Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Zhen Ci Yan Jiu ; 49(4): 331-340, 2024 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38649200

RESUMO

OBJECTIVES: To observe whether acupuncture up-regulates chemokine CXC ligand 1 (CXCL1) in the brain to play an analgesic role through CXCL1/chemokine CXC receptor 2 (CXCR2) signaling in adjuvant induced arthritis (AIA) rats, so as to reveal its neuro-immunological mechanism underlying improvement of AIA. METHODS: BALB/c mice with relatively stable thermal pain reaction were subjected to planta injection of complete Freund adjuvant (CFA) for establishing AIA model, followed by dividing the AIA mice into simple AF750 (fluorochrome) and AF750+CXCL1 groups (n=2 in each group). AF750 labeled CXCL1 recombinant protein was then injected into the mouse's tail vein to induce elevation of CXCL1 level in blood for simulating the effect of acupuncture stimulation which has been demonstrated by our past study. In vivo small animal imaging technology was used to observe the AF750 and AF750+CXCL1-labelled target regions. After thermal pain screening, the Wistar rats with stable pain reaction were subjected to AIA modeling by injecting CFA into the rat's right planta, then were randomized into model and manual acupuncture groups (n=12 in each group). Other 12 rats that received planta injection of saline were used as the control group. Manual acupuncture (uniform reinforcing and reducing manipulations) was applied to bilateral "Zusanli" (ST36) for 4×2 min, with an interval of 5 min between every 2 min, once daily for 7 days. The thermal pain threshold was assessed by detecting the paw withdrawal latency (PWL) using a thermal pain detector. The contents of CXCL1 in the primary somatosensory cortex (S1), medial prefrontal cortex, nucleus accumbens, amygdala, periaqueductal gray and rostroventromedial medulla regions were assayed by using ELISA, and the expression levels of CXCL1, CXCR2 and mu-opioid receptor (MOR) mRNA in the S1 region were detected using real time-quantitative polymerase chain reaction. The immune-fluorescence positive cellular rate of CXCL1 and CXCR2 in S1 region was observed after immunofluorescence stain. The immunofluorescence double-stain of CXCR2 and astrocyte marker glial fibrillary acidic protein (GFAP) or neuron marker NeuN or MOR was used to determine whether there is a co-expression between them. RESULTS: In AIA mice, results of in vivo experiments showed no obvious enrichment signal of AF750 or AF750+CXCL1 in any organ of the body, while in vitro experiments showed that there was a stronger fluorescence signal of CXCL1 recombinant protein in the brain. In rats, compared with the control group, the PWL from day 0 to day 7 was significantly decreased (P<0.01) and the expression of CXCR2 mRNA in the S1 region significantly increased in the model group (P<0.05), while in comparison with the model group, the PWL from day 2 to day 7, CXCL1 content, CXCR2 mRNA expression and CXCR2 content, and MOR mRNA expression in the S1 region were significantly increased in the manual acupuncture group (P<0.05, P<0.01). Immunofluorescence stain showed that CXCR2 co-stained with NeuN and MOR in the S1 region, indicating that CXCR2 exists in neurons and MOR-positive neurons but not in GFAP positive astrocytes. CONCLUSIONS: Acupuncture can increase the content of CXCL1 in S1 region, up-regulate CXCR2 on neurons in the S1 region and improve MOR expression in S1 region of AIA rats, which may contribute to its effect in alleviating inflammatory pain.


Assuntos
Terapia por Acupuntura , Artrite Experimental , Quimiocina CXCL1 , Receptores de Interleucina-8B , Córtex Somatossensorial , Animais , Humanos , Masculino , Camundongos , Ratos , Pontos de Acupuntura , Artrite Experimental/terapia , Artrite Experimental/metabolismo , Artrite Experimental/genética , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/genética , Inflamação/terapia , Inflamação/metabolismo , Inflamação/genética , Camundongos Endogâmicos BALB C , Dor/metabolismo , Dor/genética , Manejo da Dor , Ratos Wistar , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/genética , Transdução de Sinais , Córtex Somatossensorial/metabolismo
2.
Acupunct Med ; 41(2): 96-109, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35585798

RESUMO

OBJECTIVES: Acupuncture has been found to be effective at relieving many inflammatory pain conditions, including rheumatoid arthritis (RA). We aimed to assess the anti-inflammatory potential of manual acupuncture (MA) treatment of RA using adjuvant-induced arthritic (AIA) rats and to explore the underlying mechanisms. METHODS: The anti-inflammatory and analgesic actions of MA at ST36 (Zusanli) in AIA rats were assessed using paw withdrawal latency and swelling, histological examination and cytokine detection by enzyme-linked immunoassay (ELISA). The cell-cell communication (CCC) network was analyzed with a multiplex immunoassay of 24 immune factors expressed in the inflamed joints, and the macrophage and Treg populations and associated cytokines regulated by MA were investigated using reverse-transcription quantitative polymerase chain reaction (RT-qPCR), ELISA and flow cytometry. RESULTS: MA markedly decreased heat hyperalgesia and paw swelling in AIA rats. MA-treated rats also exhibited decreased levels of pro-inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-1ß) coupled with increased anti-inflammatory cytokines (IL-10, transforming growth factor (TGF)-ß1) in the ankle joints at protein and mRNA levels. CCC network analysis confirmed that macrophages are of critical importance and are potential therapeutic targets in RA. Repeated treatment with MA triggered a macrophage phenotypic switch in the paws, with fewer M1 macrophages. Prominent increases in the Treg cell population and TGF-ß1 in the popliteal lymph nodes demonstrated the immunomodulatory effects of MA. Furthermore, a selective TGF-ß1-receptor inhibitor, SB431542, attenuated the anti-inflammatory effects of MA and MA-induced suppression of the levels of M1-released cytokines. CONCLUSION: These findings provide novel evidence that the anti-inflammatory and analgesic effects of MA on RA act through phenotypic modulation involving the inhibition of M1 macrophage polarization and an increase in the Treg cell population, highlighting the potential therapeutic advantages of acupuncture in controlling pain and ameliorating inflammatory conditions.


Assuntos
Terapia por Acupuntura , Artrite Experimental , Artrite Reumatoide , Ratos , Animais , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Fator de Crescimento Transformador beta1 , Citocinas , Artrite Reumatoide/tratamento farmacológico , Fator de Necrose Tumoral alfa , Macrófagos/metabolismo , Macrófagos/patologia , Dor/tratamento farmacológico , Anti-Inflamatórios/efeitos adversos , Artrite Experimental/tratamento farmacológico
3.
Front Immunol ; 12: 714244, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552585

RESUMO

Platinum-based chemotherapy is an effective treatment used in multiple tumor treatments, but produces severe side effects including neurotoxicity, anemia, and immunosuppression, which limits its anti-tumor efficacy and increases the risk of infections. Electroacupuncture (EA) is often used to ameliorate these side effects, but its mechanism is unknown. Here, we report that EA on ST36 and SP6 prevents cisplatin-induced neurotoxicity and immunosuppression. EA induces neuroprotection, prevents pain-related neurotoxicity, preserves bone marrow (BM) hematopoiesis, and peripheral levels of leukocytes. EA activates sympathetic BM terminals to release pituitary adenylate cyclase activating polypeptide (PACAP). PACAP-receptor PAC1-antagonists abrogate the effects of EA, whereas PAC1-agonists mimic EA, prevent neurotoxicity, immunosuppression, and preserve BM hematopoiesis during cisplatin chemotherapy. Our results indicate that PAC1-agonists may provide therapeutic advantages during chemotherapy to treat patients with advanced neurotoxicity or neuropathies limiting EA efficacy.


Assuntos
Cisplatino/uso terapêutico , Eletroacupuntura , Imunomodulação , Neuroimunomodulação , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Animais , Células da Medula Óssea/metabolismo , Neutropenia Febril Induzida por Quimioterapia , Cisplatino/farmacologia , Gerenciamento Clínico , Modelos Animais de Doenças , Eletroacupuntura/métodos , Hematopoese/genética , Hematopoese/imunologia , Humanos , Imunomodulação/genética , Leucopenia , Camundongos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Neuroimunomodulação/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo
4.
Front Neurosci ; 15: 695670, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408622

RESUMO

Inflammatory pain is caused by peripheral tissue injury and inflammation. Inflammation leads to peripheral sensitization, which may further cause central sensitization, resulting in chronic pain and progressive functional disability. Neuroimmune crosstalk plays an essential role in the development and maintenance of inflammatory pain. Studies in recent years have shown that acupuncture can exert anti-inflammatory and analgesic effects by regulating peripheral (i.e., involving local acupoints and inflamed regions) and central neuroimmune interactions. At the local acupoints, acupuncture can activate the TRPV1 and TRPV2 channels of mast cells, thereby promoting degranulation and the release of histamine, adenosine, and other immune mediators, which interact with receptors on nerve endings and initiate neuroimmune regulation. At sites of inflammation, acupuncture enables the recruitment of immune cells, causing the release of opioid peptides, while also exerting direct analgesic effects via nerve endings. Furthermore, acupuncture promotes the balance of immune cells and regulates the release of inflammatory factors, thereby reducing the stimulation of nociceptive receptors in peripheral organs. Acupuncture also alleviates peripheral neurogenic inflammation by inhibiting the release of substance P (SP) and calcitonin gene-related peptide from the dorsal root ganglia. At the central nervous system level, acupuncture inhibits the crosstalk between glial cells and neurons by inhibiting the p38 MAPK, ERK, and JNK signaling pathways and regulating the release of inflammatory mediators. It also reduces the excitability of the pain pathway by reducing the release of excitatory neurotransmitters and promoting the release of inhibitory neurotransmitters from neurons and glial cells. In conclusion, the regulation of neuroimmune crosstalk at the peripheral and central levels mediates the anti-inflammatory and analgesic effects of acupuncture on inflammatory pain in an integrated manner. These findings provide novel insights enabling the clinical application of acupuncture in the treatment of inflammatory diseases.

5.
Neural Plast ; 2021: 8881557, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33531894

RESUMO

Although pain is regarded as a global public health priority, analgesic therapy remains a significant challenge. Pain is a hypersensitivity state caused by peripheral and central sensitization, with the latter considered the culprit for chronic pain. This study summarizes the pathogenesis of central sensitization from the perspective of neuroglial crosstalk and synaptic plasticity and underlines the related analgesic mechanisms of acupuncture. Central sensitization is modulated by the neurotransmitters and neuropeptides involved in the ascending excitatory pathway and the descending pain modulatory system. Acupuncture analgesia is associated with downregulating glutamate in the ascending excitatory pathway and upregulating opioids, 𝛾-aminobutyric acid, norepinephrine, and 5-hydroxytryptamine in the descending pain modulatory system. Furthermore, it is increasingly appreciated that neurotransmitters, cytokines, and chemokines are implicated in neuroglial crosstalk and associated plasticity, thus contributing to central sensitization. Acupuncture produces its analgesic action by inhibiting cytokines, such as interleukin-1ß, interleukin-6, and tumor necrosis factor-α, and upregulating interleukin-10, as well as modulating chemokines and their receptors such as CX3CL1/CX3CR1, CXCL12/CXCR4, CCL2/CCR2, and CXCL1/CXCR2. These factors are regulated by acupuncture through the activation of multiple signaling pathways, including mitogen-activated protein kinase signaling (e.g., the p38, extracellular signal-regulated kinases, and c-Jun-N-terminal kinase pathways), which contribute to the activation of nociceptive neurons. However, the responses of chemokines to acupuncture vary among the types of pain models, acupuncture methods, and stimulation parameters. Thus, the exact mechanisms require future clarification. Taken together, inhibition of central sensitization modulated by neuroglial plasticity is central in acupuncture analgesia, providing a novel insight for the clinical application of acupuncture analgesia.


Assuntos
Analgesia por Acupuntura/métodos , Neuroglia/metabolismo , Plasticidade Neuronal/fisiologia , Manejo da Dor/métodos , Dor/metabolismo , Analgesia por Acupuntura/tendências , Animais , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Neuroglia/imunologia , Dor/imunologia
6.
Curr Pharm Des ; 27(4): 565-574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32988344

RESUMO

Background: The antagonistic relationship between adenosine monophosphate-activated protein kinase (AMPK) and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling play a vital role in cancer development. The anti-cancer effects of berberine have been reported as a main component of the traditional Chinese medicine Rhizoma coptidis, although the roles of these signaling pathways in these effects have not been systematically reviewed. METHODS: We searched the PubMed database for studies with keywords including ["berberine"] and ["tumor" or "cancer"] and ["AMPK"] or ["AKT"] published between January 2010 and July 2020, to elucidate the roles of the AMPK and PI3K/AKT pathways and their upstream and downstream targets in the anti-cancer effects of berberine. RESULTS: The anti-cancer effects of berberine include inhibition of cancer cell proliferation, promotion of apoptosis and autophagy in cancer cells, and prevention of metastasis and angiogenesis. The mechanism of these effects involves multiple cell kinases and signaling pathways, including activation of AMPK and forkhead box transcription factor O3a (FOXO3a), accumulation of reactive oxygen species (ROS), and inhibition of the activity of PI3K/AKT, rapamycin (mTOR) and nuclear factor-κB (NF-κB). Most of these mechanisms converge on regulation of the balance of AMPK and PI3K/AKT signaling by berberine. CONCLUSION: This evidence supports the possibility that berberine is a promising anti-cancer natural product, with pharmaceutical potential in inhibiting cancer growth, metastasis and angiogenesis via multiple pathways, particularly by regulating the balance of AMPK and PI3K/AKT signaling. However, systematic preclinical studies are still required to provide scientific evidence for further clinical studies.


Assuntos
Berberina , Proteínas Proto-Oncogênicas c-akt , Proteínas Quinases Ativadas por AMP , Monofosfato de Adenosina , Berberina/farmacologia , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases
7.
J Med Chem ; 63(13): 6959-6978, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32551649

RESUMO

Human mitochondrial peptide deformylase (HsPDF) is responsible for removing the formyl group from N-terminal formylmethionines of newly synthesized mitochondrial proteins and plays important roles in maintaining mitochondria function. It is overexpressed in various cancers and has been proposed as a novel therapeutic target. Actinonin, a naturally occurring peptidomimetic HsPDF inhibitor, was reported to inhibit the proliferation of a broad spectrum of human cancer cells in vitro. However, its efficacy and pharmacokinetic profile requires significant improvement for therapeutic purposes. To obtain HsPDF inhibitors as anticancer therapeutics, we screened an in-house collection of actinonin derivatives and found two initial hits with antiproliferation activity. Further optimization along the peptidomimetic backbone lead to two series of compounds containing substituted phenyl moieties. They are potent HsPDF inhibitors and exhibited greatly improved antiproliferation activity in selected cancer cell lines. Finally, compound 15m significantly inhibited the growth of human colon cancer in xenograft animal models.


Assuntos
Amidoidrolases/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Amidoidrolases/química , Amidoidrolases/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Células HCT116 , Humanos , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/metabolismo , Ácidos Hidroxâmicos/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Conformação Proteica , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Curr Pharm Des ; 26(39): 5054-5066, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32445451

RESUMO

Neurodegenerative disorders are heterogeneous diseases associated with either acute or progressive neurodegeneration, causing the loss of neurons and axons in the central nervous system (CNS), showing high morbidity and mortality, and there are only a few effective therapies. Here, we summarized that the energy sensor adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), and its agonist berberine can combat the common underlying pathological events of neurodegeneration, including oxidative stress, neuroinflammation, mitochondrial disorder, glutamate excitotoxicity, apoptosis, autophagy disorder, and disruption of neurovascular units. The abovementioned effects of berberine may primarily depend on activating AMPK and its downstream targets, such as the mammalian target of rapamycin (mTOR), sirtuin1 (SIRT1), nuclear factor erythroid-2 related factor-2 (Nrf2), nuclear factor-κB (NF-κB), phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), nicotinamide adenine dinucleotide (NAD+), and p38 mitogen-activated protein kinase (p38 MAPK). It is hoped that this review will provide a strong basis for further scientific exploration and development of berberine's therapeutic potential against neurodegeneration.


Assuntos
Berberina , Doenças Neurodegenerativas , Proteínas Quinases Ativadas por AMP , Autofagia , Berberina/farmacologia , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Fosfatidilinositol 3-Quinases
9.
J Ethnopharmacol ; 258: 112797, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32243990

RESUMO

With cancer deaths increasing, the initiation, pathophysiology and curative management of cancer is receiving increasing attention. Traditional therapies such as surgery and chemoradiotherapy are often accompanied by suppression of host immunity, which increase the risk of metastasis. Astragalus membranceus (AM) is commonly utilized as one herbal medicine of traditional Chinese medicines (TCMs) with a variety of biological activities. Studies have shown that the active ingredients of AM and AM-based TCMs, combined with chemotherapy, can enhance anti-tumor efficacy in cancer patients, in addition to reduce complications and avoid side effects induced by chemotherapy. By using various cancer models and cell lines, AM has been found to be capable of shrinking or stabilizing tumors by direct anti-proliferation or pro-apoptosis effect on tumor cells. Further, AM ameliorates immunosuppression by activating M1 macrophages and T cells tumor-kill function in tumor microenvironment (TME). AM is also found to improve systemic immunity which may help promoting efficacy of chemotherapy and preventing metastasis. Thereby this review contributes to an understanding of AM as an adjunctive therapy in the whole course of cancer treatment, at the same time providing useful information for development of more effective anti-tumor medication. The combination of AM and immune checkpoint therapies has a promising therapeutic prospect, and the observation of direct efficacy and mechanisms on tumor growth and metastasis of AM combined with chemotherapies or other therapies require more in vivo validations and further clinical investigation as well.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Astragalus propinquus/química , Neoplasias/tratamento farmacológico , Adjuvantes Imunológicos/efeitos adversos , Adjuvantes Imunológicos/isolamento & purificação , Adjuvantes Imunológicos/farmacologia , Animais , Antineoplásicos Fitogênicos/efeitos adversos , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Medicina Tradicional Chinesa , Neoplasias/patologia
10.
Chin J Integr Med ; 26(4): 310-320, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30707414

RESUMO

The scientific evidence of acupuncture studies has been improved in recent years, and one of the important manifestations is that more and more acupuncture clinical trials and mechanism researches have been published in the source periodicals of Science Citation Index (SCI). This study summarized the dominant diseases of acupuncture focusing on of acupuncture efficacy and mechanisms, and discussed the existing problems, highlighting the direction of future developments. Most clinical studies were published in journals with journal impact factor (JIF) score of 10 or above, and majority of the basic researches had JIF scores of 5 to 10. The above literature were further divided according to the International Classification of Diseases (ICD). The most concerned diseases in these articles were neurological diseases, musculoskeletal system and connective tissue diseases, tumor and digestive system diseases. The therapeutic effect and mechanism of acupuncture on each kind of disease were summarized. The results showed that the therapeutic effect of acupuncture on nerve injury focused on the anti-oxidation pathway, neuroprotective and anti-inflammatory processes. The antiinflammatory effect also played an important role in the treatment of musculoskeletal diseases. The analgesic effect was underlined in most of these studies. Clinical trials were well carried out on acupuncture curative effect of tumor complications and side effects of chemo-radiotherapy, but the potential mechanisms have not been clarified. Somato-visceral reflex was suggested to be strongly associated with the effects of acupuncture changing the motor activity of the gastrointestinal tract. Functional magnetic resonance imaging studies indicated that non-specific effects play important roles in acupuncture analgesia. Lines of evidence have pointed out that the regulation of neuro-endocrine-immune networks may be a common switch of acupuncture on different nerve system diseases.


Assuntos
Terapia por Acupuntura , Analgesia/métodos , Doenças do Sistema Nervoso/terapia , Transformação Celular Neoplásica , Estudos Clínicos como Assunto , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/terapia , Humanos , Lesões por Radiação/terapia , Resultado do Tratamento
11.
Pancreas ; 48(9): 1136-1147, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31593017

RESUMO

OBJECTIVE: The objective of this study was to assess the efficacy and safety of acupuncture plus routine treatment (RT) for acute pancreatitis (AP). METHODS: Literature searches were performed in 8 databases up to October 31, 2018. Randomized controlled trials comparing acupuncture plus RT with RT alone for AP were included. RESULTS: Twelve eligible studies were included finally. The meta-analysis showed that acupuncture plus RT compared with RT alone could significantly improve the total effective rate and gastrointestinal function and reduce the Acute Physiology, Age, Chronic Health Evaluation II score, tumor necrosis factor α count, the time of resuming to diets, and the length of hospital stay. Only 3 of the studies reported adverse events or reactions. CONCLUSIONS: This study suggested that acupuncture combined with RT may be effective for AP. However, more rigorously designed randomized controlled trials are warranted to confirm the current findings.


Assuntos
Terapia por Acupuntura/métodos , Pancreatite/tratamento farmacológico , Pancreatite/terapia , Ensaios Clínicos Controlados Aleatórios como Assunto/estatística & dados numéricos , Dor Abdominal/terapia , Doença Aguda , Feminino , Humanos , Masculino , Avaliação de Resultados em Cuidados de Saúde/métodos , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Pancreatite/patologia , Fator de Necrose Tumoral alfa/metabolismo
12.
Am J Chin Med ; 46(5): 997-1019, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30001644

RESUMO

Rheumatoid arthritis (RA) is a chronic, systemic autoimmune inflammatory and debilitating disease that involves the systemic imbalance of the immune network. Previous studies have shown that acupuncture can help treat RA. However, its specific mechanisms are not fully understood. Thus, the present study was designed to clarify the mechanisms of acupuncture acted on RA via immune network modulation using complete Freund's adjuvant (CFA)-induced arthritic rats. Results revealed that manual acupuncture (MA) could alleviate the inflammation and pain of infected joints. Moreover, MA could effectively stimulate the innate immune cytokines (IL-1[Formula: see text], IL-1[Formula: see text], IL-6, IL-7, IL-18, TNF-[Formula: see text]) and adaptive immunity cytokines (IL-2, IL-12, IFN-[Formula: see text], IL-4, IL-5, IL-10, IL-13, IL-17) as the main part of the immune response and repaired damage of RA. These complex immunomodulatory processes were analyzed quantitatively by cell-cell communication (CCC) networks. The CCC networks demonstrated that the immune networks were enhanced with the development of RA, while MA enhanced the immune networks in the early stage to act on RA and promoted the immune-network to a normal level at the late stage. Moreover, we found that monocyte/macrophage and endothelial cells were the key cells of innate immunity and body cells; TH1, TH2 and B cells were the key cells of adaptive immunity, which were also the main target cells for MA regulation.


Assuntos
Terapia por Acupuntura , Artrite Reumatoide/imunologia , Artrite Reumatoide/terapia , Animais , Artrite Reumatoide/genética , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Masculino , Ratos , Ratos Wistar , Células Th1/imunologia , Células Th2/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
13.
Curr Pharm Des ; 23(11): 1687-1692, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27784236

RESUMO

Although evidence over the last 30 years suggests that the autonomic nervous system (ANS) mediates stress-induced allostatic and immune responses, the crucial role that it plays in the tumor micro-environment has only recently been reported. Here, we review the action of ANS signaling in this micro-environment. Emerging data suggest that primary tumors are innervated by the ANS which mediates stress-related effects on tumor progression. The activation of the sympathetic nervous system (SNS) takes advantage of neurotransmitters and neuropeptides from the innervating neural circuitry and/or hypothalamic-pituitary-adrenal axis glucocorticoids via their receptors to modulate the gene expression associated with oncogenesis, the proliferation and apoptosis of tumor cells, angiogenesis, and the tumor-associated immune response. The parasympathetic nervous system has also been implicated in some tumor types, but its contribution in the tumor micro-environment remains unclear. In addition to identifying the ANS signaling pathways involved in tumor progression, recent reports suggest that the ANS could be a potential biomarker to predict tumor progression, and have identified new pharmacological strategies, such as the use of ß-adrenergic blockers, to inhibit tumor progression and metastasis by targeting this system. These findings are reviewed here.


Assuntos
Sistema Nervoso Autônomo/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Sistema Nervoso Autônomo/metabolismo , Humanos , Neoplasias/metabolismo
14.
Aging Dis ; 8(6): 760-777, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29344415

RESUMO

Aging is the greatest risk factor for human diseases, as it results in cellular growth arrest, impaired tissue function and metabolism, ultimately impacting life span. Two different mechanisms are thought to be primary causes of aging. One is cumulative DNA damage induced by a perpetuating cycle of oxidative stress; the other is nutrient-sensing adenosine monophosphate-activated protein kinase (AMPK) and rapamycin (mTOR)/ ribosomal protein S6 (rpS6) pathways. As the main bioactive component of natural Chinese medicine rhizoma coptidis (RC), berberine has recently been reported to expand life span in Drosophila melanogaster, and attenuate premature cellular senescence. Most components of RC including berberine, coptisine, palmatine, and jatrorrhizine have been found to have beneficial effects on hyperlipidemia, hyperglycemia and hypertension aging-related diseases. The mechanism of these effects involves multiple cellular kinase and signaling pathways, including anti-oxidation, activation of AMPK signaling and its downstream targets, including mTOR/rpS6, Sirtuin1/ forkhead box transcription factor O3 (FOXO3), nuclear factor erythroid-2 related factor-2 (Nrf2), nicotinamide adenine dinucleotide (NAD+) and nuclear factor-κB (NF-κB) pathways. Most of these mechanisms converge on AMPK regulation on mitochondrial oxidative stress. Therefore, such evidence supports the possibility that rhizoma coptidis, in particular berberine, is a promising anti-aging natural product, and has pharmaceutical potential in combating aging-related diseases via anti-oxidation and AMPK cellular kinase activation.

15.
Neuropsychopharmacology ; 37(12): 2671-83, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22828749

RESUMO

Depression is one of the most common and debilitating psychiatric illnesses around the world, but the current antidepressants used to treat depression have many limitations. Progressively more studies have shown that neuropeptide systems are potential novel therapeutic targets for depression. However, whether the neuropeptide trefoil factor 3 (TFF3) participates in the development of depression has not been examined. In the current experiments, we assessed the antidepressant effects of TFF3 using the forced swim test (FST), tail suspension test (TST), and chronic mild stress (CMS) paradigm. Furthermore, we determined the mechanism that underlies the antidepressant-like effects of TFF3 in the rat FST. TFF3 dose-dependently reduced immobility time in both FST and TST. CMS elevated plasma TFF3 and decreased basolateral amygdala (BLA) TFF3 levels in rats, and acute TFF3 (0.1 mg/kg, i.p.) treatment reversed the depressive-like behaviors induced by CMS. Furthermore, TFF3 (0.1 mg/kg, i.p.) significantly increased Fos expression in the BLA, medial prefrontal cortex, and hypothalamus in rats subjected to the FST. Intra-BLA infusions of TFF3 (1 ng/side) exerted rapid antidepressant-like effects in the rat FST. Additionally, acute systemic TFF3 administration increased the level of phosphorylated-Akt (p-Akt) in the BLA. Finally, intra-BLA infusions of LY294002 (5 mM/side), a specific phosphatidylinositol 3-kinase (PI3K) inhibitor, significantly blocked the antidepressant-like effect of TFF3. Our results demonstrated that TFF3 exerts antidepressant-like effects that might be mediated by the PI3K/Akt signaling pathway in the BLA. These findings suggest a novel neuropeptide system target in the development of new antidepressants.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Antidepressivos , Depressão/tratamento farmacológico , Depressão/fisiopatologia , Proteína Oncogênica v-akt/fisiologia , Peptídeos/farmacologia , Fosfatidilinositol 3-Quinases/fisiologia , Transdução de Sinais/efeitos dos fármacos , Doença Aguda , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Western Blotting , Doença Crônica , Depressão/etiologia , Ensaio de Imunoadsorção Enzimática , Elevação dos Membros Posteriores/psicologia , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microinjeções , Atividade Motora/efeitos dos fármacos , Proteína Oncogênica v-akt/antagonistas & inibidores , Peptídeos/administração & dosagem , Inibidores de Fosfoinositídeo-3 Quinase , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Estresse Psicológico/psicologia , Natação/psicologia , Fator Trefoil-3
16.
Pharmacol Res ; 65(1): 74-80, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21964320

RESUMO

Recent studies have shown that a higher consumption of green tea leads to a lower prevalence of depressive symptoms in elderly individuals. However, no studies have explored the antidepressant-like effect of green tea in preclinical models of depression. The aim of this study was to investigate the antidepressant-like effects and the possible mechanism of action of green tea in widely used mouse models of depression. Mice were orally administered green tea polyphenols (GTP; 5, 10 and 20mg/kg) for 7days and assessed in the forced swimming test (FST) and tail suspension test (TST) 60min after the last GTP administration. Serum corticosterone and adrenocorticotrophic hormone (ACTH) levels were also determined immediately after the FST. Green tea polyphenols significantly reduced immobility in both the FST and TST but did not alter locomotor activity in the open field test, suggesting that GTP has antidepressant-like effects, and this action did not induce nonspecific motor changes in mice. Green tea polyphenols also reduced serum corticosterone and ACTH levels in mice exposed to the FST. The present study demonstrated that GTP exerts antidepressant-like effects in a mouse behavioral models of depression, and the mechanism may involve inhibition of the hypothalamic-pituitary-adrenal axis.


Assuntos
Antidepressivos/farmacologia , Camellia sinensis , Depressão/tratamento farmacológico , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Administração Oral , Hormônio Adrenocorticotrópico/sangue , Animais , Antidepressivos/administração & dosagem , Antidepressivos/isolamento & purificação , Camellia sinensis/química , Corticosterona/sangue , Depressão/sangue , Depressão/psicologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Atividade Motora/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação , Polifenóis/administração & dosagem , Polifenóis/isolamento & purificação , Fatores de Tempo
17.
Laryngoscope ; 117(2): 248-52, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17202909

RESUMO

OBJECTIVE: The objective of this study is to explore the biocompatibility and implantability of a nickel-titanium (NiTi) alloy in auricle reconstruction. METHODS AND MATERIALS: Twelve New Zealand rabbits underwent subcutaneous implantation with a NiTi alloy framework shaped like the human auricle under general anesthesia. The implant was inserted after skin expansion. Implant vascularization was evaluated at months 1, 3, 6, 9, and 12 after implantation by histologic analysis. Immunohistochemical methods were used to examine expression of vascular endothelial growth factor in tissue around the implant. The fibrovascular ingrowth rate of implants was determined by bone scanning using (99m)Tc-PYP. The surface of the NiTi alloy implant was examined microscopically with scanning electron microscopy. RESULT: The implant harvested showed only partial vascularization at 1 month and completely vascularized at 3 months. The amount of vascular endothelial growth factor-positive cells was markedly increased at 6 months and reached the highest number at 3 months. The fibrovascular ingrowth rate of implant was assessed by (99m)Tc-PYP bone scan using ratios of (99m)Tc-PYP activity in placement regions versus the contralateral normal region. One rabbit had exposure of the NiTi alloy framework as a result of overlying skin flap necrosis. It was rescued with animal skin without the complete removal of the framework. All the other rabbits tolerated the implant well, and there were no complications. CONCLUSION: The NiTi alloy implant represents an alternative implant for auricular reconstruction.


Assuntos
Ligas , Materiais Biocompatíveis , Orelha Externa , Níquel , Engenharia Tecidual , Titânio , Animais , Colágeno/ultraestrutura , Humanos , Microscopia Eletrônica de Varredura , Neovascularização Fisiológica/fisiologia , Tomografia por Emissão de Pósitrons , Coelhos , Tela Subcutânea/patologia , Tela Subcutânea/cirurgia , Propriedades de Superfície , Fatores de Tempo , Expansão de Tecido , Fator A de Crescimento do Endotélio Vascular/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA