Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Chim Acta ; : 119732, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38772522

RESUMO

AIM: Our study focuses on the microbial and metabolomic profile changes during the adenoma stage, as adenomas can be considered potential precursors to colorectal cancer through the adenoma-carcinoma sequence. Identifying possible intervention targets at this stage may aid in preventing the progression of colorectal adenoma (CRA) to malignant lesions. Furthermore, we evaluate the efficacy of combined microbial and metabolite biomarkers in detecting CRA. METHODS: Fecal metagenomic and serum metabolomic analyses were performed for the discovery of alterations of gut microbiome and metabolites in CRA patients (n = 26), Colorectal cancer (CRC) patients (n = 19), Familial Adenomatous Polyposis (FAP) patients (n = 10), and healthy controls (n = 20). Finally, analyzing the associations between gut microbes and metabolites was performed by a Receiver Operating Characteristic (ROC) curve. RESULTS: Our analysis present that CRA patients differ significantly in gut microflora and serum metabolites compared with healthy controls, especially for Lachnospiraceae and Parasutterella. Its main metabolite, butyric acid, concentrations were raised in CRA patients compared with the healthy controls, indicating its role as a promoter of colorectal tumorigenesis. α-Linolenic acid and lysophosphatidylcholine represented the other healthy metabolite for CRA. Combining five microbial and five metabolite biomarkers, we differentiated CRA from CRC with an Area Under the Curve (AUC) of 0.85 out of this performance vastly superior to the specificity recorded by traditional markers CEA and CA199 in such differentiation of these conditions. CONCLUSIONS: The study underlines significant microbial and metabolic alterations in CRA with a novel insight into screening and early intervention of its tumorigenesis.

2.
J Nanobiotechnology ; 22(1): 110, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481281

RESUMO

BACKGROUND: Breast cancer ranks first among malignant tumors, of which triple-negative breast cancer (TNBC) is characterized by its highly invasive behavior and the worst prognosis. Timely diagnosis and precise treatment of TNBC are substantially challenging. Abnormal tumor vessels play a crucial role in TNBC progression and treatment. Nitric oxide (NO) regulates angiogenesis and maintains vascular homeostasis, while effective NO delivery can normalize the tumor vasculature. Accordingly, we have proposed here a tumor vascular microenvironment remodeling strategy based on NO-induced vessel normalization and extracellular matrix collagen degradation with multimodality imaging-guided nanoparticles against TNBC called DNMF/PLGA. RESULTS: Nanoparticles were synthesized using a chemotherapeutic agent doxorubicin (DOX), a NO donor L-arginine (L-Arg), ultrasmall spinel ferrites (MnFe2O4), and a poly (lactic-co-glycolic acid) (PLGA) shell. Nanoparticle distribution in the tumor was accurately monitored in real-time through highly enhanced magnetic resonance imaging and photoacoustic imaging. Near-infrared irradiation of tumor cells revealed that MnFe2O4 catalyzes the production of a large amount of reactive oxygen species (ROS) from H2O2, resulting in a cascade catalysis of L-Arg to trigger NO production in the presence of ROS. In addition, DOX activates niacinamide adenine dinucleotide phosphate oxidase to generate and supply H2O2. The generated NO improves the vascular endothelial cell integrity and pericellular contractility to promote vessel normalization and induces the activation of endogenous matrix metalloproteinases (mainly MMP-1 and MMP-2) so as to promote extravascular collagen degradation, thereby providing an auxiliary mechanism for efficient nanoparticle delivery and DOX penetration. Moreover, the chemotherapeutic effect of DOX and the photothermal effect of MnFe2O4 served as a chemo-hyperthermia synergistic therapy against TNBC. CONCLUSION: The two therapeutic mechanisms, along with an auxiliary mechanism, were perfectly combined to enhance the therapeutic effects. Briefly, multimodality image-guided nanoparticles provide a reliable strategy for the potential application in the fight against TNBC.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Óxido Nítrico , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Doxorrubicina/farmacologia , Fototerapia/métodos , Colágeno , Linhagem Celular Tumoral , Microambiente Tumoral
3.
Adv Sci (Weinh) ; 11(15): e2306031, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342617

RESUMO

Overproduction of reactive oxygen species (ROS), metal ion accumulation, and tricarboxylic acid cycle collapse are crucial factors in mitochondria-mediated cell death. However, the highly adaptive nature and damage-repair capabilities of malignant tumors strongly limit the efficacy of treatments based on a single treatment mode. To address this challenge, a self-reinforced bimetallic Mito-Jammer is developed by incorporating doxorubicin (DOX) and calcium peroxide (CaO2) into hyaluronic acid (HA) -modified metal-organic frameworks (MOF). After cellular, Mito-Jammer dissociates into CaO2 and Cu2+ in the tumor microenvironment. The exposed CaO2 further yields hydrogen peroxide (H2O2) and Ca2+ in a weakly acidic environment to strengthen the Cu2+-based Fenton-like reaction. Furthermore, the combination of chemodynamic therapy and Ca2+ overload exacerbates ROS storms and mitochondrial damage, resulting in the downregulation of intracellular adenosine triphosphate (ATP) levels and blocking of Cu-ATPase to sensitize cuproptosis. This multilevel interaction strategy also activates robust immunogenic cell death and suppresses tumor metastasis simultaneously. This study presents a multivariate model for revolutionizing mitochondria damage, relying on the continuous retention of bimetallic ions to boost cuproptosis/immunotherapy in cancer.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Humanos , Espécies Reativas de Oxigênio , Trifosfato de Adenosina , Morte Celular , Mitomicina , Microambiente Tumoral
4.
Front Biosci (Landmark Ed) ; 28(9): 207, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37796698

RESUMO

Tumor-associated macrophages (TAMs) are the most abundant infiltrating immune cells in the tumor microenvironment (TME) and play an important role in tumor progression. Clinically, the increase of TAMs infiltration is linked to poor prognosis of patients with various cancer types. Multiple studies have demonstrated that reducing or reprogramming TAMs can inhibit the occurrence or development of tumors. Therefore, TAMs have been identified as novel targets for the treatment of cancer therapy. In this review, the origin, polarization, roles, and targeting of TAMs in malignancies, are discussed.


Assuntos
Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos
5.
Front Pharmacol ; 13: 816683, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873553

RESUMO

Background: Alectinib, a highly selective inhibitor of ALK, is currently used in the first-line setting of untreated advanced ALK-positive NSCLC and in the second-line setting of crizotinib-resistant ALK-positive NSCLC. Despite promising efficacy and tolerability in the treatment of advanced ALK-positive NSCLC, the activity of alectinib as neoadjuvant therapy in resectable ALK-positive NSCLC remains to be investigated. Case presentation: Herein, we report a case of a 58-year-old female patient presented to our hospital with hemoptysis for 1 month. Contrast-enhanced computerized tomography (CT) of the chest showed an approximately 4.2 × 3.4 cm mass in the right hilum with localized obstructive pneumonia in the right lower lobe and multiple enlarged lymph nodes in the right hilum and mediastinum. Serum oncological markers results showed elevated levels of CA19-9, CEA, CA125, and CA242. Bronchoscopic biopsy of the mass showed poorly differentiated pulmonary adenocarcinoma and immunohistochemical testing results confirmed ALK positivity. Neoadjuvant alectinib was given at a dosage of 600 mg twice per day for two cycles (56 days), achieving a partial response of the disease with 90% shrinkage of the mass at the subsequent whole-body positron emission tomography. Repeat serum oncological markers results showed that only CA125 was elevated, but lower than before therapy. A bilobectomy of the right middle and lower lobes and systemic lymphadectomy under video-assisted thoracoscopic approach was successfully performed 7 days after the last dose of alectinib. Postoperative pathology showed pathological complete response (pCR). The patient experienced an uneventful postoperative course and continued to receive alectinib and did not report any specific discomfort at her 8-month follow-up. Thoracoabdominal CT at 8 months postoperatively showed no recurrence and repeated examination of serum oncological markers were negative. Conclusion: We report a case of resectable ALK-positive NSCLC treated with neoadjuvant aletinib achieving pCR. Our case highlights the feasibility of alectinib as neoadjuvant therapy for the treatment of resectable ALK-positive NSCLC. Undoubtedly, the safety and efficacy of this novel treatment modality needs to be explored in future large clinical trials.

6.
Front Pharmacol ; 13: 912153, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571073

RESUMO

Background: Evidence of osimertinib as neoadjuvant therapy for resectable non-small cell lung cancer (NSCLC) are currently lacking. This case series study aimed to assess the safety and feasibility of neoadjuvant osimertinib therapy followed by surgery for resectable NSCLC. Materials and methods: Patients with resectable NSCLC with epidermal growth factor receptor (EGFR) mutation who received osimertinib as neoadjuvant therapy followed by surgery at our center were included. Demographic features, radiologic and pathological assessment of response, surgery-related details and complications, toxicity profiles, and prognostic outcomes were extracted. Results: A total of 13 patients were included in this study. The median age at the time of surgical resection was 57 years (interquartile range: 52-64 years), and eight (61.5%) patients were female. The objective response rate (ORR) was 69.2% (9/13), and the complete resection rate was 100%. The rates of pathologic downstaging and lymph node downstaging were 100% (13/13) and 66.7% (6/9), respectively. There were no perioperative deaths and only three (23.1%) patients had postoperative complications. Seven (53.8%) and 13 (100%) patients experienced grade 1 treatment-related adverse reactions and laboratory abnormalities, respectively. No patients experienced drug withdrawal or surgical delays due to the adverse events. No patients showed grade 2 or worse toxicity profiles. One patient was lost to follow-up. The other 12 patients were alive and free of disease recurrence with a median follow-up time of 9.5 months. Conclusion: Neoadjuvant osimertinib therapy seemed to be safe and feasible for resectable EGFR-mutated NSCLC. Future large prospective studies are warranted to confirm whether osimertinib as neoadjuvant therapy outperforms standard tyrosine kinase inhibitors (TKIs) or chemotherapy for resectable EGFR-mutated NSCLC.

7.
Front Oncol ; 11: 684070, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692476

RESUMO

BACKGROUND: Neoadjuvant chemoimmunotherapy for resectable non-small cell lung cancer (NSCLC) represents an important research topic. Despite the potential benefits of this approach, the inflammatory responses and adverse events associated with neoadjuvant chemoimmunotherapy can present technical challenges and compromise a planned resection. This study assessed the safety and feasibility of neoadjuvant chemoimmunotherapy followed by surgery for resectable NSCLC. METHODS: The study was conducted from May 2019 to March 2021. Patients who were age 18 years or older, were diagnosed with stage Ib-IIIb NSCLC, and received neoadjuvant chemoimmunotherapy followed by surgery were included. Demographic information, clinical and pathologic characteristics, data about neoadjuvant therapy, and surgical details were collected by retrospective chart review. Toxicity profiles were collected retrospectively or by telephone follow-up. RESULTS: Twenty patients were included in this study. The median age was 56 years (range, 48-72 years), and 18 patients (90%) were men. Squamous carcinoma (14/20, 70%) was the most common cancer type, followed by adenocarcinoma (4/20, 20%), adenosquamous carcinoma (1/20, 5%), and large cell neuroendocrine carcinoma (1/20, 5%). All patients received two to four cycles of neoadjuvant therapy, and the median interval between final therapy and surgery was 49 days (range, 23-133 days). Computed tomography evaluation after neoadjuvant therapy showed partial response in 15 patients (75%) and stable disease in 5 (25%). Final pathologic examinations showed major pathologic response in eight patients, including pathologic complete response in five (25%). Most patients (18/20, 90%) had reduced pathologic staging. Twelve patients (60%) underwent open thoracotomy; the other eight patients underwent minimally invasive surgery, which was uneventful and without intraoperative conversion to open thoracotomy. No perioperative deaths occurred, and only seven patients (35%) developed postoperative complications. Most patients experienced only grade 1-2 adverse effects and laboratory abnormalities during neoadjuvant therapy, and no grade 3 or worse adverse effects or laboratory abnormalities occurred. No patients experienced surgical delays as a result of immune-related adverse events. CONCLUSIONS: Preoperative administration of chemoimmunotherapy for patients with resectable NSCLC was safe and feasible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA