Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 897: 165370, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37423285

RESUMO

Microplastics (MPs) and Perfluorooctanoic acid (PFOA) have contaminated nearly all types of ecosystems, including marine, terrestrial and freshwater habitats, posing a severe threat to the ecological environment. However, their combined toxicity on aquatic organisms (e.g., macrophytes) remains unknown. This study investigated single and combined toxic effects of polypropylene (PP), polyethylene (PE), polyvinylchloride (PVC), polyethylene terephthalate (PET) and PFOA on Vallisneria natans (V. natans) and associated biofilms. Results showed that MPs and PFOA significantly affected plant growth, while the magnitude of the effect was associated with concentrations of PFOA and the types of MPs, and antagonistic effects were induced at combined MPs and PFOA exposure. In addition, antioxidant responses in plants, such as promoted activities of SOD and POD, as well as increased content of GSH and MDA, were triggered effectively by exposure to MPs and PFOA alone and in combination. Ultrastructural changes revealed the stress response of leaf cells and the damage to organelles. Moreover, single and combined exposure to MPs and PFOA altered the diversity and richness of the microbial community in the leaf biofilms. These results indicated that the coexistence of MPs and PFOA can induce effective defense mechanisms of V. natans and change the associated biofilms at given concentrations in the aquatic ecosystems.


Assuntos
Microbiota , Microplásticos , Plásticos , Biofilmes
2.
Nat Commun ; 14(1): 479, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717564

RESUMO

The transport of the CagA effector into gastric epithelial cells by the Cag Type IV secretion system (Cag T4SS) of Helicobacter pylori (H. pylori) is critical for pathogenesis. CagA is recruited to Cag T4SS by the Cagß ATPase. CagZ, a unique protein in H. pylori, regulates Cagß-mediated CagA transport, but the underlying mechanisms remain unclear. Here we report the crystal structure of the cytosolic region of Cagß, showing a typical ring-like hexameric assembly. The central channel of the ring is narrow, suggesting that CagA must unfold for transport through the channel. Our structure of CagZ in complex with the all-alpha domain (AAD) of Cagß shows that CagZ adopts an overall U-shape and tightly embraces Cagß. This binding mode of CagZ is incompatible with the formation of the Cagß hexamer essential for the ATPase activity. CagZ therefore inhibits Cagß by trapping it in the monomeric state. Based on these findings, we propose a refined model for the transport of CagA by Cagß.


Assuntos
Adenosina Trifosfatases , Proteínas de Bactérias , Helicobacter pylori , Adenosina Trifosfatases/metabolismo , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Helicobacter pylori/metabolismo , Sistemas de Secreção Tipo IV/metabolismo
3.
Int J Mol Sci ; 23(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35563578

RESUMO

Spot blotch (SB) is a fungal disease that threatens wheat yield and quality. Presently, the molecular mechanism against SB is unclear. In this study, the resistant variety Zhenkang iron shell wheat (Yunmai 0030) and susceptible variety Lincang iron shell wheat (Yunmai 0608) were selected by identifying SB of Yunnan iron shell wheat. The metabolome and transcriptome of leaves of two varieties at different positions were detected using the systemic acquired resistance theory to investigate the molecular and physiological changes in Yunnan iron shell wheat under SB stress. We found that the genes and metabolites related to benzoxazinoid biosynthesis and arginine and proline metabolism were highly enriched after infection with leaf blight. The enriched differential metabolites mainly included phenolic acids, alkaloids, and flavonoids. We further observed that DIBOA- and DIMBOA-glucoside positively affected iron shell wheat resistance to leaf blight and proline and its derivatives were important for plant self-defense. Furthermore, we confirmed that the related metabolites in benzoxazinoid biosynthesis and arginine and proline metabolism positively affected Triticum aestivum ssp. resistance to SB. This study provides new insights into the dynamic physiological changes of wheat in response to SB, helps us better understand the mechanism of resistance to SB, and contributes to the breeding and utilization of resistant varieties.


Assuntos
Ascomicetos , Triticum , Arginina/genética , Ascomicetos/genética , Benzoxazinas , China , Resistência à Doença/genética , Ferro , Metaboloma , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Prolina/genética , Transcriptoma , Triticum/genética , Triticum/microbiologia
4.
Food Res Int ; 137: 109743, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233308

RESUMO

Quinoa (Chenopodium quinoa Willd.), an herb belonging to the amaranth family, is rich in minerals, amino acids, vitamins, proteins, and flavonoids. Its grain, compared with other major grains, has unique nutritional value with tremendous applications. This study used four independently bred high-generation lines (seed colors) of quinoa as materials to further understand the metabolic differences in the filling periods of quinoa varieties. Additionally, the non-targeted metabolome of quinoa seeds 35 and 42 days after flowering, respectively, were studied via liquid chromatography-mass spectrometry. The two filling periods of yellow, white, black, and red quinoa grains resulted in significant differences in the metabolites, particularly in L-methionine, S-adenosyl-L-homocysteine, S-adenosyl-L-methionine, pyruvate, fumarate, and oxaloacetate. Soluble sugar, amino acid, and fatty acid contents in quinoa increased after 42 days of flowering. There were metabolic differences between the sugar phosphates (L-fucose, D-mannose-6-phosphate, xylulose-5-phosphate, sedoheptulose-7-phosphate), amino acid (alanine), and organic compounds (kynurenate, tryptamine, serotonin, bilirubin) among the four quinoa varieties. The relative difference in the metabolites was largest when the yellow quinoa grain was compared with the other quinoa varieties and smallest when the red and black varieties were compare. The results of this study provide a basis for the reproduction and identification of new quinoa varieties, as well as for screening potential quality control target genes by combining genomics and transcriptomics.


Assuntos
Chenopodium quinoa , Cromatografia Líquida , Espectrometria de Massas , Metabolômica , Melhoramento Vegetal , Sementes
5.
Cell Cycle ; 19(21): 2826-2835, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33064966

RESUMO

This study aims to explore the molecular mechanism by which HAS2-AS1 acts as a ceRNA to promote the invasion and migration of glioma cells, which will provide a novel potential target for the targeted therapy of glioma. Gene expression profiles and corresponding clinical data were accessed from the TCGA_LGG and TCGA_GBM databases and then differential analysis was conducted using the "edgeR" package. miRDB, miRTarBase and TargetScan databases were employed to predict target genes and sequentially a ceRNA network was constructed. Quantitative real-time PCR was performed to detect gene expression in glioma cells. Transwell assay was operated to assess cell migratory and invasive abilities. Western blot was conducted to evaluate the protein expression. Dual-luciferase reporter assay and RNA immunoprecipitation experiment were performed to validate the targeting relationship between genes. HAS2-AS1 was markedly upregulated in glioma, and the overall survival time of patients with high HAS2-AS1 expression was significantly shorter than that of patients with low one. Silencing HAS2-AS1 inhibited the migration and invasion of glioma cells, while overexpressing HAS2-AS1 produced opposite results. miR-137 was validated as a direct target of and negatively regulated by HAS2-AS1. Further exploration of the downstream target gene indicated that EZH2 competed with HAS2-AS1 to interact with miR-137. Suppressing miR-137 or up-regulating EZH2 reversed the impact of HAS2-AS1 knockdown on glioma cell invasion and migration. HAS2-AS1 regulates EZH2 by sponging miR-137 for the migratory and invasive abilities of glioma cells, which provides a new idea for exploring metastasis mechanism of glioma.


Assuntos
Movimento Celular/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Hialuronan Sintases/genética , MicroRNAs/genética , Invasividade Neoplásica/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioma/genética , Glioma/patologia , Humanos , Invasividade Neoplásica/patologia , RNA Longo não Codificante/genética
6.
Biosci Rep ; 40(8)2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32776110

RESUMO

OBJECTIVE: The role of lncRNAs in tumor has been widely concerned. The present study took HAS2-AS1 (the antisense RNA 1 of HAS2) as a starting point to explore its expression in glioma and its role in the process of migration and invasion, providing a strong theoretical basis for mining potential therapeutic targets of glioma. METHODS: Clinical data of glioma were obtained from The Cancer Genome Atlas (TCGA) database and differentially expressed lncRNAs were analyzed by edgeR. The hTFtarget database was used to predict the upstream transcription factors of HAS2-AS1 and the JASPAR website was used to predict the binding sites of human upstream transcription factor 1 (USF1) and HAS2-AS1. qRT-PCR was used to detect the expressions of HAS2-AS1 and USF1 in glioma tissues and cell lines. The effects of silencing HAS2-AS1 on the migration and invasion of cancer cells were verified by wound healing and Transwell invasion assays. The chromatin immunoprecipitation (ChIP) and dual luciferase reporter assays were applied to demonstrate the binding of USF1 and HAS2-AS1 promoter region. Western blot was used to detect the expressions of epithelial-mesenchymal transition (EMT)-related proteins. RESULTS: HAS2-AS1 was highly expressed in glioma tissues and cells, and was significantly associated with poor prognosis. Silencing HAS2-AS1 expression inhibited glioma cell migration, invasion and EMT. USF1 was highly expressed in glioma and positively correlated with HAS2-AS1. The transcription of HAS2-AS1 was activated by USF1 via binding to HAS2-AS1 promoter region, consequently potentiating the invasion and migration abilities of glioma cells. CONCLUSION: These results suggested that the transcription factor USF1 induced up-regulation of lncRNA HAS2-AS1 and promoted glioma cell invasion and migration.


Assuntos
Neoplasias Encefálicas/metabolismo , Movimento Celular , Glioma/metabolismo , RNA Longo não Codificante/metabolismo , Fatores Estimuladores Upstream/metabolismo , Sítios de Ligação , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Bases de Dados Genéticas , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Humanos , Invasividade Neoplásica , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , Transdução de Sinais , Fatores Estimuladores Upstream/genética
7.
Exp Cell Res ; 391(1): 111987, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32240661

RESUMO

BACKGROUND: The protein plasminogen activator inhibitor-1 (PAI-1), an inhibitor specific for urokinase plasminogen activator (uPA) and tissue plasminogen activator (tPA), has been shown to have a key role in cancer metastases. Currently, it is unknown as to whether the exocellular inhibition of PAI-1 can inhibit the migration of cancer cells. METHODS: By fusing the mutated serine protease domain (SPD) of uPA and human serum albumin (HSA), PAItrap3, a protein that traps PAI-1, was synthesized and experiments were conducted to determine if exocellular PAItrap3 attenuates PAI-1-induced cancer cell migration in vitro. RESULTS: PAItrap3 (0.8 µM) significantly inhibited the motility of MCF-7, MDA-MB-231, HeLa and 4T1 cancer cells, by 90%, 50%, 30% and 20%, respectively, without significantly altering their proliferation. The PAI-1-induced rearrangement of F-actin was significantly inhibited by PAItrap3, which produced a decrease in the number of cell protrusions by at least 20%. CONCLUSIONS: In vitro, PAItrap3 inhibited PAI-1-induced cancer cell migration, mainly through inhibiting the rearrangement of F-actin. Overall, these results, provided they can be extrapolated to humans, suggest that the PAItrap3 protein could be used as an exocellular inhibitor to attenuate cancer metastases.


Assuntos
Actinas/genética , Movimento Celular/efeitos dos fármacos , Inibidor 1 de Ativador de Plasminogênio/farmacologia , Inibidor da Proteína C/farmacologia , Actinas/antagonistas & inibidores , Actinas/metabolismo , Sítios de Ligação , Linhagem Celular , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Células HeLa , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Histidina/genética , Histidina/metabolismo , Humanos , Células MCF-7 , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Pichia/genética , Pichia/metabolismo , Inibidor 1 de Ativador de Plasminogênio/química , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ligação Proteica , Inibidor da Proteína C/química , Inibidor da Proteína C/genética , Inibidor da Proteína C/metabolismo , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
8.
Mol Cancer ; 19(1): 10, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31952518

RESUMO

BACKGROUND: PI3K/AKT is a vital signaling pathway in humans. Recently, several PI3K/AKT inhibitors were reported to have the ability to reverse cancer multidrug resistance (MDR); however, specific targets in the PI3K/AKT pathways and the mechanisms associated with MDR have not been found because many of the inhibitors have multiple targets within a large candidate protein pool. AKT activation is one presumed mechanism by which MDR develops during cancer treatment. METHODS: The effects of inhibiting PI3K 110α and 110ß by BAY-1082439 treatment and CRISPR/Cas9 knockout were examined to determine the possible functions of BAY-1082439 and the roles of PI3K 110α and 110ß in the reversal of MDR that is mediated by the downregulation of P-gp and BCRP. Inhibition of AKT with GSK-2110183 showed that the downregulation of P-gp and BCRP is independent of generalized AKT inactivation. Immunofluorescence, immunoprecipitation, MTT, flow cytometry and JC-1 staining analyses were conducted to study the reversal of MDR that is mediated by P-gp and BCRP in cancer cells. An ATPase assay and a structural analysis were also used to analyze the potential mechanisms by which BAY-1082439 specifically targets PI3K 110α and 110ß and nonspecifically influences P-gp and BCRP. RESULTS: By inhibiting the activation of the PI3K 110α and 110ß catalytic subunits through both the administration of BAY-1082439 and the CRISPR/Cas9 deletion of Pik3ca and Pik3cb, the ATP-binding cassette transporters P-gp/ABCB1 and BCRP/ABCG2 were downregulated, thereby reestablishing the drug sensitivity of human epidermoid carcinoma and non-small cell lung cancer (NSCLC) MDR cells. Inhibition of AKT did not reverse the MDR mediated by P-gp or BCRP. The ABC family proteins and AKT may play MDR-enhancing roles independently. CONCLUSIONS: The reversal of the dual functions of ABC-transporter-mediated and AKT-activation-enhanced MDR through the inhibition or knockout of PI3K 110α or 110ß promises to improve current strategies based on combined drug treatments to overcome MDR challenges.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Neoplasias/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA