Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37786709

RESUMO

The ability to precisely control the activity of defined cell populations enables studies of their physiological roles and may provide therapeutic applications. While prior studies have shown that magnetic activation of ferritin-tagged ion channels allows cell-specific modulation of cellular activity, the large size of the constructs made the use of adeno-associated virus, AAV, the vector of choice for gene therapy, impractical. In addition, simple means for generating magnetic fields of sufficient strength have been lacking. Toward these ends, we first generated a novel anti-ferritin nanobody that when fused to transient receptor potential cation channel subfamily V member 1, TRPV1, enables direct binding of the channel to endogenous ferritin in mouse and human cells. This smaller construct can be delivered in a single AAV and we validated that it robustly enables magnetically induced cell activation in vitro . In parallel, we developed a simple benchtop electromagnet capable of gating the nanobody-tagged channel in vivo . Finally, we showed that delivering these new constructs by AAV to pancreatic beta cells in combination with the benchtop magnetic field delivery stimulates glucose-stimulated insulin release to improve glucose tolerance in mice in vivo . Together, the novel anti-ferritin nanobody, nanobody-TRPV1 construct and new hardware advance the utility of magnetogenetics in animals and potentially humans.

2.
Nature ; 583(7816): 441-446, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32641826

RESUMO

Connections between the gut and brain monitor the intestinal tissue and its microbial and dietary content1, regulating both physiological intestinal functions such as nutrient absorption and motility2,3, and brain-wired feeding behaviour2. It is therefore plausible that circuits exist to detect gut microorganisms and relay this information to areas of the central nervous system that, in turn, regulate gut physiology4. Here we characterize the influence of the microbiota on enteric-associated neurons by combining gnotobiotic mouse models with transcriptomics, circuit-tracing methods and functional manipulations. We find that the gut microbiome modulates gut-extrinsic sympathetic neurons: microbiota depletion leads to increased expression of the neuronal transcription factor cFos, and colonization of germ-free mice with bacteria that produce short-chain fatty acids suppresses cFos expression in the gut sympathetic ganglia. Chemogenetic manipulations, translational profiling and anterograde tracing identify a subset of distal intestine-projecting vagal neurons that are positioned to have an afferent role in microbiota-mediated modulation of gut sympathetic neurons. Retrograde polysynaptic neuronal tracing from the intestinal wall identifies brainstem sensory nuclei that are activated during microbial depletion, as well as efferent sympathetic premotor glutamatergic neurons that regulate gastrointestinal transit. These results reveal microbiota-dependent control of gut-extrinsic sympathetic activation through a gut-brain circuit.


Assuntos
Microbioma Gastrointestinal/fisiologia , Intestinos/inervação , Neurônios/fisiologia , Sistema Nervoso Simpático/citologia , Sistema Nervoso Simpático/fisiologia , Animais , Disbiose/fisiopatologia , Feminino , Gânglios Simpáticos/citologia , Gânglios Simpáticos/fisiologia , Motilidade Gastrointestinal , Vida Livre de Germes , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Vias Neurais/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transcriptoma
3.
Blood Adv ; 3(22): 3818-3828, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31770438

RESUMO

We previously reported the discovery of a novel lipid deacetylase in platelets, arylacetamide deacetylase-like 1 (AADACL1/NCEH1), and that its inhibition impairs agonist-induced platelet aggregation, Rap1 GTP loading, protein kinase C (PKC) activation, and ex vivo thrombus growth. However, precise mechanisms by which AADACL1 impacts platelet signaling and function in vivo are currently unknown. Here, we demonstrate that AADACL1 regulates the accumulation of ether lipids that impact PKC signaling networks crucial for platelet activation in vitro and in vivo. Human platelets treated with the AADACL1 inhibitor JW480 or the AADACL1 substrate 1-O-hexadecyl-2-acetyl-sn-glycerol (HAG) exhibited decreased platelet aggregation, granule secretion, Ca2+ flux, and PKC phosphorylation. Decreased aggregation and secretion were rescued by exogenous adenosine 5'-diphosphate, indicating that AADACL1 likely functions to induce dense granule secretion. Experiments with P2Y12-/- and CalDAG GEFI-/- mice revealed that the P2Y12 pathway is the predominate target of HAG-mediated inhibition of platelet aggregation. HAG itself displayed weak agonist properties and likely mediates its inhibitory effects via conversion to a phosphorylated metabolite, HAGP, which directly interacted with the C1a domains of 2 distinct PKC isoforms and blocked PKC kinase activity in vitro. Finally, AADACL1 inhibition in rats reduced platelet aggregation, protected against FeCl3-induced arterial thrombosis, and delayed tail bleeding time. In summary, our data support a model whereby AADACL1 inhibition shifts the platelet ether lipidome to an inhibitory axis of HAGP accumulation that impairs PKC activation, granule secretion, and recruitment of platelets to sites of vascular damage.


Assuntos
Plaquetas/metabolismo , Metabolismo dos Lipídeos , Esterol Esterase/metabolismo , Trombose/etiologia , Trombose/metabolismo , Animais , Plaquetas/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Modelos Biológicos , Fosforilação , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Testes de Função Plaquetária , Ligação Proteica , Proteína Quinase C/metabolismo , Ratos , Receptores Purinérgicos P2Y12/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esterol Esterase/antagonistas & inibidores , Especificidade por Substrato , Trombose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA