Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(10): 4548-4556, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37133308

RESUMO

Real-time fluorescence sensing can provide insight into biodynamics. However, few fluorescent tools are available to overcome the tissue scattering and autofluorescence interference for high-contrast in vivo sensing with high spatiotemporal resolution. Here, we develop a molecular-based FRET nanosensor (MFN) capable of producing a dynamic ratiometric NIR-IIb (1500-1700 nm) fluorescence signal under a frequency-modulated dual-wavelength excitation bioimaging system. The MFN provides reliable signals in highly scattering tissues and enables in vivo real-time imaging at micrometer-scale spatial resolution and millisecond-scale temporal resolution. As a proof of concept, a physiological pH-responsive nanosensor (MFNpH) was designed as a nanoreporter for intravital real-time monitoring of the endocytosis dynamics of nanoparticles in the tumor microenvironment. We also show that MFNpH allows the accurate quantification of pH changes in a solid tumor through video-rate ratiometric imaging. Our study offers a powerful approach for noninvasive imaging and sensing of biodynamics with micrometer-scale spatial resolution and millisecond-scale temporal resolution.


Assuntos
Corantes Fluorescentes , Nanopartículas , Transferência Ressonante de Energia de Fluorescência , Diagnóstico por Imagem , Imagem Óptica
2.
Angew Chem Int Ed Engl ; 61(24): e202117436, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35294084

RESUMO

Photon excitation and emission at the NIR-II spectral window enable high-contrast deep-tissue bioimaging. However, multiplexed imaging with NIR-II excitation and emission has been hampered by the limited chemical strategies to develop bright fluorophores with tunable absorption in this spectral regime. Herein, we developed a series of heptamethine cyanines (HCs) with varied absorption/emission maxima spanning from 1100 to 1600 nm through a physical organic approach. A bulky counterion paired to HCs was found to elicit substantial improvements in absorptivity (7-fold), brightness (14-fold), and spectral profiles in water, addressing a notorious quenching problem of NIR-II cyanines due to aggregation and polarization. We demonstrated the utilities of HC1222 and HC1342 for high-contrast dual-color imaging of circulatory system, lymphatic structures, tumor, and organ function in living mice under 1120 nm and 1319 nm excitation, showing HCs as a promising platform for non-invasive bioimaging.


Assuntos
Neoplasias , Imagem Óptica , Animais , Corantes Fluorescentes/química , Ionóforos , Camundongos , Imagem Óptica/métodos , Fótons
3.
Angew Chem Int Ed Engl ; 61(5): e202114273, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34850517

RESUMO

Early detection of kidney disease is of vital importance due to its current prevalence worldwide. Fluorescence imaging, especially in the second near-infrared window (NIR-II) has been regarded as a promising technique for the early diagnosis of kidney disease due to the superior resolution and sensitivity. However, the reported NIR-II organic renal-clearable probes are hampered by their low brightness (ϵmax Φf>1000 nm <10 M-1 cm-1 ) and limited blood circulation time (t1/2 <2 h), which impede the targeted imaging performance. Herein, we develop the aza-boron-dipyrromethene (aza-BODIPY) brush macromolecular probes (Fudan BDIPY Probes (FBP 912)) with high brightness (ϵmax Φf>1000 nm ≈60 M-1 cm-1 ), which is about 10-fold higher than that of previously reported NIR-II renal-clearable organic probes. FBP 912 exhibits an average diameter of ≈4 nm and high renal clearance efficiency (≈65 % excretion through the kidney within 12 h), showing superior performance for non-invasively diagnosis of renal ischemia-reperfusion injury (RIR) earlier than clinical serum-based protocols. Additionally, the high molecular weight polymer brush enables FBP 912 with prolonged circulation time (t1/2 ≈6.1 h) and higher brightness than traditional PEGylated renal-clearable control fluorophores (t1/2 <2 h), facilitating for 4T1 tumor passive targeted imaging and renal cell carcinoma active targeted imaging with higher signal-to-noise ratio and extended retention time.


Assuntos
Tempo de Circulação Sanguínea
4.
Angew Chem Int Ed Engl ; 60(50): 26337-26341, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34605146

RESUMO

Inflammation usually results in high-level reactive oxygen species (ROS) and reactive nitrogen species (RNS) not only in acidic tissue but also in alkaline tissue. However, noninvasively in vivo monitoring reactive species specifically within alkaline tissue remains a huge challenge. Here we introduce a dual activatable fluorescent probe PN910 located in the second near-infrared window (NIR-II, 900-1700 nm), which shows high selectivity toward H2 O2 and OONO- at pH beyond 7.4. Then we verified that PN910 could be used for the real-time, specific and accurate monitoring of cystitis and colitis for living animals. This report presents a unique approach to the development of dual activatable probe for in vivo biosensing.


Assuntos
Benzopiranos/química , Técnicas Biossensoriais , Colite/diagnóstico , Cistite/diagnóstico , Corantes Fluorescentes/química , Indóis/química , Animais , Colite/metabolismo , Cistite/metabolismo , Peróxido de Hidrogênio/análise , Raios Infravermelhos , Camundongos , Estrutura Molecular , Nitratos/análise , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Chem Sci ; 12(31): 10474-10482, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34447540

RESUMO

Fluorescence probes have great potential to empower bioimaging, precision clinical diagnostics and surgery. However, current probes are limited to in vivo high-contrast diagnostics, due to the substantial background interference from tissue scattering and nonspecific activation in blood and normal tissues. Here, we developed a kind of cell endocytosis-activated fluorescence (CEAF) probe, which consists of a hydrophilic polymer unit and an acid pH-sensitive small-molecule fluorescent moiety that operates in the "tissue-transparent" second near-infrared (NIR-II) window. The CEAF probe stably presents in the form of quenched nanoaggregates in water and blood, and can be selectively activated and retained in lysosomes through cell endocytosis, driven by a synergetic mechanism of disaggregation and protonation. In vivo imaging of tumor and inflammation with a passive-targeting and affinity-tagged CEAF probe, respectively, yields highly specific signals with target-to-background ratios over 15 and prolonged observation time up to 35 hours, enabling positive implications for surgical, diagnostic and fundamental biomedical studies.

6.
Nat Mater ; 20(11): 1571-1578, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34326504

RESUMO

Spectrally distinct fluorophores are desired for multiplexed bioimaging. In particular, monitoring biological processes in living mammals needs fluorophores that operate in the 'tissue-transparent' near-infrared (NIR) window, that is, between 700 and 1,700 nm. Here we report a fluorophore system based on molecular erbium(III)-bacteriochlorin complexes with large Stokes shift (>750 nm) and narrowband NIR-to-NIR downconversion spectra (full-width at half-maximum ≤ 32 nm). We have found that the fast (2 × 109 s-¹) and near-unity energy transfer from bacteriochlorin triplets to the erbium(III) 4I13/2 level overcomes the notorious vibrational overtones quenching, resulting in bright and long-lived (1.73 µs) 1,530 nm luminescence in water. We demonstrate the excitation/emission-multiplexed capability of the complexes in the visualization of dynamic circulatory and metabolic processes in living mice, and through skull tracking of cancer cell metastases in mouse brain. This hybrid probe system facilitates robust multiplexed NIR imaging with high contrast and spatial resolution for applications ranging from fluorescence-guided surgery, diagnostics and intravital microscopy.


Assuntos
Érbio , Porfirinas , Animais , Corantes Fluorescentes , Espectroscopia de Luz Próxima ao Infravermelho/métodos
7.
Angew Chem Int Ed Engl ; 60(10): 5091-5095, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33300662

RESUMO

Monitoring the pH in tumor lesions provides abundant physiological information. However, currently developed pH sensors only achieve sensitive detection in the settled response region around the pH transition point (pHt ). To realize tumor pH monitoring with high sensitivity within a wider response region, reported here are serial pHt adjustable sensors (pTAS) that simply regulate the component ratio of second near-infrared (NIR-II) emission aza-BODIPY (NAB) donor and pH sensitive rhodamine-based pre-acceptor (NRh) in Förster resonance energy transfer system. Combining the pH response regions of pTAS, a twofold widened pH detection range (6.11-7.22) is obtained compared to the pHt settled sensor (6.38-6.94). With an adjustable pHt , in vivo tumor pH increase and decrease processes could be dynamically visualized through dual-channel ratiometric bioimaging within the NIR-II window, with a coefficient of variation under 1 % compared to the standard pH meter.


Assuntos
Neoplasias/metabolismo , Microambiente Tumoral/fisiologia , Animais , Compostos de Boro/síntese química , Compostos de Boro/química , Linhagem Celular Tumoral , Feminino , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Camundongos Nus , Monitorização Fisiológica/métodos , Rodaminas/síntese química , Rodaminas/química
8.
Nat Commun ; 11(1): 4192, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826886

RESUMO

Bioluminescence imaging has been widely used in life sciences and biomedical applications. However, conventional bioluminescence imaging usually operates in the visible region, which hampers the high-performance in vivo optical imaging due to the strong tissue absorption and scattering. To address this challenge, here we present bioluminescence probes (BPs) with emission in the second near infrared (NIR-II) region at 1029 nm by employing bioluminescence resonance energy transfer (BRET) and two-step fluorescence resonance energy transfer (FRET) with a specially designed cyanine dye FD-1029. The biocompatible NIR-II-BPs are successfully applied to vessels and lymphatics imaging in mice, which gives ~5 times higher signal-to-noise ratios and ~1.5 times higher spatial resolution than those obtained by NIR-II fluorescence imaging and conventional bioluminescence imaging. Their capability of multiplexed imaging is also well displayed. Taking advantage of the ATP-responding character, the NIR-II-BPs are able to recognize tumor metastasis with a high tumor-to-normal tissue ratio at 83.4.


Assuntos
Trifosfato de Adenosina/metabolismo , Medições Luminescentes/métodos , Metástase Neoplásica/diagnóstico por imagem , Imagem Óptica/métodos , Animais , Técnicas Biossensoriais , Linhagem Celular Tumoral , Feminino , Transferência Ressonante de Energia de Fluorescência/instrumentação , Transferência Ressonante de Energia de Fluorescência/métodos , Xenoenxertos , Humanos , Medições Luminescentes/instrumentação , Camundongos , Imagem Óptica/instrumentação , Neoplasias Ovarianas/diagnóstico por imagem
9.
Angew Chem Int Ed Engl ; 59(42): 18380-18385, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32592429

RESUMO

Chemiluminescence (CL) sensing without external excitation by light and autofluorescence interference has been applied to high-contrast in vitro immunoassays and in vivo inflammation and tumor microenvironment detection. However, conventional CL sensing usually operates in the range of 400-850 nm, which limits the performance of in vivo imaging due to serious light scattering effects and signal attenuation in tissue. To address this challenge, a new type of CL sensor is presented that functions in the second near-infrared window (NIR-II CLS) with a deep penetration depth (≈8 mm). Successive CL resonance energy transfer (CRET) and Förster resonance energy transfer (FRET) from the activated CL substrate to two rationally designed donor-acceptor-donor fluorophores BTD540 and BBTD700 occurs. NIR-II CLS can be selectively activated by hydrogen peroxide over other reactive oxygen species (ROSs). Moreover, NIR-II CLS is capable of detecting local inflammation in mice with a 4.5-fold higher signal-to-noise ratio (SNR) than that under the NIR-II fluorescence modality.


Assuntos
Peróxido de Hidrogênio/química , Inflamação/diagnóstico por imagem , Raios Infravermelhos , Imagem Óptica/métodos , Animais , Modelos Animais de Doenças , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Peróxido de Hidrogênio/toxicidade , Inflamação/induzido quimicamente , Medições Luminescentes , Linfonodos/diagnóstico por imagem , Camundongos , Oxalatos/química , Oxirredução , Razão Sinal-Ruído
10.
Exp Eye Res ; 197: 108124, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32598971

RESUMO

Pterygium is a degenerative disease that characterized by excessive fibrovascular proliferation. To reduce the recurrence rate, surgery is the main strategy, in combination with adjacent procedures or adjunctive therapy. One of the most common adjunctive agents, mitomycin C (MMC), is known as an alkylating agent that inhibits fibroblast proliferation but is limitedly applied in pterygium due to various complications. A previous study demonstrated that activated pterygium subconjunctival fibroblasts overexpressed low-density lipoprotein (LDL) receptors. In this study, we designed and synthesized MMC-loaded mesoporous silica nanoparticles conjugated with LDL (MMC@MSNs-LDL) to deliver MMC into activated pterygium fibroblasts in a targeted manner. The MMC loading efficiency was approximately 6%. The cell viability test (CCK-8 assay) revealed no cytotoxicity for the empty carrier MSNs at a concentration of ≤1 mg/ml after administration for 48 h in subconjunctival fibroblasts. Primary pterygium and normal human subconjunctival fibroblasts with or without stimulation by vascular endothelial growth factor (VEGF) were treated as follows: 1) 10 µg/ml MMC@MSNs-LDL for 24 h (MMC concentration: 0.6 µg/ml); 2) 0.2 mg/ml MMC for 5 min then cultured for 24 h after MMC removal; and 3) normal culture without any drug treatment. At 24 h, the anti-proliferative effect of MMC@MSNs-LDL in activated pterygium fibroblasts was similar to that of MMC (cell viability: 46.2 ± 5.5% vs 40.5 ± 1.1%, respectively, P = 0.349). Furthermore, the cytotoxicity of MMC@MSNs-LDL to normal fibroblasts with or without VEGF stimulation was significantly lower than that of traditional MMC (cell viability: 75.6 ± 4.4% vs 36.0 ± 1.5%, respectively, P < 0.001; 84.7 ± 5.5% vs 35.7 ± 1.3%, P < 0.001). The binding of fluorescently labeled MMC@MSNs-LDL in fibroblasts was assessed using confocal fluorescence microscopy. The uptake of targeted nanoparticles in fibroblasts was time dependent and saturated at 6 h. VEGF-activated pterygium fibroblasts showed more uptake of MMC@MSNs-LDL than normal fibroblasts with or without VEGF activation (both P < 0.001). Our data strongly suggest that MMC@MSNs-LDL had an effective antiproliferative role in activated pterygium fibroblasts, with reduced toxicity to normal fibroblasts compared to traditional application of MMC. LDL-mediated drug delivery might have great potential in the management of pterygium recurrence.


Assuntos
Túnica Conjuntiva/patologia , Lipoproteínas LDL , Mitomicina/administração & dosagem , Pterígio/tratamento farmacológico , Dióxido de Silício , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Túnica Conjuntiva/efeitos dos fármacos , Reagentes de Ligações Cruzadas/administração & dosagem , Sistemas de Liberação de Medicamentos , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Nanopartículas , Pterígio/diagnóstico , Pterígio/metabolismo
11.
Anal Chem ; 91(7): 4771-4779, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30808169

RESUMO

Drug-induced hepatotoxicity represents an important challenge for safety in drug development. The production of peroxynitrite (ONOO-) is proposed as an early sign in the progression of drug-induced hepatotoxicity. Currently, reported ONOO- probes mainly emit in the visible range or the first NIR window, which have limited in vivo biosensing application due to the autofluorescence and photon scattering. Herein, we developed a peroxynitrite activatable second near-infrared window (NIR-II) molecular probe for drug-induced hepatotoxicity monitoring, based on the fusion of an NIR-II fluorescence turn-on benzothiopyrylium cyanines skeleton and the phenyl borate. In the presence of ONOO-, the probe IRBTP-B can turn on its NIR-II fluorescence by yielding its fluorophore IRBTP-O and display good linear response to ONOO-. Tissue phantom study confirmed reliable activated signals could be acquired at a penetration depth up to 5 mm. Using this probe, we disclose the upregulation of ONOO- in a preclinical drug-induced liver injury model and the remediation with N-acetyl cysteine (NAC) in vivo. We expect that this strategy will serve as a general method for the development of an activatable NIR-II probe based on the hydroxyl functionalized reactive sites by analyte-specific triggering.


Assuntos
Técnicas Biossensoriais , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Corantes Fluorescentes/metabolismo , Ácido Peroxinitroso/metabolismo , Acetaminofen , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Humanos , Raios Infravermelhos , Camundongos , Camundongos Nus , Ácido Peroxinitroso/química
12.
Adv Mater ; 30(52): e1804982, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30393979

RESUMO

Contrast agents for bioimaging suffer from low accumulation at lesion area and high uptake in the reticuloendothelial system (RES). Assembly of nanoparticles in vivo improves their enrichment at tumors and inflamed areas. However, uncontrollable assembly also occurs at the liver and spleen owing to the uptake of nanoparticles by the RES. This is known to probably cause a higher bioimaging background and more severe health hazards, which may hamper the clinical application. Herein, a new near-infrared (NIR)-controlled supramolecular engineering strategy is developed for in vivo assembly and disassembly between lanthanide upconversion nanoparticles and second near-infrared window (NIR-II, 1000-1700 nm) nanoprobes to realize precision bioimaging of tumors. A supramolecular structure is designed to realize assembly via host-guest interactions of azobenzene and ß-cyclodextrin to enhance the retention of NIR-II nanoprobes in the tumor area. Meanwhile NIR-laser-controllable nanoprobes disassembly brings about a reduction in the bioimaging background as well as acceleration of their RES clearance rate. This strategy may also be used in other nano-to-micro-scale contrast agents to improve bioimaging signal-to-noise ratio and reduce long-term cytotoxicity.


Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas , Neoplasias Experimentais/diagnóstico por imagem , Imagem Óptica , Animais , Compostos Azo/química , Compostos Azo/farmacocinética , Linhagem Celular Tumoral , Humanos , Raios Infravermelhos , Elementos da Série dos Lantanídeos/química , Elementos da Série dos Lantanídeos/farmacocinética , Lasers , Fígado/diagnóstico por imagem , Fígado/metabolismo , Camundongos Nus , Nanopartículas/química , Transplante de Neoplasias , Neoplasias Experimentais/metabolismo , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacocinética
13.
Chem Commun (Camb) ; 52(99): 14208-14211, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27858014

RESUMO

A selenium-containing anticancer compound DSeMTTG was prepared, which could be self-assembled into a unimolecular amphiphilic drug nanoassembly (UADN) with good biocompatibility. The resulting UADN was sensitive to singlet oxygen produced by encapsulated porphyrin photosensitizers. Thus, the toxicity of DSeMTTG could be retrieved after visible light irradiation, which significantly inhibited the proliferation of A549 cells without using extra chemotherapeutic drugs.


Assuntos
Antineoplásicos/farmacologia , Luz , Compostos de Selênio/farmacologia , Tensoativos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Tamanho da Partícula , Compostos de Selênio/química , Relação Estrutura-Atividade , Tensoativos/síntese química , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA