Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264726

RESUMO

LSD1 (histone lysine-specific demethylase 1) has been gradually disclosed to act as an immunomodulator to enhance antitumor immune response. Despite the identification of numerous potent LSD1 inhibitors, there remains a lack of LSD1 inhibitors approved for marketing. Novel LSD1 inhibitors with different mechanisms are therefore needed. Herein, we reported a series of novel quinazoline-based LSD1 inhibitors. Among them, compound Z-1 exhibited the best LSD1 inhibitory activity (IC50 = 0.108 µM). Z-1 also acted as a selective and cellular active as an LSD1 inhibitor. Furthermore, Z-1 promoted response of gastric cancer cells to T-cell killing effect by decreasing PD-L1 expression and further attenuated the PD-1/PD-L1 interaction. In vivo, Z-1 exhibited significant suppression effect on the growth of gastric cancer cells without obvious toxicity. Therefore, Z-1 represents a potential novel immunomodulator that targets LSD1, providing a lead compound with new function mechanism for gastric cancer treatment.

2.
Theranostics ; 14(4): 1464-1499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389844

RESUMO

Epigenetics refers to the reversible process through which changes in gene expression occur without changing the nucleotide sequence of DNA. The process is currently gaining prominence as a pivotal objective in the treatment of cancers and other ailments. Numerous drugs that target epigenetic mechanisms have obtained approval from the Food and Drug Administration (FDA) for the therapeutic intervention of diverse diseases; many have drawbacks, such as limited applicability, toxicity, and resistance. Since the discovery of the first proteolysis-targeting chimeras (PROTACs) in 2001, studies on targeted protein degradation (TPD)-encompassing PROTACs, molecular glue (MG), hydrophobic tagging (HyT), degradation TAG (dTAG), Trim-Away, a specific and non-genetic inhibitor of apoptosis protein (IAP)-dependent protein eraser (SNIPER), antibody-PROTACs (Ab-PROTACs), and other lysosome-based strategies-have achieved remarkable progress. In this review, we comprehensively highlight the small-molecule degraders beyond PROTACs that could achieve the degradation of epigenetic proteins (including bromodomain-containing protein-related targets, histone acetylation/deacetylation-related targets, histone methylation/demethylation related targets, and other epigenetic targets) via proteasomal or lysosomal pathways. The present difficulties and forthcoming prospects in this domain are also deliberated upon, which may be valuable for medicinal chemists when developing more potent, selective, and drug-like epigenetic drugs for clinical applications.


Assuntos
Histonas , Neoplasias de Células Escamosas , Estados Unidos , Humanos , Processamento de Proteína Pós-Traducional , Proteólise , Epigênese Genética , Lisossomos
3.
J Med Chem ; 67(2): 922-951, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38214982

RESUMO

Lysine specific demethylase 1 (LSD1), a transcriptional modulator that represses or activates target gene expression, is overexpressed in many cancer and causes imbalance in the expression of normal gene networks. Over two decades, numerous LSD1 inhibitors have been reported, especially some of which have entered clinical trials, including eight irreversible inhibitors (TCP, ORY-1001, GSK-2879552, INCB059872, IMG-7289, ORY-2001, TAK-418, and LH-1802) and two reversible inhibitors (CC-90011 and SP-2577). Most clinical LSD1 inhibitors demonstrated enhanced efficacy in combination with other agents. LSD1 multitarget inhibitors have also been reported, exampled by clinical dual LSD1/histone deacetylases (HDACs) inhibitors 4SC-202 and JBI-802. Herein, we present a comprehensive overview of the combination of LSD1 inhibitors with various antitumor agents, as well as LSD1 multitarget inhibitors. Additionally, the challenges and future research directionsare also discussed, and we hope this review will provide new insight into the development of LSD1-targeted anticancer agents.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desmetilases/metabolismo
4.
Med Res Rev ; 44(2): 833-866, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38014919

RESUMO

Lysine-specific demethylase 1 (LSD1) is a flavin adenine dinucleotide (FAD) dependent monoamine oxidase (MAO) that erases the mono-, and dimethylation of histone 3 lysine 4 (H3K4), resulting in the suppression of target gene transcriptions. Besides, it can also demethylate some nonhistone substrates to regulate their biological functions. As reported, LSD1 is widely upregulated and plays a key role in several kinds of cancers, pharmacological or genetic ablation of LSD1 in cancer cells suppresses cell aggressiveness by several distinct mechanisms. Therefore, numerous LSD1 inhibitors, including covalent and noncovalent, have been developed and several of them have entered clinical trials. Herein, we systemically reviewed and discussed the biological function of LSD1 in tumors, lymphocytes as well as LSD1-targeting inhibitors in clinical trials, hoping to benefit the field of LSD1 and its inhibitors.


Assuntos
Lisina , Neoplasias , Humanos , Lisina/uso terapêutico , Histona Desmetilases/metabolismo , Histona Desmetilases/uso terapêutico , Inibidores da Monoaminoxidase/uso terapêutico , Histonas , Neoplasias/tratamento farmacológico , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico
5.
Heliyon ; 9(11): e21011, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37920504

RESUMO

Aging is associated with gradual changes in liver structure, altered metabolites and other physiological/pathological functions in hepatic cells. However, its characterized phenotypes based on altered metabolites and the underlying biological mechanism are unclear. Advancements in high-throughput omics technology provide new opportunities to understand the pathological process of aging. Here, in our present study, both metabolomics and phosphoproteomics were applied to identify the altered metabolites and phosphorylated proteins in liver of young (the WTY group) and naturally aged (the WTA group) mice, to find novel biomarkers and pathways, and uncover the biological mechanism. Analysis showed that the body weights, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) increased in the WTA group. The grips decreased with age, while the triglyceride (TG) and cholesterol (TC) did not change significantly. The increase of fibrosis, accumulation of inflammatory cells, hepatocytes degeneration, the deposition of lipid droplets and glycogen, the damaged mitochondria, and deduction of endoplasmic reticulum were observed in the aging liver under optical and electron microscopes. In addition, a network of metabolites and phosphorylated proteomes of the aging liver was established. Metabolomics detected 970 metabolites in the positive ion mode and 778 metabolites in the negative ion mode. A total of 150 pathways were pooled. Phosphoproteomics identified 2618 proteins which contained 16621 phosphosites. A total of 164 pathways were detected. 65 common pathways were detected in two omics. Phosphorylated protein heat shock protein HSP 90-alpha (HSP90A) and v-raf murine viral oncogene homolog B1(BRAF), related to cancer pathway, were significantly upregulated in aged mice liver. Western blot verified that protein expression of MEK and ERK, downstream of BRAF pathway were elevated in the liver of aging mice. However, the protein expression of BRAF was not a significant difference. Overall, these findings revealed a close link between aging and cancer and contributed to our understanding of the multi-omics changes in natural aging.

6.
Eur J Med Chem ; 259: 115684, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37542989

RESUMO

Recently, histone lysine specific demethylase 1 (LSD1) has become an emerging and promising target for cancer immunotherapy. Herein, based on our previously reported LSD1 inhibitor DXJ-1 (also called 6x), a series of novel acridine-based LSD1 inhibitors were identified via structure optimizations. Among them, compound 5ac demonstrated significantly enhanced inhibitory activity against LSD1 with an IC50 value of 13 nM, about 4.6-fold more potent than DXJ-1 (IC50 = 73 nM). Molecular docking studies revealed that compound 5ac could dock well into the active site of LSD1. Further mechanism studies showed that compound 5ac inhibited the stemness and migration of gastric cancer cells, and reduced the expression of PD-L1 in BGC-823 and MFC cells. More importantly, BGC-823 cells were more sensitive to T cell killing when treated with compound 5ac. Besides, the tumor growth was also suppressed by compound 5ac in mice. Together, 5ac could serve as a promising candidate to enhance immune response in gastric cancer.


Assuntos
Antineoplásicos , Neoplasias Gástricas , Animais , Camundongos , Antineoplásicos/química , Relação Estrutura-Atividade , Neoplasias Gástricas/tratamento farmacológico , Simulação de Acoplamento Molecular , Acridinas/farmacologia , Linhagem Celular Tumoral , Imunidade , Histona Desmetilases , Inibidores Enzimáticos/farmacologia , Proliferação de Células
7.
Arch Biochem Biophys ; 731: 109430, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36326546

RESUMO

Diabetic cardiovascular complication is a common systemic disease with high morbidity and mortality worldwide. We hypothesise that exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs-exos) can rescue these disorders and alleviate vascular remodeling in diabetes. Morphological, non-targeted metabolomics and 4D label-free proteomics techniques were used to analyze the aortas of db/m mice as normal control group (NCA), saline treated db/db mice (DMA), and hUCMSCs-exos treated db/db mice (DMTA), and to clarify the molecular mechanism of the protection of hUCMSCs-exos in vascular remodeling from a new point of view. The results showed that 74 metabolites were changed significantly in diabetic aortas, of which 15 were almost restored by hUCMSCs-exos. In proteomics, 30 potential targets such as Stromal cell-derived factor 2-like protein 1, Leukemia inhibitory factor receptor, Peroxisomal membrane protein and E3 ubiquitin-protein ligase MYCBP2 were detected. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway-based analysis showed that Central carbon metabolism in cancer and Galactose metabolism pathway were up-regulated to near normal by hUCMSCs-exos in metabolomics, with janus associated kinase-signal transducer and activator of transcription (JAK-STAT) pathway displayed in proteomics. According to bioinformatics and integrated analysis, these targeted molecules of hUCMSCs-exos to attenuate the vascular remodeling were mainly associated with regulation of energy metabolism, oxidative stress, inflammation, and cellular communications. This study provided a reference for the therapy of diabetes-induced cardiovascular complications.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Exossomos/metabolismo , Cordão Umbilical , Proteômica , Remodelação Vascular , Células-Tronco Mesenquimais/metabolismo , Aorta
8.
Sci Rep ; 6: 35751, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27767195

RESUMO

Viroids are plant-pathogenic molecules made up of single-stranded circular non-coding RNAs. How replicating viroids interfere with host silencing remains largely unknown. In this study, we investigated the effects of a nuclear-replicating Potato spindle tuber viroid (PSTVd) on interference with plant RNA silencing. Using transient induction of silencing in GFP transgenic Nicotiana benthamiana plants (line 16c), we found that PSTVd replication accelerated GFP silencing and increased Virp1 mRNA, which encodes bromodomain-containing viroid-binding protein 1 and is required for PSTVd replication. DNA methylation was increased in the GFP transgene promoter of PSTVd-replicating plants, indicating involvement of transcriptional gene silencing. Consistently, accelerated GFP silencing and increased DNA methylation in the of GFP transgene promoter were detected in plants transiently expressing Virp1. Virp1 mRNA was also increased upon PSTVd infection in natural host potato plants. Reduced transcript levels of certain endogenous genes were also consistent with increases in DNA methylation in related gene promoters in PSTVd-infected potato plants. Together, our data demonstrate that PSTVd replication interferes with the nuclear silencing pathway in that host plant, and this is at least partially attributable to Virp1. This study provides new insights into the plant-viroid interaction on viroid pathogenicity by subverting the plant cell silencing machinery.


Assuntos
Nicotiana/metabolismo , Nicotiana/virologia , Proteínas de Plantas/metabolismo , RNA não Traduzido/biossíntese , RNA Viral/biossíntese , Proteínas de Ligação a RNA/metabolismo , Viroides/fisiologia , Viroides/patogenicidade , Metilação de DNA , DNA de Plantas/genética , DNA de Plantas/metabolismo , Proteínas de Fluorescência Verde/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Solanum tuberosum/metabolismo , Solanum tuberosum/virologia , Nicotiana/genética , Viroides/genética , Replicação Viral/genética , Replicação Viral/fisiologia
9.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(8): 2022-6, 2012 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-23156745

RESUMO

The study on the mechanism of laser ablated cells is of importance to laser surgery and killing harmful cells. Three radiation modes were researched on the ablation characteristics of onion epidermal cells under: laser direct irradiation, focused irradiation and the laser plasma radiation. Based on the thermodynamic properties of the laser irradiation, the cell temperature rise and phase change have been analyzed. The experiments show that the cells damage under direct irradiation is not obvious at all, but the focused irradiation can cause cells to split and moisture removal. The removal shape is circular with larger area and rough fracture edges. The theoretical analysis found out that the laser plasma effects play a key role in the laser ablation. The thermal effects, radiation ionization and shock waves can increase the deposition of laser pulses energy and impact peeling of the cells, which will greatly increase the scope and efficiency of cell killing and is suitable for the cell destruction.


Assuntos
Lasers , Cebolas/citologia , Temperatura , Termodinâmica
10.
Chin Med J (Engl) ; 123(17): 2405-9, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21034557

RESUMO

BACKGROUND: Coronary artery in-stent restenosis (ISR) and late stent thrombosis remain as important complications of stenting. The inflammation reactions to sirolimus and paclitaxel-eluting stents were investigated in a swine stenosis model induced by interleukin (IL)-1ß. METHODS: Mini pigs (n = 12; 2-3 months old and weighing 25-30 kg) were subjected to thoracotomy. Segments (10 mm) of the mid left anterior descending coronary artery and left circumflex coronary artery were exposed and aseptically wrapped with a cotton mesh soaked with IL-1ß (5 µg). After 2 weeks, the animals were anesthetized and quantitative coronary arteriography (QCA) was performed. The stenosis sites were randomized into three groups for stent insertion: a sirolimus-eluting stent (SES) group (Firebird(TM), n = 7), a paclitaxel-eluting stent (PES) group (TAXUS(TM), n = 9), and a bare-metal stent (BMS) group (YINYITM, Dalian Yinyi Biomaterials Development Co., Ltd, China, n = 8). The three different stents were randomly implanted into stenosis segments. Expression of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), P-selectin and vascular cell adhesion molecule-1 (VCAM-1) was determined by reverse transcription-coupled polymerase chain reaction (RT-PCR). RESULTS: QCA showed severe stenosis in IL-1ß treated segments. The SES and PES groups showed lower 1-month angiographic late lumen loss (LLL) within the stent and the lesion compared with BMS (P < 0.05) by follow-up QCA. The SES showed lower LLL than that of PES in reducing 1-month inflammation lesions in pigs by follow-up QCA ((0.15 ± 0.06) mm vs. (0.33 ± 0.01) mm, P < 0.0001). The neointimal hyperplasia areas in SES and PES showed lower than those of BMS (SES (11.6 ± 1.7) mm(2), PES (27.2 ± 1.6) mm(2) vs. BMS (76.2 ± 1.3) mm(2), P < 0.0001). The mRNA expression of MCP-1 by RT-PCR in SES and PES showed lower than that of BMS at 30 days after stenting (SES 0.20 ± 0.03, PES 0.48 ± 0.49 vs. BMS 0.58 ± 0.07, P < 0.05). Levels of VCAM-1 in SES were significantly lower than those of PES and BMS (SES 0.35 ± 0.08 vs. PES 0.65 ± 0.13, BMS 0.70 ± 0.06, P < 0.05). Histochemical immunostaining of vessel walls showed lower inflammatory chemokine MCP-1 expression in the SES and PES groups compared with BMS. CONCLUSION: SESs were superior in reducing 1-month angiographic LLL in inflammation lesions in pigs, strongly suggesting that SESs can suppress inflammatory reactions in ISR at multiple points.


Assuntos
Angioplastia Coronária com Balão/efeitos adversos , Reestenose Coronária/prevenção & controle , Stents Farmacológicos/efeitos adversos , Inflamação/prevenção & controle , Interleucina-1beta/farmacologia , Paclitaxel/administração & dosagem , Sirolimo/administração & dosagem , Animais , Masculino , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA