Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39019048

RESUMO

Precise segmentation for skin cancer lesions at different stages is conducive to early detection and further treatment. Considering the huge cost of obtaining pixel-perfect annotations for this task, segmentation using less expensive image-level labels has become a research direction. Most image-level label weakly supervised segmentation uses class activation mapping (CAM) methods. A common consequence of this method is incomplete foreground segmentation, insufficient segmentation, or false negatives. At the same time, when performing weakly supervised segmentation of skin cancer lesions, ulcers, redness, and swelling may appear near the segmented areas of individual disease categories. This co-occurrence problem affects the model's accuracy in segmenting class-related tissue boundaries to a certain extent. The above two issues are determined by the loosely constrained nature of image-level labels that penalize the entire image space. Therefore, providing pixel-level constraints for weak supervision of image-level labels is the key to improving performance. To solve the above problems, this paper proposes a joint unsupervised constraint-assisted weakly supervised segmentation model(UCA-WSS). The weakly supervised part of the model adopts a dual-branch adversarial erasure mechanism to generate higher-quality CAM. The unsupervised part uses contrastive learning and clustering algorithms to generate foreground labels and fine boundary labels to assist segmentation and solve common co-occurrence problems in weakly supervised skin cancer lesion segmentation through unsupervised constraints. The model proposed in the article is evaluated comparatively with other related models on some public dermatology data sets. Experimental results show that our model performs better on the skin cancer segmentation task than other weakly supervised segmentation models, showing the potential of combining unsupervised constraint methods on weakly supervised segmentation.

2.
Int J Biol Macromol ; : 133871, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39009257

RESUMO

Camptothecin (CPT) is a monoterpenoid indole alkaloid with a wide spectrum of anticancer activity. However, its application is hindered by poor solubility, lack of targeting specificity, and severe side effects. Structural derivatization of CPT and the development of suitable drug delivery systems are potential strategies for addressing these issues. In this study, we discovered that the protein Cytochrome P450 Family 1 Subfamily A Member 1 (CYP1A1) from Homo sapiens catalyzes CPT to yield 9-hydroxycamptothecin (9-HCPT), which exhibits increased water solubility and cytotoxicity. We then created a RNA-protein complex based drug delivery system with enzyme and pH responsiveness and improved the targeting and stability of the nanomedicine through protein module assembly. The subcellular localization of nanoparticles can be visualized using fluorescent RNA probes. Our results not only identified the protein CYP1A1 responsible for the structural derivatization of CPT to synthesize 9-HCPT but also offered potential strategies for enhancing the utilization of silk-based drug delivery systems in tumor therapy.

3.
BMC Cancer ; 24(1): 761, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918775

RESUMO

High-grade B-cell lymphoma (HGBCL), the subtype of non-Hodgkin lymphoma, to be relapsed or refractory in patients after initial therapy or salvage chemotherapy. Dual dysregulation of MYC and BCL2 is one of the important pathogenic mechanisms. Thus, combined targeting of MYC and BCL2 appears to be a promising strategy. Dihydroorotate dehydrogenase (DHODH) is the fourth rate-limiting enzyme for the de novo biosynthesis of pyrimidine. It has been shown to be a potential therapeutic target for multiple diseases. In this study, the DHODH inhibitor brequinar exhibited growth inhibition, cell cycle blockade, and apoptosis promotion in HGBCL cell lines with MYC and BCL2 rearrangements. The combination of brequinar and BCL2 inhibitors venetoclax had a synergistic inhibitory effect on the survival of DHL cells through different pathways. Venetoclax could upregulate MCL-1 and MYC expression, which has been reported as a resistance mechanism of BCL2 inhibitors. Brequinar downregulated MCL-1 and MYC, which could potentially overcome drug resistance to venetoclax in HGBCL cells. Furthermore, brequinar could downregulate a broad range of genes, including ribosome biosynthesis genes, which might contribute to its anti-tumor effects. In vivo studies demonstrated synergetic tumor growth inhibition in xenograft models with brequinar and venetoclax combination treatment. These results provide preliminary evidence for the rational combination of DHODH and BCL2 blockade in HGBCL with abnormal MYC and BCL2.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Di-Hidro-Orotato Desidrogenase , Sinergismo Farmacológico , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Proto-Oncogênicas c-myc , Sulfonamidas , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Camundongos , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Linhagem Celular Tumoral , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Apoptose/efeitos dos fármacos , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/genética , Linfoma de Células B/patologia , Linfoma de Células B/metabolismo , Rearranjo Gênico , Proliferação de Células/efeitos dos fármacos , Compostos de Bifenilo , Quinaldinas
5.
Artigo em Inglês | MEDLINE | ID: mdl-38713566

RESUMO

Achieving accurate bladder wall and tumor segmentation from MRI is critical for diagnosing and treating bladder cancer. However, automated segmentation remains challenging due to factors such as comparable density distributions, intricate tumor morphologies, and unclear boundaries. Considering the attributes of bladder MRI images, we propose an efficient multiscale hierarchical hybrid attention with a transformer (MH2AFormer) for bladder cancer and wall segmentation. Specifically, a multiscale hybrid attention and transformer (MHAT) module in the encoder is designed to adaptively extract and aggregate multiscale hybrid feature representations from the input image. In the decoder stage, we devise a multiscale hybrid attention (MHA) module to generate high-quality segmentation results from multiscale hybrid features. Combining these modules enhances the feature representation and guides the model to focus on tumor and wall regions, which helps to solve bladder image segmentation challenges. Moreover, MHAT utilizes the Fast Fourier Transformer with a large kernel (e.g., 224*******224) to model global feature relationships while reducing computational complexity in the encoding stage. The model performance was evaluated on two datasets. As a result, the model achieves relatively best results regarding the intersection over union (IoU) and dice similarity coefficient (DSC) on both datasets (Dataset A: IoU=80.26%, DSC=88.20%; Dataset B: IoU=89.74%, DSC=94.48%). These advantageous outcomes substantiate the practical utility of our approach, highlighting its potential to alleviate the workload of radiologists when applied in clinical settings.

6.
Front Nutr ; 11: 1341827, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765811

RESUMO

Essential oils have been recognized for their strong antibacterial property, making them an innovative approach for preserving meat. However, their chemical instability and direct impact on meat proteins limit their application. To overcome these limitations, various loading systems have been explored. This study aimed to compare the effect of cinnamon essential oil (CEO) loaded in a liposome and emulsion system on the proteolysis of minced pork and to evaluate the advantages of each delivery system in preventing microorganism-induced quality deterioration of meat. Minced pork treated with CEO-liposomes exhibited lower pH, total volatile basic nitrogen (TVB-N), and total viable count (TVC) values than CEO-emulsions and provided better protection against microorganisms. SDS-polyacrylamide gel electrophoresis (PAGE) analysis confirmed that CEO-liposome was more effective in protecting proteins from degradation. Moreover, CEO-liposome produced lower amount of bitter amino acids and harmful biogenic amines. Antibacterial mechanisms indicated that CEO-liposome exhibited a stronger inhibitory effect against major spoilage bacteria in meat products by increasing cell membrane permeability. The membrane damage was further supported by an increase in conductivity and the leakage of nucleic acids. Compared to the CEO-emulsion system, CEO-liposome emerged as an effective preservative for minced pork. These results provided important theoretical support for using a bioactive compound delivery system to prevent microorganism-induced quality deterioration in meat.

7.
ACS Biomater Sci Eng ; 10(5): 2995-3005, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38654432

RESUMO

Magnetic hyperthermia is a crucial medical engineering technique for treating diseases, which usually uses alternating magnetic fields (AMF) to interplay with magnetic substances to generate heat. Recently, it has been found that in some cases, there is no detectable temperature increment after applying an AMF, which caused corresponding effects surprisingly. The mechanisms involved in this phenomenon are not yet fully understood. In this study, we aimed to explore the role of Ca2+ overload in the magnetic hyperthermia effect without a perceptible temperature rise. A cellular system expressing the fusion proteins TRPV1 and ferritin was prepared. The application of an AMF (518 kHz, 16 kA/m) could induce the fusion protein to release a large amount of iron ions, which then participates in the production of massive reactive oxygen radicals (ROS). Both ROS and its induced lipid oxidation enticed the opening of ion channels, causing intracellular Ca2+ overload, which further led to decreased cellular viability. Taken together, Ca2+ overload triggered by elevated ROS and the induced oxidation of lipids contributes to the magnetic hyperthermia effect without a perceptible temperature rise. These findings would be beneficial for expanding the application of temperature-free magnetic hyperthermia, such as in cellular and neural regulation, design of new cancer treatment methods.


Assuntos
Cálcio , Sobrevivência Celular , Hipertermia Induzida , Campos Magnéticos , Espécies Reativas de Oxigênio , Canais de Cátion TRPV , Cálcio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canais de Cátion TRPV/metabolismo , Humanos , Hipertermia Induzida/métodos , Temperatura , Ferritinas/metabolismo , Hipertermia/metabolismo
8.
Heliyon ; 10(7): e27993, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560108

RESUMO

Objective: To establish a Bama minipigs model with Non-Alcoholic Fatty Liver (NAFL) induced by a high-fat diet and investigate the application of attenuation coefficient (ATT) and ultrasound-derived fat fraction (UDFF) in the diagnosis of NAFL. Methods: Six-month-old male Bama minipigs were randomly divided into normal control and high-fat groups (n = 3 pigs per group), and fed with a control diet and high-fat diet for 32 weeks. Weight and body length were measured every four weeks, followed by quantitative ultrasound imaging (ATT and UDFF), blood biochemical markers, and liver biopsies on the same day. Using the Non-Alcoholic Fatty Liver Disease (NAFLD) Activity Score (NAS) as a reference, we analyzed the correlation between ATT, UDFF, and their score results. Results: Compared with the normal control group, the body weight, body mass index (BMI), and serum levels of triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) in the High-fat group were significantly different at Week 12 (P < 0.05). Spearman correlation analysis showed that the ATT value was significantly correlated with NAS score (r = 0.76, P < 0.001), and the UDFF value was significantly correlated with NAS score (r = 0.80, P < 0.001). The optimal cut-off value of ATT and UDFF were 0.59 dB/cm/MHz and 5.5%, respectively. These values are optimal for diagnosis of NAFL in Bama minipig model. Conclusion: ATT and UDFF have a high correlation with steatosis, and can be used as a non-invasive method for early screening of hepatic steatosis, which can dynamically monitor the change of disease course.

9.
Brain Circ ; 10(1): 77-84, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655440

RESUMO

PURPOSE: In patients undergoing endovascular thrombectomy (EVT) with acute ischemic stroke (AIS), dynamic cerebral autoregulation (dCA) may minimize neurological injury from blood pressure fluctuations. This study set out to investigate the function of dCA in predicting clinical outcomes following EVT. METHODS: 43 AIS of the middle cerebral or internal carotid artery patients underwent with EVT, and 43 healthy individuals (controls) were enrolled in this case control research. The dCA was evaluated using transcranial Doppler 12 h and five days after EVT. The transfer function analysis was used to derive the dCA parameters, such as phase, gain, and coherence. The modified Rankin scale (mRS) at 3 months after EVT was used to assess the clinical outcomes. Thefavorable outcome group was defined with mRS ≤2 and the unfavorable outcome group was defined with mRS score of 3-6. Logistic regression analysis was performed to determine the risk factors of clinical outcomes. RESULTS: A significant impairment in dCA was observed on the ipsilateral side after EVT, particularly in patients with unfavorable outcomes. After 5 days, the ipsilateral phase was associated with poor functional outcomes (adjusted odds ratio [OR] = 0.911, 95% confidence interval [CI]: 0.854-0.972; P = 0.005) and the area under the curve (AUC) (AUC, 0.878, [95% CI: 0.756-1.000] P < 0.001) (optimal cutoff, 35.0°). Phase change was an independent predictor of clinical outcomes from 12 h to 5 days after EVT (adjusted OR = 1.061, 95% CI: 1.016-1.109, P = 0.008). CONCLUSIONS: dCA is impaired in patients with AIS after EVT. Change in dCA could be an independent factor related to the clinical outcomes.

10.
Synth Syst Biotechnol ; 9(2): 340-348, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38549618

RESUMO

Plants produce diverse flavonoids for defense and stress resistance, most of which have health benefits and are widely used as food additives and medicines. Methylation of the free hydroxyl groups of flavonoids, catalyzed by S-adenosyl-l-methionine-dependent O-methyltransferases (OMTs), significantly affects their physicochemical properties and bioactivities. Soybeans (Glycine max) contain a rich pool of O-methylated flavonoids. However, the OMTs responsible for flavonoid methylation in G. max remain largely unknown. We screened the G. max genome and obtained 22 putative OMT-encoding genes that share a broad spectrum of amino acid identities (25-96%); among them, 19 OMTs were successfully cloned and heterologously expressed in Escherichia coli. We used the flavonoids containing the free 3, 5, 7, 8, 3', 4' hydroxyl group, such as flavones (luteolin and 7, 8-dihydroxyflavone), flavonols (kaempferol and quercetin), flavanones (naringenin and eriodictyol), isoflavonoids (daidzein and glycetein), and caffeic acid as substrates, and 15 OMTs were proven to catalyze at least one substrate. The methylation activities of these GmOMTs covered the 3, 7, 8, 3', 4'- hydroxyl of flavonoids and 7, 4'- hydroxyl of isoflavonoids. The systematic characterization of G. max flavonoid OMTs provides insights into the biosynthesis of methylated flavonoids in soybeans and OMT bioparts for the production of methylated flavonoids via synthetic biology.

11.
Nat Commun ; 15(1): 2339, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490987

RESUMO

Taxol is a widely-applied anticancer drug that inhibits microtubule dynamics in actively replicating cells. Although a minimum 19-step biosynthetic pathway has been proposed and 16 enzymes likely involved have been characterized, stepwise biosynthetic reactions from the well-characterized di-oxygenated taxoids to Taxol tetracyclic core skeleton are yet to be elucidated. Here, we uncover the biosynthetic pathways for a few tri-oxygenated taxoids via confirming the critical reaction order of the second and third hydroxylation steps, unearth a taxoid 9α-hydroxylase catalyzing the fourth hydroxylation, and identify CYP725A55 catalyzing the oxetane ester formation via a cascade oxidation-concerted acyl rearrangement mechanism. After identifying a acetyltransferase catalyzing the formation of C7-OAc, the pathway producing the highly-oxygenated 1ß-dehydroxybaccatin VI with the Taxol tetracyclic core skeleton is elucidated and its complete biosynthesis from taxa-4(20),11(12)-diene-5α-ol is achieved in an engineered yeast. These systematic studies lay the foundation for the complete elucidation of the biosynthetic pathway of Taxol.


Assuntos
Paclitaxel , Taxoides , Taxoides/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Hidroxilação , Oxirredução
12.
Cancer Res ; 84(11): 1915-1928, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38536129

RESUMO

T cells recognize tumor antigens and initiate an anticancer immune response in the very early stages of tumor development, and the antigen specificity of T cells is determined by the T-cell receptor (TCR). Therefore, monitoring changes in the TCR repertoire in peripheral blood may offer a strategy to detect various cancers at a relatively early stage. Here, we developed the deep learning framework iCanTCR to identify patients with cancer based on the TCR repertoire. The iCanTCR framework uses TCRß sequences from an individual as an input and outputs the predicted cancer probability. The model was trained on over 2,000 publicly available TCR repertoires from 11 types of cancer and healthy controls. Analysis of several additional publicly available datasets validated the ability of iCanTCR to distinguish patients with cancer from noncancer individuals and demonstrated the capability of iCanTCR for the accurate classification of multiple cancers. Importantly, iCanTCR precisely identified individuals with early-stage cancer with an AUC of 86%. Altogether, this work provides a liquid biopsy approach to capture immune signals from peripheral blood for noninvasive cancer diagnosis. SIGNIFICANCE: Development of a deep learning-based method for multicancer detection using the TCR repertoire in the peripheral blood establishes the potential of evaluating circulating immune signals for noninvasive early cancer detection.


Assuntos
Aprendizado Profundo , Detecção Precoce de Câncer , Neoplasias , Receptores de Antígenos de Linfócitos T , Humanos , Neoplasias/imunologia , Neoplasias/sangue , Neoplasias/diagnóstico , Receptores de Antígenos de Linfócitos T/imunologia , Detecção Precoce de Câncer/métodos , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
13.
IEEE Trans Biomed Eng ; 71(8): 2330-2340, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38381629

RESUMO

The role and importance of mechanical properties of cells and tissues in pathophysiological processes have widely been acknowledged. However, current elastography techniques most based on transverse elastic waves, diminish the translation of wave speed into elastic modulus due to its limited wave propagation direction. Here, we propose phase-domain photoacoustic mechanical imaging (PD-PAMI), leveraging the initial time and phase response characteristics of an omnidirectional photoacoustic elastic wave to quantitatively extract elastic and viscous moduli. Theoretical simulations and experiment on tissue-mimicking phantoms with different levels of viscoelastic properties were conducted to validate the approach with a precision in elasticity and viscosity estimation of 4.6% and 6.6%, respectively. The trans-scale viscoelasticity mappings over three length scales-covering cell, tissue section, and in vivo organ, were provided to demonstrate the scalability of the technique with different implementations of PD-PAMI. Experiments on animal models of breast tumour and atherosclerosis reveal that PD-PAMI technique enables effective monitoring of the viscoelastic parameters for examinations of the diseases involved with the variations in collagen or lipid composition and in inflammation level. PD-PAMI technique opens new perspectives of conventional PA imaging and provides new technical way for biomechanical imaging, prefiguring potential clinical applications in mechanopathology-involved disease diagnosis.


Assuntos
Técnicas de Imagem por Elasticidade , Imagens de Fantasmas , Técnicas Fotoacústicas , Técnicas de Imagem por Elasticidade/métodos , Técnicas Fotoacústicas/métodos , Viscosidade , Animais , Camundongos , Feminino , Processamento de Imagem Assistida por Computador/métodos , Módulo de Elasticidade/fisiologia , Neoplasias da Mama/diagnóstico por imagem
14.
Mol Ther Nucleic Acids ; 35(1): 102129, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38370981

RESUMO

Circulating tumor cells (CTCs) that undergo epithelial-to-mesenchymal transition (EMT) can provide valuable information regarding metastasis and potential therapies. However, current studies on the EMT overlook alternative splicing. Here, we used single-cell full-length transcriptome data and mRNA sequencing of CTCs to identify stage-specific alternative splicing of partial EMT and mesenchymal states during pancreatic cancer metastasis. We classified definitive tumor and normal epithelial cells via genetic aberrations and demonstrated dynamic changes in the epithelial-mesenchymal continuum in both epithelial cancer cells and CTCs. We provide the landscape of alternative splicing in CTCs at different stages of EMT, uncovering cell-type-specific splicing patterns and splicing events in cell surface proteins suitable for therapies. We show that MBNL1 governs cell fate through alternative splicing independently of changes in gene expression and affects the splicing pattern during EMT. We found a high frequency of events that contained multiple premature termination codons and were enriched with C and G nucleotides in close proximity, which influence the likelihood of stop codon readthrough and expand the range of potential therapeutic targets. Our study provides insights into the EMT transcriptome's dynamic changes and identifies potential diagnostic and therapeutic targets in pancreatic cancer.

15.
BMC Med Educ ; 24(1): 161, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378608

RESUMO

BACKGROUND: A lack of force feedback in laparoscopic surgery often leads to a steep learning curve to the novices and traditional training system equipped with force feedback need a high educational cost. This study aimed to use a laparoscopic grasper providing force feedback in laparoscopic training which can assist in controlling of gripping forces and improve the learning processing of the novices. METHODS: Firstly, we conducted a pre-experiment to verify the role of force feedback in gripping operations and establish the safe gripping force threshold for the tasks. Following this, we proceeded with a four-week training program. Unlike the novices without feedback (Group A2), the novices receiving feedback (Group B2) underwent training that included force feedback. Finally, we completed a follow-up period without providing force feedback to assess the training effect under different conditions. Real-time force parameters were recorded and compared. RESULTS: In the pre-experiment, we set the gripping force threshold for the tasks based on the experienced surgeons' performance. This is reasonable as the experienced surgeons have obtained adequate skill of handling grasper. The thresholds for task 1, 2, and 3 were set as 0.731 N, 1.203 N and 0.938 N, respectively. With force feedback, the gripping force applied by the novices with feedback (Group B1) was lower than that of the novices without feedback (Group A1) (p < 0.005). During the training period, the Group B2 takes 6 trails to achieve gripping force of 0.635 N, which is lower than the threshold line, whereas the Group A2 needs 11 trails, meaning that the learning curve of Group B2 was significantly shorter than that of Group A2. Additionally, during the follow-up period, there was no significant decline in force learning, and Group B2 demonstrated better control of gripping operations. The training with force feedback received positive evaluations. CONCLUSION: Our study shows that using a grasper providing force feedback in laparoscopic training can help to control the gripping force and shorten the learning curve. It is anticipated that the laparoscopic grasper equipped with FBG sensor is promising to provide force feedback during laparoscopic training, which ultimately shows great potential in laparoscopic surgery.


Assuntos
Laparoscopia , Curva de Aprendizado , Humanos , Retroalimentação , Laparoscopia/educação , Força da Mão , Competência Clínica
16.
Ecotoxicol Environ Saf ; 273: 116118, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367606

RESUMO

The prevalence of cadmium (Cd) contamination has emerged as a significant global concern. Exposure to Cd during pregnancy is associated with adverse pregnancy outcomes, including miscarriage. However, there is currently a lack of comprehensive summaries on Cd-induced miscarriage. Therefore, it is imperative to further strengthen research into in vivo studies, clinical status, pathological mechanisms, and pharmacological interventions for Cd-induced miscarriage. This study systematically presents the current knowledge on animal models and clinical trials investigating Cd exposure-induced miscarriage. The underlying mechanisms involving oxidative stress, inflammation, endocrine disruption, and placental dysfunction caused by Cd-induced miscarriage are also extensively discussed. Additionally, potential drug interventions such as melatonin, vitamin C, and vitamin E are highlighted for their pharmacological role in mitigating adverse pregnancy outcomes induced by Cd.


Assuntos
Aborto Espontâneo , Humanos , Animais , Gravidez , Feminino , Aborto Espontâneo/induzido quimicamente , Cádmio/toxicidade , Placenta , Resultado da Gravidez , Vitaminas
17.
Recent Pat Anticancer Drug Discov ; 19(2): 154-164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38214355

RESUMO

BACKGROUND: Multidrug resistance (MDR) of cancer cells is a major obstacle to efficient cancer chemotherapy. Combination therapy is expected to enhance the anticancer effect and reverse MDR. Numerous patents involve different kinds of nanoparticles for the co-delivery of multiple chemotherapeutics, but the FDA has approved none. OBJECTIVE: In this study, oxymatrine (OMT) and glycyrrhizin (GL) were co-loaded into phytosomes as the core of nanocarriers, and the shell was cross-linked with chitosan (CS) and hyaluronic acid (HA) with the capability for the controlled, sequential release and the targeted drug uptake. METHODS: Phospholipid complexes of OMT and GL (OGPs) were prepared by a solvent evaporation technique and could self-assemble in an aqueous solution to form phytosomes. CS and HA were sequentially coated on the surface of OGPs via electrostatic interactions to obtain CS coated OGPs (CS-OGPs) and HA modified CS-OGPs (HA-CS-OGPs), respectively. The particle size and zeta potential were measured to optimize the formulations. In vitro cytotoxicity and cellular uptake experiments on HepG2 cells were performed to evaluate the anticancer activity. RESULTS: OGPs were obtained with nano-size around 100 nm, and CS and HA coating on phytosomes could change the particle size and surface potential. The drug loading of OMT and GL showed that the nanocarriers could maintain a fixed ratio of 1:1. The in vitro release experiments indicated the release of OMT and GL was pH-dependent and sequential: the release of OMT from CS-OGPs and HA-CS-OGPs was significantly increased at pH 5.0 compared to the release at pH 7.4, while GL exhibited sustained released from CS-OGPs and HA-CS-OGPs at pH 5.0. Furthermore, in vitro cytotoxicity and cellular uptake experiments on HepG2 cells demonstrated that the co-delivery system based on phytosomes had significant synergistic anti-tumor activities, and the effects were enhanced by CS and HA modification. CONCLUSION: The delivery of OMT and GL via HA-CS-OGPs might be a promising treatment to reverse MDR in cancer therapy.


Assuntos
Quitosana , Matrinas , Nanopartículas , Humanos , Quitosana/química , Fitossomas , Ácido Hialurônico/química , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/química , Patentes como Assunto , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química
18.
Phys Med Biol ; 69(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38091612

RESUMO

Objective. Bladder cancer is a common malignant urinary carcinoma, with muscle-invasive and non-muscle-invasive as its two major subtypes. This paper aims to achieve automated bladder cancer invasiveness localization and classification based on MRI.Approach. Different from previous efforts that segment bladder wall and tumor, we propose a novel end-to-end multi-scale multi-task spatial feature encoder network (MM-SFENet) for locating and classifying bladder cancer, according to the classification criteria of the spatial relationship between the tumor and bladder wall. First, we built a backbone with residual blocks to distinguish bladder wall and tumor; then, a spatial feature encoder is designed to encode the multi-level features of the backbone to learn the criteria.Main Results. We substitute Smooth-L1 Loss with IoU Loss for multi-task learning, to improve the accuracy of the classification task. By learning two datasets collected from bladder cancer patients at the hospital, the mAP, IoU, Acc, Sen and Spec are used as the evaluation metrics. The experimental result could reach 93.34%, 83.16%, 85.65%, 81.51%, 89.23% on test set1 and 80.21%, 75.43%, 79.52%, 71.87%, 77.86% on test set2.Significance. The experimental result demonstrates the effectiveness of the proposed MM-SFENet on the localization and classification of bladder cancer. It may provide an effective supplementary diagnosis method for bladder cancer staging.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Bexiga Urinária/patologia
20.
Toxicology ; 500: 153678, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38006930

RESUMO

Bisphenol A (BPA) was traditionally used in epoxy resins and polycarbonate plastics, but it was found to be harmful to human health due to its endocrine-disrupting effects. It can affect various biological functions of human beings and interfere with brain development. However, the neurotoxic mechanisms of BPA on brain development and associated neurodegeneration remain poorly understood. Here, we reported that BPA (100, 250, 500 µM) inhibited cell viability of neural cells PC12, SH-SY5Y and caused dose-dependent cell death. In addition, BPA exposure increased intracellular reactive oxygen species (ROS) and mitochondrial ROS (mtROS) levels, decreased mitochondrial membrane potential, reduced the expression of cytochrome c oxidase IV (COX4), downregulated Bcl-2, and initiated apoptosis. Moreover, BPA treatment resulted in the accumulation of intracellular acidic vacuoles and increased the autophagy marker LC3 II to LC3 I ratio. Furthermore, BPA exposure inhibited Nrf2/ HO-1 and AKT/mTOR pathways and mediated cellular oxidative stress, apoptosis, and excessive autophagy, leading to neuronal degeneration. The interactions between oxidative stress, autophagy, and apoptosis during BPA-induced neurotoxicity remain unclear and require further in vivo confirmation.


Assuntos
Neuroblastoma , Proteínas Proto-Oncogênicas c-akt , Humanos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Estresse Oxidativo , Apoptose , Autofagia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA