Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(31): e2403331121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39052835

RESUMO

Androgen receptor (AR) is a main driver for castration-resistant prostate cancer (CRPC). c-Myc is an oncogene underlying prostate tumorigenesis. Here, we find that the deubiquitinase USP11 targets both AR and c-Myc in prostate cancer (PCa). USP11 expression was up-regulated in metastatic PCa and CRPC. USP11 knockdown (KD) significantly inhibited PCa cell growth. Our RNA-seq studies revealed AR and c-Myc as the top transcription factors altered after USP11 KD. ChIP-seq analysis showed that either USP11 KD or replacement of endogenous USP11 with a catalytic-inactive USP11 mutant significantly decreased chromatin binding by AR and c-Myc. We find that USP11 employs two mechanisms to up-regulate AR and c-Myc levels: namely, deubiquitination of AR and c-Myc proteins to increase their stability and deubiquitination of H2A-K119Ub, a repressive histone mark, on promoters of AR and c-Myc genes to increase their transcription. AR and c-Myc reexpression in USP11-KD PCa cells partly rescued cell growth defects. Thus, our studies reveal a tumor-promoting role for USP11 in aggressive PCa through upregulation of AR and c-Myc activities and support USP11 as a potential target against PCa.


Assuntos
Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-myc , Receptores Androgênicos , Tioléster Hidrolases , Humanos , Masculino , Linhagem Celular Tumoral , Proliferação de Células/genética , Histonas/metabolismo , Regiões Promotoras Genéticas/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/genética , Ubiquitinação , Regulação para Cima
2.
J Clin Invest ; 133(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36928314

RESUMO

Inactivation of the RB1 tumor suppressor gene is common in several types of therapy-resistant cancers, including metastatic castration-resistant prostate cancer, and predicts poor clinical outcomes. Effective therapeutic strategies against RB1-deficient cancers remain elusive. Here, we showed that RB1 loss/E2F activation sensitized cancer cells to ferroptosis, a form of regulated cell death driven by iron-dependent lipid peroxidation, by upregulating expression of ACSL4 and enriching ACSL4-dependent arachidonic acid-containing phospholipids, which are key components of ferroptosis execution. ACSL4 appeared to be a direct E2F target gene and was critical to RB1 loss-induced sensitization to ferroptosis. Importantly, using cell line-derived xenografts and genetically engineered tumor models, we demonstrated that induction of ferroptosis in vivo by JKE-1674, a highly selective and stable GPX4 inhibitor, blocked RB1-deficient prostate tumor growth and metastasis and led to improved survival of the mice. Thus, our findings uncover an RB/E2F/ACSL4 molecular axis that governs ferroptosis and also suggest a promising approach for the treatment of RB1-deficient malignancies.


Assuntos
Ferroptose , Neoplasias da Próstata , Masculino , Humanos , Camundongos , Animais , Ferroptose/genética , Neoplasias da Próstata/patologia , Linhagem Celular , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo
3.
Nucleic Acids Res ; 51(6): 2655-2670, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36727462

RESUMO

Overexpression of androgen receptor (AR) is the primary cause of castration-resistant prostate cancer, although mechanisms upregulating AR transcription in this context are not well understood. Our RNA-seq studies revealed that SMAD3 knockdown decreased levels of AR and AR target genes, whereas SMAD4 or SMAD2 knockdown had little or no effect. ChIP-seq analysis showed that SMAD3 knockdown decreased global binding of AR to chromatin. Mechanistically, we show that SMAD3 binds to intron 3 of the AR gene to promote AR expression. Targeting these binding sites by CRISPRi reduced transcript levels of AR and AR targets. In addition, ∼50% of AR and SMAD3 ChIP-seq peaks overlapped, and SMAD3 may also cooperate with or co-activate AR for AR target expression. Functionally, AR re-expression in SMAD3-knockdown cells partially rescued AR target expression and cell growth defects. The SMAD3 peak in AR intron 3 overlapped with H3K27ac ChIP-seq and ATAC-seq peaks in datasets of prostate cancer. AR and SMAD3 mRNAs were upregulated in datasets of metastatic prostate cancer and CRPC compared with primary prostate cancer. A SMAD3 PROTAC inhibitor reduced levels of AR, AR-V7 and AR targets in prostate cancer cells. This study suggests that SMAD3 could be targeted to inhibit AR in prostate cancer.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Proteína Smad3 , Humanos , Masculino , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo
4.
Nat Commun ; 13(1): 3145, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672415

RESUMO

Knowledge gaps remain on how nucleosome organization and dynamic reorganization are governed by specific pioneer factors in a genome-wide manner. In this study, we generate over three billons of multi-omics sequencing data to exploit dynamic nucleosome landscape governed by pioneer factors (PFs), FOXA1 and GATA2. We quantitatively define nine functional nucleosome states each with specific characteristic nucleosome footprints in LNCaP prostate cancer cells. Interestingly, we observe dynamic switches among nucleosome states upon androgen stimulation, accompanied by distinct differential (gained or lost) binding of FOXA1, GATA2, H1 as well as many other coregulators. Intriguingly, we reveal a noncanonical pioneer model of GATA2 that it initially functions as a PF binding at the edge of a nucleosome in an inaccessible crowding array. Upon androgen stimulation, GATA2 re-configures an inaccessible to accessible nucleosome state and subsequently acts as a master transcription factor either directly or recruits signaling specific transcription factors to enhance WNT signaling in an androgen receptor (AR)-independent manner. Our data elicit a pioneer and master dual role of GATA2 in mediating nucleosome dynamics and enhancing downstream signaling pathways. Our work offers structural and mechanistic insight into the dynamics of pioneer factors governing nucleosome reorganization.


Assuntos
Nucleossomos , Neoplasias da Próstata , Androgênios , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Humanos , Masculino , Nucleossomos/genética , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transdução de Sinais
5.
Nucleic Acids Res ; 50(8): 4450-4463, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35394046

RESUMO

Mediator activates RNA polymerase II (Pol II) function during transcription, but it remains unclear whether Mediator is able to travel with Pol II and regulate Pol II transcription beyond the initiation and early elongation steps. By using in vitro and in vivo transcription recycling assays, we find that human Mediator 1 (MED1), when phosphorylated at the mammal-specific threonine 1032 by cyclin-dependent kinase 9 (CDK9), dynamically moves along with Pol II throughout the transcribed genes to drive Pol II recycling after the initial round of transcription. Mechanistically, MED31 mediates the recycling of phosphorylated MED1 and Pol II, enhancing mRNA output during the transcription recycling process. Importantly, MED1 phosphorylation increases during prostate cancer progression to the lethal phase, and pharmacological inhibition of CDK9 decreases prostate tumor growth by decreasing MED1 phosphorylation and Pol II recycling. Our results reveal a novel role of MED1 in Pol II transcription and identify phosphorylated MED1 as a targetable driver of dysregulated Pol II recycling in cancer.


Assuntos
Neoplasias , RNA Polimerase II , Animais , Humanos , Masculino , Mamíferos/genética , Complexo Mediador/metabolismo , Subunidade 1 do Complexo Mediador/genética , Neoplasias/genética , Fosforilação , RNA Polimerase II/metabolismo , Transcrição Gênica
6.
J Nutr Biochem ; 99: 108839, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34411715

RESUMO

Omega-3 or n-3 polyunsaturated fatty acids (PUFAs) are widely studied for health benefits that may relate to anti-inflammatory activity. However, mechanisms mediating an anti-inflammatory response to n-3 PUFA intake are not fully understood. Of interest is the emerging role of fatty acids to impact DNA methylation (DNAm) and thereby modulate mediating inflammatory processes. In this pilot study, we investigated the impact of n-3 PUFA intake on DNAm in inflammation-related signaling pathways in peripheral blood mononuclear cells (PBMCs) of women at high risk of breast cancer. PBMCs of women at high risk of breast cancer (n=10) were obtained at baseline and after 6 months of n-3 PUFA (5 g/d EPA+DHA dose arm) intake in a previously reported dose finding trial. DNA methylation of PBMCs was assayed by reduced representation bisulfite sequencing (RRBS) to obtain genome-wide methylation profiles at the single nucleotide level. We examined the impact of n-3 PUFA on genome-wide DNAm and focused upon a set of candidate genes associated with inflammation signaling pathways and breast cancer. We identified 24,842 differentially methylated CpGs (DMCs) in gene promoters of 5507 genes showing significant enrichment for hypermethylation in both the candidate gene and genome-wide analyses. Pathway analysis identified significantly hypermethylated signaling networks after n-3 PUFA treatment, such as the Toll-like Receptor inflammatory pathway. The DNAm pattern in individuals and the response to n-3 PUFA intake are heterogeneous. PBMC DNAm profiling suggests a mechanism whereby n-3 PUFAs may impact inflammatory cascades associated with disease processes including carcinogenesis.


Assuntos
Anti-Inflamatórios/metabolismo , Neoplasias da Mama/genética , Metilação de DNA , Ácidos Graxos Ômega-3/metabolismo , Leucócitos Mononucleares/metabolismo , Adulto , Neoplasias da Mama/metabolismo , Neoplasias da Mama/prevenção & controle , Ilhas de CpG , Suplementos Nutricionais/análise , Feminino , Humanos , Leucócitos Mononucleares/química , Pessoa de Meia-Idade , Projetos Piloto , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
7.
Nat Commun ; 12(1): 6318, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732721

RESUMO

RNA Polymerase II (Pol II) transcriptional recycling is a mechanism for which the required factors and contributions to overall gene expression levels are poorly understood. We describe an in vitro methodology facilitating unbiased identification of putative RNA Pol II transcriptional recycling factors and quantitative measurement of transcriptional output from recycled transcriptional components. Proof-of-principle experiments identified PAF1 complex components among recycling factors and detected defective transcriptional output from Pol II recycling following PAF1 depletion. Dynamic ChIP-seq confirmed PAF1 silencing triggered defective Pol II recycling in human cells. Prostate tumors exhibited enhanced transcriptional recycling, which was attenuated by antibody-based PAF1 depletion. These findings identify Pol II recycling as a potential target in cancer and demonstrate the applicability of in vitro and cellular transcription assays to characterize Pol II recycling in other disease states.


Assuntos
RNA Polimerase II/metabolismo , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Células HeLa , Humanos , Masculino , Neoplasias , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
8.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753479

RESUMO

Cellular metabolism in cancer is significantly altered to support the uncontrolled tumor growth. How metabolic alterations contribute to hormonal therapy resistance and disease progression in prostate cancer (PCa) remains poorly understood. Here we report a glutaminase isoform switch mechanism that mediates the initial therapeutic effect but eventual failure of hormonal therapy of PCa. Androgen deprivation therapy inhibits the expression of kidney-type glutaminase (KGA), a splicing isoform of glutaminase 1 (GLS1) up-regulated by androgen receptor (AR), to achieve therapeutic effect by suppressing glutaminolysis. Eventually the tumor cells switch to the expression of glutaminase C (GAC), an androgen-independent GLS1 isoform with more potent enzymatic activity, under the androgen-deprived condition. This switch leads to increased glutamine utilization, hyperproliferation, and aggressive behavior of tumor cells. Pharmacological inhibition or RNA interference of GAC shows better treatment effect for castration-resistant PCa than for hormone-sensitive PCa in vitro and in vivo. In summary, we have identified a metabolic function of AR action in PCa and discovered that the GLS1 isoform switch is one of the key mechanisms in therapeutic resistance and disease progression.


Assuntos
Antagonistas de Androgênios/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Glutaminase/genética , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/metabolismo , Antagonistas de Androgênios/uso terapêutico , Animais , Linhagem Celular Tumoral , Biologia Computacional , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glutaminase/metabolismo , Glutamina/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Análise Serial de Tecidos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Genes Dis ; 8(1): 61-72, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33569514

RESUMO

Alternative polyadenylation (APA) is a molecular process that generates diversity at the 3' end of RNA polymerase II transcripts from over 60% of human genes. APA is derived from the existence of multiple polyadenylation signals (PAS) within the same transcript, and results in the differential inclusion of sequence information at the 3' end. While APA can occur between two PASs allowing for generation of transcripts with distinct coding potential from a single gene, most APA occurs within the untranslated region (3'UTR) and changes the length and content of these non-coding sequences. APA within the 3'UTR can have tremendous impact on its regulatory potential of the mRNA through a variety of mechanisms, and indeed this layer of gene expression regulation has profound impact on processes vital to cell growth and development. Recent studies have particularly highlighted the importance of APA dysregulation in cancer onset and progression. Here, we review the current knowledge of APA and its impacts on mRNA stability, translation, localization and protein localization. We also discuss the implications of APA dysregulation in cancer research and therapy.

11.
Transl Oncol ; 13(9): 100797, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32454444

RESUMO

Widespread cGMP-specific phosphodiesterase 5 (PDE5) inhibitor use in male reproductive health and particularly in prostate cancer patients following surgery has generated interest in how these drugs affect the ability of residual tumor cells to proliferate, migrate, and form recurrent colonies. Prostate cancer cell lines were treated with PDE5 inhibitors at clinically relevant concentrations. Proliferation, colony formation, and migration phenotypes remained stable even when cells were co-treated with a stimulator of cGMP synthesis that facilitated cGMP accumulation upon PDE5 inhibition. Surprisingly, supraclinical concentrations of PDE5 inhibitor counteracted proliferation, colony formation, and migration of prostate cancer cell models. These findings provide tumor cell-autonomous evidence in support of the field's predominant view that PDE5 inhibitors are safe adjuvant agents to promote functional recovery of normal tissue after prostatectomy, but do not rule out potential cancer-promoting effects of PDE5 inhibitors in the more complex environment of the prostate.

12.
Cancer Res ; 80(12): 2427-2436, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32094298

RESUMO

The androgen receptor (AR) is a critical therapeutic target in prostate cancer that responds to antagonists in primary disease, but inevitably becomes reactivated, signaling onset of the lethal castration-resistant prostate cancer (CRPC) stage. Epigenomic investigation of the chromatin environment and interacting partners required for AR transcriptional activity has uncovered three pioneer factors that open up chromatin and facilitate AR-driven transcriptional programs. FOXA1, HOXB13, and GATA2 are required for normal AR transcription in prostate epithelial development and for oncogenic AR transcription during prostate carcinogenesis. AR signaling is dependent upon these three pioneer factors both before and after the clinical transition from treatable androgen-dependent disease to untreatable CRPC. Agents targeting their respective DNA binding or downstream chromatin-remodeling events have shown promise in preclinical studies of CRPC. AR-independent functions of FOXA1, HOXB13, and GATA2 are emerging as well. While all three pioneer factors exert effects that promote carcinogenesis, some of their functions may inhibit certain stages of prostate cancer progression. In all, these pioneer factors represent some of the most promising potential therapeutic targets to emerge thus far from the study of the prostate cancer epigenome.


Assuntos
Cromatina/metabolismo , Fator de Transcrição GATA2/metabolismo , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Proteínas de Homeodomínio/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinogênese/genética , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/genética , Progressão da Doença , Epigênese Genética/efeitos dos fármacos , Fator de Transcrição GATA2/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fator 3-alfa Nuclear de Hepatócito/antagonistas & inibidores , Proteínas de Homeodomínio/antagonistas & inibidores , Humanos , Masculino , Próstata/crescimento & desenvolvimento , Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcrição Gênica/efeitos dos fármacos
13.
Sci Transl Med ; 11(521)2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801883

RESUMO

Hormonal therapy targeting androgen receptor (AR) is initially effective to treat prostate cancer (PCa), but it eventually fails. It has been hypothesized that cellular heterogeneity of PCa, consisting of AR+ luminal tumor cells and AR- neuroendocrine (NE) tumor cells, may contribute to therapy failure. Here, we describe the successful purification of NE cells from primary fresh human prostate adenocarcinoma based on the cell surface receptor C-X-C motif chemokine receptor 2 (CXCR2). Functional studies revealed CXCR2 to be a driver of the NE phenotype, including loss of AR expression, lineage plasticity, and resistance to hormonal therapy. CXCR2-driven NE cells were critical for the tumor microenvironment by providing a survival niche for the AR+ luminal cells. We demonstrate that the combination of CXCR2 inhibition and AR targeting is an effective treatment strategy in mouse xenograft models. Such a strategy has the potential to overcome therapy resistance caused by tumor cell heterogeneity.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Terapia de Alvo Molecular , Neoplasias da Próstata/tratamento farmacológico , Receptores de Interleucina-8B/antagonistas & inibidores , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Progressão da Doença , Humanos , Masculino , Camundongos Nus , Gradação de Tumores , Células-Tronco Neoplásicas/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Tumores Neuroendócrinos/irrigação sanguínea , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/patologia , Sistemas Neurossecretores/patologia , Fenótipo , Neoplasias da Próstata/irrigação sanguínea , Neoplasias da Próstata/patologia , Receptores de Interleucina-8B/metabolismo , Transdução de Sinais , Microambiente Tumoral
14.
Nucleic Acids Res ; 47(19): 10104-10114, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31501863

RESUMO

Enzalutamide, a second-generation androgen receptor (AR) antagonist, has demonstrated clinical benefit in men with prostate cancer. However, it only provides a temporary response and modest increase in survival, indicating a rapid evolution of resistance. Previous studies suggest that enzalutamide may function as a partial transcriptional agonist, but the underlying mechanisms for enzalutamide-induced transcription remain poorly understood. Here, we show that enzalutamide stimulates expression of a novel subset of genes distinct from androgen-responsive genes. Treatment of prostate cancer cells with enzalutamide enhances recruitment of pioneer factor GATA2, AR, Mediator subunits MED1 and MED14, and RNA Pol II to regulatory elements of enzalutamide-responsive genes. Mechanistically, GATA2 globally directs enzalutamide-induced transcription by facilitating AR, Mediator and Pol II loading to enzalutamide-responsive gene loci. Importantly, the GATA2 inhibitor K7174 inhibits enzalutamide-induced transcription by decreasing binding of the GATA2/AR/Mediator/Pol II transcriptional complex, contributing to sensitization of prostate cancer cells to enzalutamide treatment. Our findings provide mechanistic insight into the future combination of GATA2 inhibitors and enzalutamide for improved AR-targeted therapy.


Assuntos
Fator de Transcrição GATA2/genética , Feniltioidantoína/análogos & derivados , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/genética , Antagonistas de Receptores de Andrógenos/farmacologia , Benzamidas , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Fator de Transcrição GATA2/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Complexo Mediador/genética , Subunidade 1 do Complexo Mediador/genética , Nitrilas , Feniltioidantoína/farmacologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Polimerase II/genética
15.
Oncotarget ; 9(58): 31214-31230, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30131849

RESUMO

Mutation of the APC gene occurs in a high percentage of colorectal tumors and is a central event driving tumor initiation in the large intestine. The APC protein performs multiple tumor suppressor functions including negative regulation of the canonical WNT signaling pathway by both cytoplasmic and nuclear mechanisms. Published reports that APC interacts with ß-catenin in the chromatin fraction to repress WNT-activated targets have raised the possibility that chromatin-associated APC participates more broadly in mechanisms of transcriptional control. This screening study has used chromatin immunoprecipitation and next-generation sequencing to identify APC-associated genomic regions in colon cancer cell lines. Initial target selection was performed by comparison and statistical analysis of 3,985 genomic regions associated with the APC protein to whole transcriptome sequencing data from APC-deficient and APC-wild-type colon cancer cells, and two types of murine colon adenomas characterized by activated Wnt signaling. 289 transcripts altered in expression following APC loss in human cells were linked to APC-associated genomic regions. High-confidence targets additionally validated in mouse adenomas included 16 increased and 9 decreased in expression following APC loss, indicating that chromatin-associated APC may antagonize canonical WNT signaling at both WNT-activated and WNT-repressed targets. Motif analysis and comparison to ChIP-seq datasets for other transcription factors identified a prevalence of binding sites for the TCF7L2 and AP-1 transcription factors in APC-associated genomic regions. Our results indicate that canonical WNT signaling can collaborate with or antagonize the AP-1 transcription factor to fine-tune the expression of shared target genes in the colorectal epithelium. Future therapeutic strategies for APC-deficient colorectal cancers might be expanded to include agents targeting the AP-1 pathway.

16.
Nucleic Acids Res ; 46(17): 8832-8847, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-29992318

RESUMO

Genomic sequencing of hepatocellular carcinoma (HCC) uncovers a paucity of actionable mutations, underscoring the necessity to exploit epigenetic vulnerabilities for therapeutics. In HCC, EZH2-mediated H3K27me3 represents a major oncogenic chromatin modification, but how it modulates the therapeutic vulnerability of signaling pathways remains unknown. Here, we show EZH2 acts antagonistically to AKT signaling in maintaining H3K27 methylome through epigenetic silencing of IGFBP4. ChIP-seq revealed enrichment of Ezh2/H3K27me3 at silenced loci in HBx-transgenic mouse-derived HCCs, including Igfbp4 whose down-regulation significantly correlated with EZH2 overexpression and poor survivals of HCC patients. Functional characterizations demonstrated potent growth- and invasion-suppressive functions of IGFBP4, which was associated with transcriptomic alterations leading to deregulation of multiple signaling pathways. Mechanistically, IGFBP4 stimulated AKT/EZH2 phosphorylation to abrogate H3K27me3-mediated silencing, forming a reciprocal feedback loop that suppressed core transcription factor networks (FOXA1/HNF1A/HNF4A/KLF9/NR1H4) for normal liver homeostasis. Consequently, the in vivo tumorigenicity of IGFBP4-silenced HCC cells was vulnerable to pharmacological inhibition of EZH2, but not AKT. Our study unveils chromatin regulation of a novel liver tumor suppressor IGFBP4, which constitutes an AKT-EZH2 reciprocal loop in driving H3K27me3-mediated epigenetic reprogramming. Defining the aberrant chromatin landscape of HCC sheds light into the mechanistic basis of effective EZH2-targeted inhibition.


Assuntos
Carcinogênese/genética , Carcinoma Hepatocelular/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Código das Histonas/genética , Histonas/metabolismo , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/deficiência , Neoplasias Hepáticas/genética , Proteínas Supressoras de Tumor/deficiência , Animais , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Feminino , Humanos , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/fisiologia , Neoplasias Hepáticas Experimentais/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , Terapia de Alvo Molecular , Prognóstico , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Neoplásico/genética , Análise de Sequência de RNA , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Proc Natl Acad Sci U S A ; 115(26): 6810-6815, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29844167

RESUMO

The constitutively active androgen receptor (AR) splice variant 7 (AR-V7) plays an important role in the progression of castration-resistant prostate cancer (CRPC). Although biomarker studies established the role of AR-V7 in resistance to AR-targeting therapies, how AR-V7 mediates genomic functions in CRPC remains largely unknown. Using a ChIP-exo approach, we show AR-V7 binds to distinct genomic regions and recognizes a full-length androgen-responsive element in CRPC cells and patient tissues. Remarkably, we find dramatic differences in AR-V7 cistromes across diverse CRPC cells and patient tissues, regulating different target gene sets involved in CRPC progression. Surprisingly, we discover that HoxB13 is universally required for and colocalizes with AR-V7 binding to open chromatin across CRPC genomes. HoxB13 pioneers AR-V7 binding through direct physical interaction, and collaborates with AR-V7 to up-regulate target oncogenes. Transcriptional coregulation by HoxB13 and AR-V7 was further supported by their coexpression in tumors and circulating tumor cells from CRPC patients. Importantly, HoxB13 silencing significantly decreases CRPC growth through inhibition of AR-V7 oncogenic function. These results identify HoxB13 as a pivotal upstream regulator of AR-V7-driven transcriptomes that are often cell context-dependent in CRPC, suggesting that HoxB13 may serve as a therapeutic target for AR-V7-driven prostate tumors.


Assuntos
Processamento Alternativo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/biossíntese , Regulação para Cima , Linhagem Celular Tumoral , Proteínas de Homeodomínio/genética , Humanos , Masculino , Proteínas de Neoplasias/genética , Neoplasias de Próstata Resistentes à Castração/genética , Ligação Proteica , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Receptores Androgênicos/genética
18.
Cancer Res ; 78(4): 853-864, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29233929

RESUMO

Increasing evidence suggests the presence of minor cell subpopulations in prostate cancer that are androgen independent and poised for selection as dominant clones after androgen deprivation therapy. In this study, we investigated this phenomenon by stratifying cell subpopulations based on transcriptome profiling of 144 single LNCaP prostate cancer cells treated or untreated with androgen after cell-cycle synchronization. Model-based clustering of 397 differentially expressed genes identified eight potential subpopulations of LNCaP cells, revealing a previously unappreciable level of cellular heterogeneity to androgen stimulation. One subpopulation displayed stem-like features with a slower cell doubling rate, increased sphere formation capability, and resistance to G2-M arrest induced by a mitosis inhibitor. Advanced growth of this subpopulation was associated with enhanced expression of 10 cell-cycle-related genes (CCNB2, DLGAP5, CENPF, CENPE, MKI67, PTTG1, CDC20, PLK1, HMMR, and CCNB1) and decreased dependence upon androgen receptor signaling. In silico analysis of RNA-seq data from The Cancer Genome Atlas further demonstrated that concordant upregulation of these genes was linked to recurrent prostate cancers. Analysis of receiver operating characteristic curves implicates aberrant expression of these genes and could be useful for early identification of tumors that subsequently develop biochemical recurrence. Moreover, this single-cell approach provides a better understanding of how prostate cancer cells respond heterogeneously to androgen deprivation therapies and reveals characteristics of subpopulations resistant to this treatment.Significance: Illustrating the challenge in treating cancers with targeted drugs, which by selecting for drug resistance can drive metastatic progression, this study characterized the plasticity and heterogeneity of prostate cancer cells with regard to androgen dependence, defining the character or minor subpopulations of androgen-independent cells that are poised for clonal selection after androgen-deprivation therapy. Cancer Res; 78(4); 853-64. ©2017 AACR.


Assuntos
Androgênios/metabolismo , Perfilação da Expressão Gênica/métodos , Neoplasias da Próstata/genética , RNA/metabolismo , Linhagem Celular Tumoral , Humanos , Masculino , Neoplasias da Próstata/patologia
20.
Nucleic Acids Res ; 44(16): 7540-54, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27458208

RESUMO

The compaction of nucleosomal structures creates a barrier for DNA-binding transcription factors (TFs) to access their cognate cis-regulatory elements. Pioneer factors (PFs) such as FOXA1 are able to directly access these cis-targets within compact chromatin. However, how these PFs interplay with nucleosomes remains to be elucidated, and is critical for us to understand the underlying mechanism of gene regulation. Here, we have conducted a computational analysis on a strand-specific paired-end ChIP-exo (termed as ChIP-ePENS) data of FOXA1 in LNCaP cells by our novel algorithm ePEST. We find that FOXA1 chromatin binding occurs via four distinct border modes (or footprint boundary patterns), with a preferential footprint boundary patterns relative to FOXA1 motif orientation. In addition, from this analysis three fundamental nucleotide positions (oG, oS and oH) emerged as major determinants for blocking exo-digestion and forming these four distinct border modes. By integrating histone MNase-seq data, we found an astonishingly consistent, 'well-positioned' configuration occurs between FOXA1 motifs and dyads of nucleosomes genome-wide. We further performed ChIP-seq of eight chromatin remodelers and found an increased occupancy of these remodelers on FOXA1 motifs for all four border modes (or footprint boundary patterns), indicating the full occupancy of FOXA1 complex on the three blocking sites (oG, oS and oH) likely produces an active regulatory status with well-positioned phasing for protein binding events. Together, our results suggest a positional-nucleosome-oriented accessing model for PFs seeking target motifs, in which FOXA1 can examine each underlying DNA nucleotide and is able to sense all potential motifs regardless of whether they face inward or outward from histone octamers along the DNA helix axis.


Assuntos
Genoma Humano , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Nucleossomos/metabolismo , Algoritmos , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Biologia Computacional , Histonas/metabolismo , Humanos , Motivos de Nucleotídeos/genética , Ligação Proteica , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA