Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Heliyon ; 10(6): e27035, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38515673

RESUMO

Doxorubicin (DOX) possesses strong anti-tumor effects but is limited by its irreversible cardiac toxicity. The relationship between exercise, a known enhancer of cardiovascular health, and DOX-induced cardiotoxicity has been a focus of recent research. Exercise has been suggested to mitigate DOX's cardiac harm by modulating the Yes-associated protein (YAP) and Signal transducer and activator of transcription 3 (STAT3) pathways, which are crucial in regulating cardiac cell functions and responses to damage. This study aimed to assess the protective role of exercise preconditioning against DOX-induced cardiac injury. We used Sprague-Dawley rats, divided into five groups (control, DOX, exercise preconditioning (EP), EP-DOX, and verteporfin + EP + DOX), to investigate the potential mechanisms. Our findings, including echocardiography, histological staining, Western blot, and q-PCR analysis, demonstrated that exercise preconditioning could alleviate DOX-induced cardiac dysfunction and structural damage. Notably, exercise preconditioning enhanced the nuclear localization and co-localization of YAP and STAT3. Our study suggests that exercise preconditioning may counteract DOX-induced cardiotoxicity by activating the YAP/STAT3 pathway, highlighting a potential therapeutic approach for reducing DOX's cardiac side effects.

2.
ACS Mater Lett ; 6(2): 666-673, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38333599

RESUMO

Switching coordination networks (CNs) that reversibly transform between narrow or closed pore (cp) and large pore (lp) phases, though fewer than their rigid counterparts, offer opportunities for sorption-related applications. However, their structural transformations and switching mechanisms remain underexplored at the molecular level. In this study, we conducted a systematic investigation into a 2D switching CN, [Ni(bpy)2(NCS)2]n, sql-1-Ni-NCS (1 = bpy = 4,4'-bipyridine), using coincident gas sorption and in situ powder X-ray diffraction (PXRD) under low-temperature conditions. Gas adsorption measurements revealed that C2H4 (169 K) and C2H6 (185 K) exhibited single-step type F-IVs sorption isotherms with sorption uptakes of around 180-185 cm3 g-1, equivalent to four sorbate molecules per formula unit. Furthermore, parallel in situ PXRD experiments provided insight into sorbate-dependent phase switching during the sorption process. Specifically, CO2 sorption induced single-step phase switching (path I) solely between cp and lp phases consistent with the observed single-step type F-IVs sorption isotherm. By contrast, intermediate pore (ip) phases emerged during C2H4 and C2H6 desorption as well as C3H6 adsorption, although they remained undetectable in the sorption isotherms. To our knowledge, such a cp-lp-ip-cp transformation (path II) induced by C2H4/6 and accompanied by single-step type F-IVs sorption isotherms represents a novel type of phase transition mechanism in switching CNs. By virtue of Rietveld refinements and molecular simulations, we elucidated that the phase transformations are governed by cooperative local and global structural changes involving NCS- ligand reorientation, bpy ligand twist and rotation, cavity edge (Ni-bpy-Ni) deformation, and interlayer expansion and sliding.

3.
J Mater Chem A Mater ; 11(17): 9691-9699, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37153821

RESUMO

In this work, we report the synthesis, structural characterisation and sorption properties of an 8-fold interpenetrated diamondoid (dia) metal-organic framework (MOF) that is sustained by a new extended linker ligand, [Cd(Imibz)2], X-dia-2-Cd, HImibz or 2 = 4-((4-(1H-imidazol-1-yl)phenylimino)methyl)benzoic acid. X-dia-2-Cd was found to exhibit reversible single-crystal-to-single-crystal (SC-SC) transformations between four distinct phases: an as-synthesised (from N,N-dimethylformamide) wide-pore phase, X-dia-2-Cd-α; a narrow-pore phase, X-dia-2-Cd-ß, formed upon exposure to water; a narrow-pore phase obtained by activation, X-dia-2-Cd-γ; a medium-pore CO2-loaded phase X-dia-2-Cd-δ. While the space group remained constant in the four phases, the cell volumes and calculated void space ranged from 4988.7 Å3 and 47% (X-dia-2-Cd-α), respectively, to 3200.8 Å3 and 9.1% (X-dia-2-Cd-γ), respectively. X-dia-2-Cd-γ also exhibited a water vapour-induced structural transformation to the water-loaded X-dia-2-Cd-ß phase, resulting in an S-shaped sorption isotherm. The inflection point occurred at 18% RH with negligible hysteresis on the desorption profile. Water vapour temperature-humidity swing cycling (60% RH, 300 K to 0% RH, 333 K) indicated hydrolytic stability of X-dia-2-Cd and working capacity was retained after 128 cycles of sorbent regeneration. CO2 (at 195 K) was also observed to induce a structural transformation in X-dia-2-Cd-γ and in situ PXRD studies at 1 bar of CO2, 195 K revealed the formation of X-dia-2-Cd-δ, which exhibited 31% larger unit cell volume than X-dia-2-Cd-γ.

4.
Open Life Sci ; 18(1): 20220550, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36820205

RESUMO

Radiotherapy is an essential postoperative treatment for grade II gliomas. However, comparative dosimetric studies of different radiotherapy plans for grade II gliomas are still lacking. Therefore, we conducted this case series analysis to compare the dosimetric differences among helical tomotherapy (TOMO), volumetric modulated arc therapy (VMAT), and intensity-modulated radiotherapy (IMRT) for grade II gliomas. To achieve that, seven diagnosed postoperative patients with grade II gliomas were analyzed by computed tomography and then planned with TOMO, VMAT, and IMRT. The plan target volume (PTV) prescribed dose was 50 Gy (daily fraction of 2.0 Gy, 5 days/week). The expected treatment efficiency was measured by monitor units (MUs) scoring. Treatment plans of the patients were compared in the quality of target volumes dosage coverage, the efficiency of dosage delivery, and the dosage exposure of normal adjacent organs at risk (OAR). Differences in each method were measured by utilizing the Nonparametric ANOVA. The study shows that TOMO achieved a significantly higher PTV-D98% (doses received by 98% of the PTV volume) than VMAT and IMRT (50.30 ± 0.13 vs 49.21 ± 0.19, p = 0.006; 50.30 ± 0.13 vs 49.78 ± 0.18, p = 0.014), while there was no difference in PTV-D2% (doses received by 2% of the PTV volume). IMRT achieved a conformity index (CI) preferably, and TOMO generated a favorable homogeneity index (HI) (p < 0.05 for both). The MUs were fewer for VMAT than IMRT and TOMO (294 ± 19, 572 ± 24, 317 ± 97, respectively). IMRT achieved better protection for the lens and brain stems. Our case series study indicated that TOMO, VMAT, and IMRT achieved a comparatively good target dosimetric coverage, and most OARs were protected well. IMRT is not inferior to TOMO and VMAT and is still very suitable for treating most grade II glioma patients.

5.
Circulation ; 145(15): 1154-1168, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35317609

RESUMO

BACKGROUND: Cardiac ischemia/reperfusion (I/R) injury has emerged as an important therapeutic target for ischemic heart disease, the leading cause of morbidity and mortality worldwide. At present, there is no effective therapy for reducing cardiac I/R injury. CaMKII (Ca2+/calmodulin-dependent kinase II) plays a pivotal role in the pathogenesis of severe heart conditions, including I/R injury. Pharmacological inhibition of CaMKII is an important strategy in the protection against myocardial damage and cardiac diseases. To date, there is no drug targeting CaMKII for the clinical therapy of heart disease. Furthermore, at present, there is no selective inhibitor of CaMKII-δ, the major CaMKII isoform in the heart. METHODS: A small-molecule kinase inhibitor library and a high-throughput screening system for the kinase activity assay of CaMKII-δ9 (the most abundant CaMKII-δ splice variant in human heart) were used to screen for CaMKII-δ inhibitors. Using cultured neonatal rat ventricular myocytes, human embryonic stem cell-derived cardiomyocytes, and in vivo mouse models, in conjunction with myocardial injury induced by I/R (or hypoxia/reoxygenation) and CaMKII-δ9 overexpression, we sought to investigate the protection of hesperadin against cardiomyocyte death and cardiac diseases. BALB/c nude mice with xenografted tumors of human cancer cells were used to evaluate the in vivo antitumor effect of hesperadin. RESULTS: Based on the small-molecule kinase inhibitor library and screening system, we found that hesperadin, an Aurora B kinase inhibitor with antitumor activity in vitro, directly bound to CaMKII-δ and specifically blocked its activation in an ATP-competitive manner. Hesperadin functionally ameliorated both I/R- and overexpressed CaMKII-δ9-induced cardiomyocyte death, myocardial damage, and heart failure in both rodents and human embryonic stem cell-derived cardiomyocytes. In addition, in an in vivo BALB/c nude mouse model with xenografted tumors of human cancer cells, hesperadin delayed tumor growth without inducing cardiomyocyte death or cardiac injury. CONCLUSIONS: Here, we identified hesperadin as a specific small-molecule inhibitor of CaMKII-δ with dual functions of cardioprotective and antitumor effects. These findings not only suggest that hesperadin is a promising leading compound for clinical therapy of cardiac I/R injury and heart failure, but also provide a strategy for the joint therapy of cancer and cardiovascular disease caused by anticancer treatment.


Assuntos
Insuficiência Cardíaca , Traumatismo por Reperfusão Miocárdica , Neoplasias , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Indóis , Isquemia/metabolismo , Camundongos , Camundongos Nus , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Neoplasias/patologia , Ratos , Sulfonamidas
6.
Cell Calcium ; 102: 102527, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35026540

RESUMO

CACNA1E is a gene encoding the ion-conducting α1 subunit of R-type voltage-dependent calcium channels, whose roles in tumorigenesis remain to be determined. We previously showed that CACNA1E was significantly mutated in patients with non-small cell lung cancer (NSCLC) who were long-term exposed to household air pollution, with a mutation rate of 19% (15 of 79 cases). Here we showed that CACNA1E was also mutated in 207 (12.8%) of the 1616 patients with NSCLC in The Cancer Genome Atlas (TCGA) datasets. At mRNA and protein levels, CACNA1E was elevated in tumor tissues compared to counterpart non-tumoral lung tissues in NSCLCs of the public datasets and our settings, and its expression level was inversely associated with clinical outcome of the patients. Overexpression of wild type (WT) or A275S or R249G mutant CACNA1E transcripts promoted NSCLC cell proliferation with activation of epidermal growth factor receptor (EGFR) signaling pathway, whereas knockdown of this gene exerted inhibitory effects on NSCLC cells in vitro and in vivo. CACNA1E increased current density and Ca2+ entrance, whereas calcium channel blockers inhibited NSCLC cell proliferation. These data indicate that CACNA1E is required for NSCLC cell proliferation, and blockade of this oncoprotein may have therapeutic potentials for this deadly disease.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Cálcio/metabolismo , Canais de Cálcio Tipo R , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Transporte de Cátions , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Mutação/genética
7.
World J Clin Cases ; 9(20): 5435-5441, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34307597

RESUMO

BACKGROUND: The brain is the most complex organ in the human body. Treatment for a glioma always involves a multi-disciplinary team. Nursing care in fast-track surgery or enhanced recovery after surgery is such kind of work implemented by an interdisciplinary team to provide services to patients to improve their outcomes. AIM: To explore the effects of nursing care in fast-track surgery on postoperative pain, psychological state, and patient satisfaction with nursing for glioma. METHODS: From June 2018 to June 2020, 138 patients who underwent operation for glioma at Cancer Hospital Affiliated to Chongqing University were selected. They were categorized into groups according to different nursing care that they received. Of them, 69 patients receiving nursing care in fast-track surgery were included in an experimental group, and 69 patients receiving conventional postoperative nursing were included in a control group. Visual analogue scale was used to evaluate postoperative pain in the two groups immediately after the operation and at 3 d after the operation. Self-rating anxiety scale (SAS) and self-rating depression scale (SDS) were used to evaluate the psychological status of patients immediately after operation and on the 3rd postoperative day. A self-made satisfaction scale for patient satisfaction with nursing was used to evaluate and compare patient satisfaction with nursing between the two groups. RESULTS: Time to excretion, time to out-of-bed activities, and length of hospital stay were significantly shorter in the observation group than in the control group (P < 0.05). There was no significant difference in duration of operative time or intraoperative bleeding between the two groups (P > 0.05). There was no significant difference in postoperative pain score between the two groups (P > 0.05). The pain score was significantly lower in the observation group than in the control group at 3 d after the operation (P < 0.05). There was no significant difference in postoperative SAS or SDS score between the two groups (P > 0.05). SAS and SDS scores were significantly lower in the observation group than in the control group at 3 d after operation (P < 0.05). The rate of patient satisfaction with nursing was 94.2% in the observation group, which was significantly higher than that (81.2%) of the control group (P < 0.05). CONCLUSION: Nursing care in fast-track surgery can relieve postoperative pain, anxiety, and depression, and improve patient satisfaction with nursing in patients with glioma, which is worthy of clinical application.

8.
Nano Lett ; 20(9): 6387-6395, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32787151

RESUMO

Bridging integrator-1 (BIN1) is a family of banana-shaped molecules implicated in cell membrane tubulation. To understand the curvature sensitivity and functional roles of BIN1 splicing isoforms, we engineered vertical nanobars on a cell culture substrate to create high and low curvatures. When expressed individually, BIN1 isoforms with phosphoinositide-binding motifs (pBIN1) appeared preferentially at high-curvature nanobar ends, agreeing well with their membrane tubulation in cardiomyocytes. In contrast, the ubiquitous BIN1 isoform without phosphoinositide-binding motif (uBIN1) exhibited no affinity to membranes around nanobars but accumulated along Z-lines in cardiomyocytes. Importantly, in pBIN1-uBIN1 coexpression, pBIN1 recruited uBIN1 to high-curvature membranes at nanobar ends, and uBIN1 attached the otherwise messy pBIN1 tubules to Z-lines. The complementary cooperation of BIN1 isoforms (comboBIN1) represents a novel mechanism of T-tubule formation along Z-lines in cardiomyocytes. Dysregulation of BIN1 splicing, e.g., during myocardial infarction, underlied T-tubule disorganization, and correction of uBIN1/pBIN1 stoichiometry rescued T-tubule morphology in heart disease.


Assuntos
Proteínas Nucleares , Proteínas Supressoras de Tumor , Proteínas Adaptadoras de Transdução de Sinal , Morfogênese , Proteínas Nucleares/genética , Isoformas de Proteínas/genética , Proteínas Supressoras de Tumor/metabolismo
9.
J Am Chem Soc ; 141(23): 9408-9414, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31117669

RESUMO

Soft porous crystals (SPCs) that exhibit stimuli-responsive dynamic sorption behavior are attracting interest for gas storage/separation applications. However, the design and synthesis of SPCs is challenging. Herein, we report a new type of SPC based on a [2 + 3] imide-based organic cage (NKPOC-1) and find that it exhibits guest-induced breathing behavior. Various gases were found to induce activated NKPOC-1 crystals to reversibly switch from a "closed" nonporous phase (α) to two porous "open" phases (ß and γ). The net effect is gate-opening behavior induced by CO2 and C3 hydrocarbons. Interestingly, NKPOC-1-α selectively adsorbs propyne over propylene and propane under ambient conditions. Thus, NKPOC-1-α has the potential to separate binary and ternary C3 hydrocarbon mixtures, and the performance was subsequently verified by fixed bed column breakthrough experiments. In addition, molecular dynamics calculations and in situ X-ray diffraction experiments indicate that the gate-opening effect is accompanied by reversible structural transformations. The adsorption energies from molecular dynamics simulations aid are consistent with the experimentally observed selective adsorption phenomena. The understanding gained from this study of NKPOC-1 supports the further development of SPCs for applications in gas separation/storage because SPCs do not inherently suffer from the recyclability problems often encountered with rigid materials.

10.
Cell Calcium ; 78: 35-47, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30594820

RESUMO

Pacemaker cells residing in the sinoatrial node generate the regular heartbeat. Ca2+ signaling controls the heartbeat rate-directly, through the effect on membrane molecules (NCX exchange, K+ channel), and indirectly, through activation of calmodulin-AC-cAMP-PKA signaling. Thus, the physiological role of signaling in pacemaker cells can only be assessed if the Ca2+ dynamics are in the physiological range. Cultured cells that can be genetically manipulated and/or virally infected with probes are required for this purpose. Because rabbit pacemaker cells in culture experience a decrease in their spontaneous action potential (AP) firing rate below the physiological range, Ca2+ dynamics are expected to be affected. However, Ca2+ dynamics in cultured pacemaker cells have not been reported before. We aim to a develop a modified culture method that sustains the global and local Ca2+ kinetics along with the AP firing rate of rabbit pacemaker cells. We used experimental and computational tools to test the viability of rabbit pacemaker cells in culture under various conditions. We tested the effect of culture dish coating, pH, phosphorylation, and energy balance on cultured rabbit pacemaker cells function. The cells were maintained in culture for 48 h in two types of culture media: one without the addition of a contraction uncoupler and one enriched with either 10 mM BDM (2,3-Butanedione 2-monoxime) or 25 µM blebbistatin. The uncoupler was washed out from the medium prior to the experiments. Cells were successfully infected with a GFP adenovirus cultured with either BDM or blebbistatin. Using either uncoupler during culture led to the cell surface area being maintained at the same level as fresh cells. Moreover, the phospholamban and ryanodine receptor densities and their phosphorylation level remained intact in culture when either blebbistatin or BDM were present. Spontaneous AP firing rate, spontaneous Ca2+ kinetics, and spontaneous local Ca2+ release parameters were similar in the cultured cells with blebbistatin as in fresh cells. However, BDM affects these parameters. Using experimental and a computational model, we showed that by eliminating contraction, phosphorylation activity is preserved and energy is reduced. However, the side-effects of BDM render it less effective than blebbistatin.


Assuntos
Cálcio/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Animais , Sinalização do Cálcio , Células Cultivadas , Masculino , Fosforilação , Coelhos
11.
Circ Res ; 114(3): 412-20, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24257462

RESUMO

RATIONALE: In cardiac dyads, junctional Ca2+ directly controls the gating of the ryanodine receptors (RyRs), and is itself dominated by RyR-mediated Ca2+ release from the sarcoplasmic reticulum. Existing probes do not report such local Ca2+ signals because of probe diffusion, so a junction-targeted Ca2+ sensor should reveal new information on cardiac excitation-contraction coupling and its modification in disease states. OBJECTIVE: To investigate Ca2+ signaling in the nanoscopic space of cardiac dyads by targeting a new sensitive Ca2+ biosensor (GCaMP6f) to the junctional space. METHODS AND RESULTS: By fusing GCaMP6f to the N terminus of triadin 1 or junctin, GCaMP6f-triadin 1/junctin was targeted to dyadic junctions, where it colocalized with t-tubules and RyRs after adenovirus-mediated gene transfer. This membrane protein-tagged biosensor displayed ≈4× faster kinetics than native GCaMP6f. Confocal imaging revealed junctional Ca2+ transients (Ca2+ nanosparks) that were ≈50× smaller in volume than conventional Ca2+ sparks (measured with diffusible indicators). The presence of the biosensor did not disrupt normal Ca2+ signaling. Because no indicator diffusion occurred, the amplitude and timing of release measurements were improved, despite the small recording volume. We could also visualize coactivation of subclusters of RyRs within a single junctional region, as well as quarky Ca2+ release events. CONCLUSIONS: This new, targeted biosensor allows selective visualization and measurement of nanodomain Ca2+ dynamics in intact cells and can be used to give mechanistic insights into dyad RyR operation in health and in disease states such as when RyRs become orphaned.


Assuntos
Técnicas Biossensoriais/tendências , Sinalização do Cálcio/genética , Cálcio/fisiologia , Simulação de Dinâmica Molecular/tendências , Miócitos Cardíacos/fisiologia , Nanotecnologia/tendências , Animais , Técnicas Biossensoriais/métodos , Células Cultivadas , Coração , Masculino , Miócitos Cardíacos/química , Nanotecnologia/métodos , Ratos , Ratos Sprague-Dawley
12.
Circ Res ; 111(7): 837-41, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22891046

RESUMO

RATIONALE: Failing cardiomyocytes exhibit decreased efficiency of excitation-contraction (E-C) coupling. The downregulation of junctophilin-2 (JP2), a protein anchoring the sarcoplasmic reticulum to T-tubules, has been identified as a major mechanism underlying the defective E-C coupling. However, the regulatory mechanism of JP2 remains unknown. OBJECTIVE: To determine whether microRNAs regulate JP2 expression. METHODS AND RESULTS: Bioinformatic analysis predicted 2 potential binding sites of miR-24 in the 3'-untranslated regions of JP2 mRNA. Luciferase assays confirmed that miR-24 suppressed JP2 expression by binding to either of these sites. In the aortic stenosis model, miR-24 was upregulated in failing cardiomyocytes. Adenovirus-directed overexpression of miR-24 in cardiomyocytes decreased JP2 expression and reduced Ca(2+) transient amplitude and E-C coupling gain. CONCLUSIONS: MiR-24-mediated suppression of JP2 expression provides a novel molecular mechanism for E-C coupling regulation in heart cells and suggests a new target against heart failure.


Assuntos
Estenose da Valva Aórtica/metabolismo , Insuficiência Cardíaca/metabolismo , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Regulação para Cima , Animais , Estenose da Valva Aórtica/patologia , Cálcio/metabolismo , Células Cultivadas , Biologia Computacional , Acoplamento Excitação-Contração/fisiologia , Insuficiência Cardíaca/patologia , Proteínas de Membrana/genética , MicroRNAs/genética , Modelos Animais , Miócitos Cardíacos/patologia , RNA Mensageiro/metabolismo , Ratos , Retículo Sarcoplasmático/fisiologia
13.
Cardiovasc Res ; 95(4): 430-8, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22707157

RESUMO

AIMS: The contraction of a heart cell is controlled by Ca(2+)-induced Ca(2+) release between L-type Ca(2+) channels (LCCs) in the cell membrane/T-tubules (TTs) and ryanodine receptors (RyRs) in the junctional sarcoplasmic reticulum (SR). During heart failure, LCC-RyR signalling becomes defective. The purpose of the present study was to reveal the ultrastructural mechanism underlying the defective LCC-RyR signalling and contractility. METHODS AND RESULTS: In rat models of heart failure produced by transverse aortic constriction surgery, stereological analysis of transmission electron microscopic images showed that the volume density and the surface area of junctional SRs and those of SR-coupled TTs were both decreased in failing heart cells. The TT-SR junctions were displaced or missing from the Z-line areas. Moreover, the spatial span of individual TT-SR junctions was markedly reduced in failing heart cells. Numerical simulation and junctophilin-2 knockdown experiments demonstrated that the decrease in junction size (and thereby the constitutive LCC and RyR numbers) led to a scattered delay of Ca(2+) release activation. CONCLUSIONS: The shrinking and eventual absence of TT-SR junctions are important mechanisms underlying the desynchronized and inhomogeneous Ca(2+) release and the decreased contractile strength in heart failure. Maintaining the nanoscopic integrity of TT-SR junctions thus represents a therapeutic strategy against heart failure and related cardiomyopathies.


Assuntos
Sinalização do Cálcio , Membrana Celular/ultraestrutura , Insuficiência Cardíaca/patologia , Contração Miocárdica , Miócitos Cardíacos/ultraestrutura , Retículo Sarcoplasmático/ultraestrutura , Potenciais de Ação , Animais , Canais de Cálcio Tipo L/metabolismo , Membrana Celular/metabolismo , Forma Celular , Células Cultivadas , Simulação por Computador , Modelos Animais de Doenças , Acoplamento Excitação-Contração , Técnicas de Silenciamento de Genes , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Fatores de Tempo , Transfecção
14.
Sheng Li Xue Bao ; 62(3): 203-9, 2010 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-20571736

RESUMO

Voltage-dependent potassium channels (Kv) are involved in proliferation and transformation in mammary epithelial cells. In previous studies, several groups have detected various potassium channels in breast cancer cells, and they assumed that potassium channels are related to the development of breast carcinoma, although the precise mechanisms are still unknown. We have previously reported that 4-aminopyridine (4-AP), one kind of potassium channel (K(+) channel) blocker, could affect the proliferation of MCF10A cells. The aim of the present study is to explore the expression and properties of K(+) channels in human mammary epithelial cells (MCF10A) and whether Kv channels are required for the proliferation of MCF10A cell. Electrophysiological, MTT analysis, PCR and Western blot methods were used to identify a K(+) conductance which is involved in tumorigenesis and not yet be described in MCF10A cells. A voltage-dependent, outward rectification and 4-AP-sensitive K(+) current was observed in these cells. The perfusion of 5 mmol/L 4-AP significantly decreased the amplitude of Kv current from (912.5+/-0.6) pA to (275+/-0.8) pA (n=5, P<0.01), when cells were recorded using 800 ms voltage steps from a holding potential of -60 mV to voltage ranging from -60 mV to +60 mV. PCR analysis demonstrated that Kv1.1, Kv1.2, Kv1.3, and Kv1.5 were all expressed in MCF10A and MCF7 cells. Furthermore, the expression of Kv1.5 was much higher in MCF10A than that in MCF7. Inhibitory effect of 4-AP on cell proliferation was dosage-dependent. Incubation with 5 mmol/L 4-AP reduced MCF10A cell proliferation to 25.29% in 48 h. Western blot analysis showed the activation of ERK1/2 which related to cell proliferation was enhanced, while p38 activation was decreased by 4-AP treatment for 10 min. These data provided the first evidence of the Kv channels expression in MCF10A cell and 4-AP could inhibit the proliferation of MCF10A through blocking the potassium channels, and the mechanism may be related to regulating the activity of different members of cell proliferation signaling pathway of MEK/ERK.


Assuntos
Proliferação de Células , Células Epiteliais/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , 4-Aminopiridina/farmacologia , Linhagem Celular , Humanos , Bloqueadores dos Canais de Potássio/farmacologia
15.
Neurosci Bull ; 25(6): 376-82, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19927174

RESUMO

OBJECTIVE: To provide a new approach for the treatment of tumor in Meckel's cave, by dissecting adjacent structures of the nasal cavity-maxillary sinus-pterygopalatine fossa-Meckel's cave approach. METHODS: Fifteen adult cadaver heads (30 sides) were dissected and the correlated anatomic landmarks were observed, measured and analyzed in an operative route. RESULTS: The approach was divided into 3 steps: entering the maxillary sinus, the later pterygopalatine fossa and the final Meckel's cave. Safe access to Meckel's cave could be achieved by tracing the vidian neurovascular bundles and dissecting the quadrangular space (QS). The distances from the nasal columella to the apertura maxillaries, the sphenopalatine foramen, and the anterior foramen of the pterygoid canal were (44.08+/-2.61) mm, (64.83+/-2.42) mm, and (70.43+/-2.94) mm, respectively. The angles between the horizontal plate of the palatine bone and the link from nasal columella to apertura maxillaries, between the horizontal plate of the palatine bone and the link from nasal columella to sphenopalatine foramen were (38.10+/-2.46) degrees and (26.15+/-2.26) degrees , respectively. CONCLUSION: The endoscopic approach of transnasal maxillary sinus-pterygopalatine fossa-Meckel's cave (ENMPA) is a safe and direct way to access Meckel's cave, and could be employed for the treatment of tumor in Meckel's cave.


Assuntos
Dura-Máter/anatomia & histologia , Seio Maxilar/anatomia & histologia , Cavidade Nasal/anatomia & histologia , Fossa Pterigopalatina/anatomia & histologia , Dura-Máter/cirurgia , Humanos , Seio Maxilar/cirurgia , Cavidade Nasal/cirurgia , Neuroendoscopia/métodos , Procedimentos Neurocirúrgicos/métodos , Fossa Pterigopalatina/cirurgia
16.
Proc Natl Acad Sci U S A ; 106(42): 18028-33, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19815510

RESUMO

As the most prototypical G protein-coupled receptor, beta-adrenergic receptor (betaAR) regulates the pace and strength of heart beating by enhancing and synchronizing L-type channel (LCC) Ca(2+) influx, which in turn elicits greater sarcoplasmic reticulum (SR) Ca(2+) release flux via ryanodine receptors (RyRs). However, whether and how betaAR-protein kinase A (PKA) signaling directly modulates RyR function remains elusive and highly controversial. By using unique single-channel Ca(2+) imaging technology, we measured the response of a single RyR Ca(2+) release unit, in the form of a Ca(2+) spark, to its native trigger, the Ca(2+) sparklet from a single LCC. We found that acute application of the selective betaAR agonist isoproterenol (1 microM, < or = 20 min) increased triggered spark amplitude in an LCC unitary current-independent manner. The increased ratio of Ca(2+) release flux underlying a Ca(2+) spark to SR Ca(2+) content indicated that betaAR stimulation helps to recruit additional RyRs in synchrony. Quantification of sparklet-spark kinetics showed that betaAR stimulation synchronized the stochastic latency and increased the fidelity (i.e., chance of hit) of LCC-RyR intermolecular signaling. The RyR modulation was independent of the increased SR Ca(2+) content. The PKA antagonists Rp-8-CPT-cAMP (100 microM) and H89 (10 microM) both eliminated these effects, indicating that betaAR acutely modulates RyR activation via the PKA pathway. These results demonstrate unequivocally that RyR activation by a single LCC is accelerated and synchronized during betaAR stimulation. This molecular mechanism of sympathetic regulation will permit more fundamental studies of altered betaAR effects in cardiovascular diseases.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Técnicas In Vitro , Isoproterenol/farmacologia , Microscopia Confocal , Contração Miocárdica/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais/fisiologia
17.
Zhonghua Yi Xue Za Zhi ; 87(10): 706-9, 2007 Mar 13.
Artigo em Chinês | MEDLINE | ID: mdl-17553312

RESUMO

OBJECTIVE: To express the human HCN2 and HCN4 genes in HEK293 cells and investigate the electrophysiology of the expressed channel protein. METHODS: cDNA encoding human HCN2 or HCN4 gene was ligated into a shuttle vector pAdTrack-CMV. Homologous recombination was performed in Escherichia coli of the line BJ5183. Human embryonic kidney cells of the line 293 (HEK293 cells) were cultured and transfected with the positive recombinant adenovirus plasmid. Then the HEK293 cells were infected by AdhHCN2 or AdhHCN4 and the whole cell hyperpolarization-activated currents were recorded in HEK293 cells transfected with hHCN2 and hHCN4. RESULTS: If-like currents could be found in the HEK293 cells transfected with hHCN2 and hHCN4. The channels were activated by hyperpolarized potentials. Boltzmann equation showed that the half-activation voltage of the hHCN2 and hHCN4 channels were -114.8 mV +/- 3.3 mV and -125.9 mV +/- 2.9 mV respectively (P = 0.024). The reversal slope factors of the hHCN2 and hHCN4 channels were 11.1 mV +/- 1.2 mV and 13.7 mV +/- 1.3 mV respectively (P = 0.22). The activation kinetics was faster in hHCN2 than in hHCN4, with the activation constants at -110 mV being 0.99 s +/- 0.21 s and 8.47 s +/- 2.85 s respectively. The relative permeation ratio for sodium and potassium were 0.40 and 0.34 respectively in these two channels. Caesium chloride of the concentration of 2 mmol/L prominently inhibited both currents. CONCLUSION: The target genes hHCN2 and hHCN4 are successfully expressed in HEK293 cells, and the expressed functional channels have profoundly different activation kinetics.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Canais Iônicos/fisiologia , Proteínas Musculares/fisiologia , Transporte Biológico/efeitos dos fármacos , Linhagem Celular , Césio/farmacologia , Cloretos/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Canais Iônicos/genética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Proteínas Musculares/genética , Técnicas de Patch-Clamp , Potássio/metabolismo , Canais de Potássio , Sódio/metabolismo , Transfecção
18.
Acta Pharmacol Sin ; 27(7): 861-8, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16787570

RESUMO

AIM: To determine the Ca2+ source and cellular mechanisms of spontaneous Ca2+ oscillations in hippocampal astrocytes. METHODS: The cultured cells were loaded with Fluo-4 AM, the indicator of intracellular Ca2+, and the dynamic Ca2+ transients were visualized with confocal laser-scanning microscopy. RESULTS: The spontaneous Ca2+ oscillations in astrocytes were observed first in co-cultured hippocampal neurons and astrocytes. These oscillations were not affected by tetrodotoxin (TTX) treatment and kept up in purity cultured astrocytes. The spontaneous Ca2+ oscillations were not impacted after blocking the voltage-gated Ca2+ channels or ethylenediamine tetraacetic acid (EDTA) bathing, indicating that intracellular Ca2+ elevation was not the result of extracellular Ca2+ influx. Furthermore, the correlation between the spontaneous Ca2+ oscillations and the Ca2+ store in endoplasmic reticulum (ER) were investigated with pharmacological experiments. The oscillations were: 1) enhanced when cells were exposed to both low Na+ (70 mmol/L) and high Ca2+ (5 mmol/L) solution, and eliminated completely by 2 micromol/L thapsigargin, a blocker of sarcoplasmic reticulum Ca2+-ATPase; and 2) still robust after the application with either 50 micromol/L ryanodine or 400 micromol/L tetracaine, two specific antagonists of ryanodine receptors, but depressed in a dose-dependent manner by 2-APB, an InsP3 receptors (InsP3R) blocker. CONCLUSION: InsP3R-induced ER Ca2+ release is an important cellular mechanism for the initiation of spontaneous Ca2+ oscillation in hippocampal astrocytes.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Hipocampo/citologia , Animais , Animais Recém-Nascidos , Compostos de Boro/farmacologia , Cálcio/farmacologia , ATPases Transportadoras de Cálcio/antagonistas & inibidores , Células Cultivadas , Ácido Edético/farmacologia , Retículo Endoplasmático/metabolismo , Hipocampo/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inibidores , Microscopia Confocal , Neurônios/citologia , Ratos , Ratos Sprague-Dawley , Rianodina/farmacologia , Tetracaína/farmacologia , Tetrodotoxina/farmacologia , Tapsigargina/farmacologia
19.
J Clin Invest ; 111(5): 617-25, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12618516

RESUMO

beta(1)-adrenergic receptor (beta(1)AR) stimulation activates the classic cAMP/protein kinase A (PKA) pathway to regulate vital cellular processes from the change of gene expression to the control of metabolism, muscle contraction, and cell apoptosis. Here we show that sustained beta(1)AR stimulation promotes cardiac myocyte apoptosis by activation of Ca(2+)/calmodulin kinase II (CaMKII), independently of PKA signaling. beta(1)AR-induced apoptosis is resistant to inhibition of PKA by a specific peptide inhibitor, PKI14-22, or an inactive cAMP analogue, Rp-8-CPT-cAMPS. In contrast, the beta(1)AR proapoptotic effect is associated with non-PKA-dependent increases in intracellular Ca(2+) and CaMKII activity. Blocking the L-type Ca(2+) channel, buffering intracellular Ca(2+), or inhibiting CaMKII activity fully protects cardiac myocytes against beta(1)AR-induced apoptosis, and overexpressing a cardiac CaMKII isoform, CaMKII-deltaC, markedly exaggerates the beta(1)AR apoptotic effect. These findings indicate that CaMKII constitutes a novel PKA-independent linkage of beta(1)AR stimulation to cardiomyocyte apoptosis that has been implicated in the overall process of chronic heart failure.


Assuntos
Apoptose , Proteínas Quinases Dependentes de Cálcio-Calmodulina/fisiologia , Cálcio/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Miocárdio/patologia , Receptores Adrenérgicos beta 1/fisiologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , AMP Cíclico/fisiologia , Ativação Enzimática , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Insuficiência Cardíaca/etiologia , Proteínas Heterotriméricas de Ligação ao GTP/fisiologia , Masculino , Camundongos , Camundongos Knockout
20.
Circ Res ; 90(2): 174-81, 2002 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-11834710

RESUMO

Voltage-gated L-type Ca(2+) channels (LCCs) provide Ca(2+) ingress into cardiac myocytes and play a key role in intracellular Ca(2+) homeostasis and excitation-contraction coupling. We investigated the effects of a constitutive increase of LCC density on Ca(2+) signaling in ventricular myocytes from 4-month-old transgenic (Tg) mice overexpressing the alpha(1) subunit of LCC in the heart. At this age, cells were somewhat hypertrophic as reflected by a 20% increase in cell capacitance relative to those from nontransgenic (Ntg) littermates. Whole cell I(Ca) density in Tg myocytes was elevated by 48% at 0 mV compared with the Ntg group. Single-channel analysis detected an increase in LCC density with similar conductance and gating properties. Although the overexpressed LCCs triggered an augmented SR Ca(2+) release, the "gain" function of EC coupling was uncompromised, and SR Ca(2+) content, diastolic cytosolic Ca(2+), and unitary properties of Ca(2+) sparks were unchanged. Importantly, the enhanced I(Ca) entry and SR Ca(2+) release were associated with an upregulation of the Na(+)-Ca(2+) exchange activity (indexed by the half decay time of caffeine-elicited Ca(2+) transient) by 27% and SR Ca(2+) recycling by approximately 35%. Western analysis detected a 53% increase in the Na(+)-Ca(2+) exchanger expression but no change in the abundance of ryanodine receptor (RyR), SERCA2, and phospholamban. Analysis of I(Ca) kinetics suggested that SR Ca(2+) release-dependent inactivation of LCCs remains intact in Tg cells. Thus, in spite of the modest cardiac hypertrophy, the overexpressed LCCs form functional coupling with RyRs, preserving both orthograde and retrograde Ca(2+) signaling between LCCs and RyRs. These results also suggest that a modest but sustained increase in Ca(2+) influx triggers a coordinated remodeling of Ca(2+) handling to maintain Ca(2+) homeostasis.


Assuntos
Canais de Cálcio Tipo L/biossíntese , Sinalização do Cálcio/fisiologia , Cardiomegalia/metabolismo , Miocárdio/metabolismo , Subunidades Proteicas , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Cafeína/farmacologia , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Sinalização do Cálcio/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Estimulação Cardíaca Artificial , Cardiomegalia/genética , Separação Celular , Citosol/metabolismo , Homeostase , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Miocárdio/citologia , Técnicas de Patch-Clamp , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sarcolema/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Trocador de Sódio e Cálcio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA