Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 212: 114630, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35158183

RESUMO

A sensitive and selective Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) method was developed for the identification and quantification of two potential genotoxic impurities (PGIs) - viz. methyl N-((2'-(1H-tetrazol-5-yl)-[1,1'-biphenyl]-4-yl)methyl)-N-nitroso-L-valinate (PGI-1) and N-nitroso Valsartan (PGI-2) - in the angiotensin II receptor blocker valsartan. Among these impurities, PGI-1 is a distinctive compound which has never been reported. For this, chromatographic separation was performed using a Waters XBridge BEH C18 column (150 mm × 4.6 mm, 2.5 µm), with ammonium acetate aqueous solution (0.01 mol/L) as mobile phase A and acetonitrile as mobile phase B, in a gradient elution mode at a 0.5 mL/min flow rate. Mass spectrometric conditions were optimized using electrospray ionization (ESI) in positive mode. Following the International Conference of Harmonization (ICH) guidelines, this methodology is capable of quantifying 2 PGIs at 0.016 ppm in samples at 50 mg/mL concentration. This validated approach presented good linearity over the concentration range of 0.016-0.06 ppm for 2 PGIs. The correlation coefficient of each impurity was observed greater than 0.999. The accuracy of this method was in the range of 83-113% for the aforementioned PGIs. In addition, expert knowledge rules (Derek-based) and statistical (Q) SAR evaluation system (Sarah-based) were used to evaluate and classify the genotoxicity of both valsartan-related PGIs as well as to define their standard limits. The predicted results were positive and classified into the third category, and the total nitrosamine limit was set to 0.03 ppm. As such, this approach represents a good quality control system for the simultaneous and precise quantitation of PGIs in valsartan.


Assuntos
Dano ao DNA , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Valsartana
2.
Mol Med Rep ; 15(5): 3121-3128, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28350071

RESUMO

Oleanolic acid (OA), a natural pentacyclic triterpenoid, has been reported to have several benefits and medicinal properties. However, its protective effects against silica­induced lung injury and fibrosis remain to be elucidated. The aim of the present study was to investigate the effects of OA on oxidative stress, and the expression of cytokines and collagen in silicotic rats. Male rats were induced by intratracheal instillation of silicosis (250 mg/kg), with the exception of the control group (NS). The rats in the OA group were intragastrically administered with OA (60 mg/kg/d). The rats in the solvent control group were gavaged daily with 0.6% sodium carboxymethyl cellulose (10 ml/kg) solution for 56 consecutive days. The data showed that OA significantly attenuated the extent of silicosis fibrosis by histopathologic analysis of the lung tissues. In addition, oxidative stress activated by silica exposure, as evidenced by increasing of malondialdehyde content, and activities of superoxide dismutase and glutathione peroxidase in the lung, was regulated by treatment with OA. Furthermore, enzyme­linked immunosorbent assay analysis showed that OA significantly decreased the levels of tumor necrosis factor­α and transforming growth factor­ß1. Immunohistochemistry analysis showed that OA significantly decreased collagen types I and III. In investigating the mechanisms underlying the action of OA, it was found that OA decreased the level of phosphorylated AKT1, which in turn inactivated the transcriptional of nuclear factor (NF)­κB in the development and progress of silicosis. In conclusion, these results suggested that the protective effects of OA were due, at least in part, to its anti­oxidant activity and its ability to decrease the expression of cytokines and collagen by modulating the AKT/NF­κB pathway.


Assuntos
Colágeno/metabolismo , Citocinas/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Silicose/tratamento farmacológico , Animais , Fibrose , Glutationa Peroxidase/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Malondialdeído/metabolismo , Ácido Oleanólico/administração & dosagem , Ratos , Ratos Wistar , Silicose/metabolismo , Silicose/patologia , Superóxido Dismutase/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA