven by human motion has also been simply demonstrated. This work provides a novel approach to fabricate RT-LPG sensors and promotes the development of self-powered sensing system.

17.
Phys Chem Chem Phys ; 17(16): 10856-60, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25820663

RESUMO

Highly sensitive humidity sensing has been realized from a Cd-doped ZnO nanowire (NW) nanogenerator (NG) as a self-powered/active gas sensor. The piezoelectric output of the device acts not only as a power source, but also as a response signal to the relative humidity (RH) in the environment. The response of Cd-ZnO (1 : 10) NWs reached up to 85.7 upon exposure to 70% relative humidity, much higher than that of undoped ZnO NWs. Cd dopant can increase the number of oxygen vacancies in the NWs, resulting in more adsorption sites on the surface of the NWs. Upon exposure to a humid environment, a large amount of water molecules can displace the adsorbed oxygen ions on the surface of Cd-ZnO NWs. This procedure can influence the carrier density in Cd-ZnO NWs and vary the screening effect on the piezoelectric output. Our study can stimulate a research trend on exploring composite materials for piezo-gas sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA