Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 189(2): 1095-1109, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35285505

RESUMO

Recent findings have revealed the important roles of microRNAs (miRNAs) in the secondary responses to oxidative damage caused by iron (Fe) excess. However, the functional importance of miRNAs in plant responses to Fe deficiency remains to be explored. Here, we show that the expression level of miR164 in Arabidopsis (Arabidopsis thaliana) roots was repressed by Fe deficiency. Primary root length, lateral root number, ferric reductase activity, and mRNA abundance of IRON-REGULATED TRANSPORTER1 (IRT1) and FERRIC REDUCTION OXIDASE2 (FRO2) were higher in the mir164b mutant than in the wild-type (WT) under Fe-deficient conditions. Analysis of the Fe concentrations and ferric reductase activities in the roots of miR164 knockdown transgenic plants showed that members of the miR164 family had different functions in Fe-deficiency responses. Promoter::GUS analysis showed that NAM/ATAF/CUC (NAC) domain transcription factor5 (NAC5) is regulated at both transcriptional and posttranscriptional levels under Fe-deficient conditions. Transgenic Arabidopsis plants overexpressing NAC5 were more tolerant of Fe deficiency than the WT. NAC5 has transactivation activity and directly transactivates the expression of Nuclear Factor Y, Subunit A8 (NFYA8), as demonstrated by chromatin immunoprecipitation followed by quantitative polymerase chain reaction, electrophoretic mobility shift assay (EMSA), and dual-luciferase reporter assay. Like overexpression of NAC5, overexpression of NFYA8 increases primary root length, lateral root number, ferric reductase activity, and mRNA abundance of IRT1 and FRO2 under Fe-deficient conditions. Thus, MIR164b is important for Fe-deficiency responses by its regulation of the NAC5-NFYA8 module.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fator de Ligação a CCAAT , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , RNA Mensageiro/metabolismo
2.
Artif Organs ; 45(6): 616-624, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33270261

RESUMO

Nerve growth factor (NGF) is important for peripheral nerve regeneration. However, its short half-life and rapid diffusion in body fluids limit its clinical efficacy. Collagen has favorable biocompatibility and biodegradability, and weak immunogenicity. Because it possesses an NGF binding domain, we cross-linked heparin to collagen tubes to construct nerve guidance conduits for delivering NGF. The conduits were implanted to bridge a facial nerve defect in rats. Histological and functional analyses were performed to assess the effect of the nerve guidance conduit on facial nerve regeneration. Heparin enhanced the binding of NGF to collagen while retaining its bioactivity. Also, the nerve guidance conduit significantly promoted axonal growth and Schwan cell proliferation at 12 weeks after surgery. The nerve regeneration and functional recovery outcomes using the nerve guidance conduit were similar to those of autologous nerve grafting. Therefore, the nerve guidance conduit may promote safer nerve regeneration.


Assuntos
Colágeno/farmacologia , Nervo Facial/efeitos dos fármacos , Heparina/farmacologia , Fator de Crescimento Neural/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Próteses e Implantes , Animais , Proliferação de Células , Feminino , Regeneração Nervosa/fisiologia , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA