Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38733135

RESUMO

BACKGROUND: Dietary kelp possesses a variety of useful biological qualities but does not have a toxic effect on the host. In this study, we examine how kelp dietary supplementation enhances the serum biochemistry, intestinal immunity, and metabolism of hybrid snakehead. A total of 810 juvenile hybrid snakeheads (Channa maculata ♀ × Channa argus ♂), with an initial average weight of 11.4 ± 0.15 g, were allocated randomly to three treatment groups (three replicates per group). The fish were fed for 60 days with isonitrogenous and isolipidic diets. The groups were the control group (C) (20% high-gluten flour), the medium replacement group (MR) (10% high-gluten flour and 10% kelp meal), and the full replacement group (FR) (0% high-gluten flour and 15% kelp meal). RESULTS: The results showed that dietary kelp increased the activity of serum antioxidant enzymes significantly and decreased the content of serum malondialdehyde (MDA) in hybrid snakeheads, with significant changes in the FR group (P < 0.05). The intestinal morphology results showed that dietary kelp helped to increase the specific surface area of intestinal villi, which was beneficial for intestinal digestion and absorption. According to transcriptome and quantitative real-time polymerase chain reaction (qRT-PCR) analysis, dietary kelp can improve the expression of intestinal immunity and metabolism-related pathways. Among them, immune-related genes MHC1 and HSPA1 were significantly up-regulated, and IGH, MHC2, and IL-8 were significantly down-regulated (P < 0.05). Lipid metabolism-related genes DGAT2, FABP2, RXRα, and PLPP1 were all significantly up-regulated (P < 0.05). CONCLUSION: Dietary kelp can effectively improve the antioxidant function of hybrid snakeheads, improve intestinal morphology, reduce intestinal inflammation, and promote intestinal lipid synthesis and transportation, thereby improving intestinal immunity and metabolic functions. © 2024 Society of Chemical Industry.

2.
Microb Pathog ; 186: 106464, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043626

RESUMO

Koumine (KM) has anxiolytic, anti-inflammatory and growth-promoting effects in pigs and sheep. Based on the growth-promoting and immunological effects of koumine, the present study was conducted on Cyprinus carpio (C. carpio) with four KM concentrations: 0 mg/kg, 0.2 mg/kg, 2 mg/kg, and 20 mg/kg for 10 weeks, followed by a 1-week Aeromonas hydrophila (A. hydrophila) infection experiment. The effect of KM on the immunity of A. hydrophila infected carp was analyzed by histopathology, biochemical assay, and qRT-PCR to assess the feasibility of KM in aquaculture. The results showed that the presence of KM alleviated pathogen damage to carp tissues. At 2 mg/kg and 20 mg/kg concentrations of KM successively and significantly elevated (p < 0.05) the SOD activities in the intestinal tract, hepatopancreas and kidney of carp. The expression levels of hepatopancreatic antioxidant genes Nrf2 and IGF-1 were significantly up-regulated in the same group (p < 0.05), while the expression levels of immune genes IL-8 and IL-10 were down-regulated. In summary, KM at concentrations of 2 mg/kg and 20 mg/kg could regulate the expression of antioxidant and immune genes in various tissues in an orderly and rapid manner, and significantly improve the antioxidant and immune abilities of carp, which is conducive to the improvement of the resilience of carp.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Ovinos , Suínos , Antioxidantes/metabolismo , Imunidade Inata/genética , Carpas/metabolismo , Aeromonas hydrophila/metabolismo , Doenças dos Peixes/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/veterinária , Suplementos Nutricionais/análise
3.
Fish Shellfish Immunol ; 139: 108916, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37355219

RESUMO

To assess the level of oxidative stress, expression of immune-related genes, histomorphology, and changes in the intestinal tract of hybrid snakeheads(Channa maculata ♀ × Channa argus ♂) under stress from kelp powder in place of flour against Aeromonas hydrophila. We set up experimental diets: a control (C) diet of 20% flour, an experimental (MR) diet of 10% kelp powder and 10% flour, and an experimental (FR) diet of 0% starch and 15% kelp powder. The experimental fish in each group were infected with Aeromonas hydrophila after 60 days of feeding. For this experiment, some of the experimental fish in group C were injected with PBS as a negative control group (PBS). The results showed that the C group had significantly higher SOD, CAT, and T-AOC activity and expression of TAK1, IKKß, IL-1ß, and TNF-α genes in the MyD88 pathway than the PBS group. CAT activity and the expression of TAK1, IL-1ß and TNF-α genes in the MyD88 pathway were significantly lower in the MR group than in the C group. Furthermore, the number of goblet cells in the MR group was significantly higher than in the C group. Furthermore, microorganisms such as Bacteroidota and Actinobacteriota were significantly lower in the C group than in the PBS and FR groups, as were beneficial bacteria such as Clostridium_sensu_stricto_1 and Sphingomonas. Replacing flour with kelp powder increases hybrid snakehead gut resistance to Aeromonas hydrophila.


Assuntos
Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Kelp , Animais , Aeromonas hydrophila , Pós , Fator 88 de Diferenciação Mieloide , Fator de Necrose Tumoral alfa , Peixes/genética , Dieta , Ração Animal/análise , Infecções por Bactérias Gram-Negativas/veterinária
4.
Microb Pathog ; 165: 105386, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35031411

RESUMO

This study aims to highlight the effects (8 weeks) of dietary antimicrobial peptides (AMPs, a compound of 6 kDa and 5 kDa from intestine) on intestinal morphological functions and health status in grass carp (Ctenopharyngodon idellus). Fish were supplemented with various gradient concentrations of AMPs, including M0 (0 mg/kg), M1 (100 mg/kg), M2 (200 mg/kg), M3 (400 mg/kg), M4 (800 mg/kg) and M5 (1600 mg/kg). Our results showed that amylase, lipase, chymotrypsin enzymatic levels, and total antioxidant capacity (T-AOC) were significantly increased (p < 0.05), while malondialdehyde (MDA) content was significantly decreased in the intestines of the AMP treated groups compared to the M0. Histological analysis revealed villus height and crypt depth of foregut and midgut in the M4 group were significantly different (p < 0.05) compared to the M0. In the M3 group, the gene expression levels of IL-1ß were significantly up-regulated, while levels of IL10 and TGF-ß were significantly down-regulated than other treated and control groups. The abundance of Firmicutes was significantly increased (p < 0.05), while the Planctomycetes abundance was decreased at phylum level in M1-M5 groups. Subsequent to the AMP treatment, fish were injected with Aeromonas. hydrophila to assess disease resistant potential. In A. hydrophila injected M3-group, the gene expressions of IL-1ß, IL8, and TNF-α were significantly down-regulated while that of TGF-ß was significantly up-regulated, and IL10 showed no significant difference compared to the control. Further, AMPs also increased the abundance of the Acidobacteria, Proteobacteria, and Patescibacteria, and decreased the abundance of the Fusobacteria and Firmicutes. Therefore, dietary AMPs (400-800 mg/kg) boosted intestinal health by promoting intestinal morphology, digestive and antioxidant capacities, immunity, and intestinal microbiota in C. idellus.


Assuntos
Carpas , Doenças dos Peixes , Microbioma Gastrointestinal , Infecções por Bactérias Gram-Negativas , Animais , Aeromonas hydrophila/fisiologia , Ração Animal/análise , Peptídeos Antimicrobianos , Antioxidantes/metabolismo , Carpas/metabolismo , Dieta/veterinária , Resistência à Doença , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Interleucina-10 , Intestinos , Transdução de Sinais , Fator de Crescimento Transformador beta
5.
Biol Trace Elem Res ; 200(7): 3377-3387, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34564831

RESUMO

Microplastics can accumulate residual drugs and heavy metals in the environment and accumulate through the layers of the food chain, ultimately causing harm to human health. The pollution of microplastics in the freshwater environment is becoming more and more serious, which directly affects the safety of aquatic organisms. This experiment studied the effects of single and composite microplastics and Cd on the tissue damage, antioxidant, and immune response of juvenile Channa argus. Microplastics with different diameters of 80 nm, 0.5 µm (200 µg/L), and Cd (50 µg/L) were used for exposure, and four sampling points were set for 24 h, 48 h, 96 h, and clear 48 h. Under different treatments, a certain degree of gill tissue damage can be found in 96 h. Microplastics and Cd can cause oxidative stress and affect the antioxidant status, and the impact of 0.5-µm microplastics is stronger than that of 80-nm microplastics. There is an antagonistic effect between the two microplastics and Cd during compound exposure, but the activity of CAT shows a synergistic effect. Microplastics and Cd affect the expression of immune-related genes to varying degrees. When exposed together, the expression of HSP70 gene all showed mutual antagonism, while the expression of IL-1ß gene was different. The expression of the MT gene can infer the ability of microplastics to accumulate Cd, and microplastics with a small diameter of 80 nm have stronger enrichment capabilities.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Peixes/metabolismo , Plásticos/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
6.
Fish Shellfish Immunol ; 114: 112-118, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33905842

RESUMO

Antimicrobial peptides have broad-spectrum antibacterial properties and low drug resistance, and they demonstrate great potential as antibiotic substitutes. In this study, five dietary mixed antimicrobial peptide supplement groups were set and fed to Pengze crucian carp for 10 weeks. The 6 groups were G0 (control group) and 5 additional groups: G1 (100 mg/kg), G2 (200 mg/kg), G3 (400 mg/kg), G4 (800 mg/kg) and G5 (1600 mg/kg). The results showed that the final body weight (FBW), weight gain rate (WGR) and specific growth rate (SGR) of fish in G1 and G2 were higher than those of fish in the control group, and G1 was significantly higher than G0 (P < 0.05). In addition, the FBW, WGR, and SGR of the G3 group were significantly lower than those of the G0 group. The chymotrypsin, lipase and amylase activities of G1 and G2 were significantly upregulated compared with G0 and reached peak values in G1. The activity of T-AOC and SOD in the addition group was higher (except G2 and G4) than that in the control groups, and significantly increased in G3 compared to the control group. The activity of MDA in the addition group was lower than that in the control group (p > 0.05). The expression levels of TLR-4, MYD88 and TNF-α in the three organs of the addition group were higher than those in G0 and reached the peak value in G3 (p < 0.05). Furthermore, the expression levels of TLR-4, MYD88 and TNF-α in the three organs of G3 were significantly lower than those in G0 and lower than those in the other supplemented groups. The expression levels of IL-10 and IL-11 tended to be upregulated after A. hydrophila challenge, and G3 in different organs was significantly higher than that in other supplemented groups and G0. The results of this study show that an appropriate amount of mixed antimicrobial peptides can improve the growth performance and antioxidant and immune capabilities of Pengze crucian carp and can also play a positive role in the treatment of A. hydrophila infection.


Assuntos
Antioxidantes/metabolismo , Carpa Dourada/crescimento & desenvolvimento , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Ração Animal/análise , Animais , Dieta/veterinária , Regulação da Expressão Gênica/efeitos dos fármacos , Carpa Dourada/imunologia , Carpa Dourada/metabolismo , Proteínas Citotóxicas Formadoras de Poros/administração & dosagem , Proteínas Citotóxicas Formadoras de Poros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA