Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Free Radic Biol Med ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38950659

RESUMO

Hepatocellular carcinoma (HCC), the primary form of liver cancer, is the third leading cause of cancer-related death globally. Hernandonine is a natural alkaloid derived from Hernandia nymphaeifolia that has been shown to exert various biological functions. In a previous study, hernandonine was shown to suppress the proliferation of several solid tumor cell lines without affecting normal human cell lines. However, little is known about the effect of hernandonine on HCC. Therefore, this study aimed to investigate the effect and mechanism of hernandonine on HCC in relation to autophagy. We found that hernandonine inhibited HCC cell growth in vitro and in vivo. In addition, hernandonine elicited autophagic cell death and DNA damage in HCC cells. RNA-seq analysis revealed that hernandonine upregulated p53 and Hippo signaling pathway-related genes in HCC cells. Small RNA interference of p53 resulted in hernandonine-induced autophagic cell death attenuation. However, inhibition of YAP sensitized HCC cells to hernandonine by increasing the autophagy induction. This is the first study to illustrate the complex involvement of p53 and YAP in the hernandonine-induced autophagic cell death in human HCC cells. Our findings provide novel evidence for the potential of hernandonine as a therapeutic agent for HCC treatment.

2.
Environ Toxicol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924303

RESUMO

Osteosarcoma, a highly aggressive bone cancer, often develops resistance to conventional chemotherapeutics, leading to poor prognosis and survival rates. The malignancy and chemoresistance of osteosarcoma pose significant challenges in its treatment, highlighting the critical need for novel therapeutic approaches. Bruton's tyrosine kinase (BTK) plays a pivotal role in B-cell development and has been linked to various cancers, including breast, lung, and oral cancers, where it contributes to tumor growth and chemoresistance. Despite its established importance in these malignancies, the impact of BTK on osteosarcoma remains unexplored. Our study delves into the expression levels of BTK in osteosarcoma tissues by data from the GEO and TCGA database, revealing a marked increase in BTK expression compared with primary osteoblasts and a potential correlation with primary site progression. Through our investigations, we identified a subset of osteosarcoma cells, named cis-HOS, which exhibited resistance to cisplatin. These cells displayed characteristics of cancer stem cells (CSCs), demonstrated a higher angiogenesis effect, and had an increased migration ability. Notably, an upregulation of BTK was observed in these cisplatin-resistant cells. The application of ibrutinib, a BTK inhibitor, significantly mitigated these aggressive traits. Our study demonstrates that BTK plays a crucial role in conferring chemoresistance in osteosarcoma. The upregulation of BTK in cisplatin-resistant cells was effectively countered by ibrutinib. These findings underscore the potential of targeting BTK as an effective strategy to overcome chemoresistance in osteosarcoma treatment.

3.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791180

RESUMO

Chondrosarcoma is a malignant bone tumor that arises from abnormalities in cartilaginous tissue and is associated with lung metastases. Lymphangiogenesis plays an essential role in cancer metastasis. Visfatin is an adipokine reported to enhance tumor metastasis, but its relationship with VEGF-D generation and lymphangiogenesis in chondrosarcoma remains undetermined. Our results from clinical samples reveal that VEGF-D levels are markedly higher in chondrosarcoma patients than in normal individuals. Visfatin stimulation promotes VEGF-D-dependent lymphatic endothelial cell lymphangiogenesis. We also found that visfatin induces VEGF-D production by activating HIF-1α and reducing miR-2277-3p generation through the Raf/MEK/ERK signaling cascade. Importantly, visfatin controls chondrosarcoma-related lymphangiogenesis in vivo. Therefore, visfatin is a promising target in the treatment of chondrosarcoma lymphangiogenesis.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Subunidade alfa do Fator 1 Induzível por Hipóxia , Linfangiogênese , MicroRNAs , Nicotinamida Fosforribosiltransferase , Fator D de Crescimento do Endotélio Vascular , Humanos , Condrossarcoma/metabolismo , Condrossarcoma/genética , Condrossarcoma/patologia , Linfangiogênese/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fator D de Crescimento do Endotélio Vascular/metabolismo , Fator D de Crescimento do Endotélio Vascular/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/genética , Animais , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Camundongos , Citocinas/metabolismo , Masculino , Feminino , Sistema de Sinalização das MAP Quinases
4.
Plants (Basel) ; 12(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38005725

RESUMO

To look in-depth into the phytochemical and pharmacological properties of Taiwan juniper, this study investigated the chemical profiles and anti-lymphangiogenic activity of Juniperus chinensis var. tsukusiensis. In this study, four new sesquiterpenes, 12-acetoxywiddrol (1), cedrol-13-al (2), α-corocalen-15-oic acid (3), 1,3,5-bisaoltrien-10-hydroperoxy-11-ol (4), one new diterpene, 1ß,2ß-epoxy-9α-hydroxy-8(14),11-totaradiene-3,13-dione (5), and thirty-three known terpenoids were successfully isolated from the heartwood of J. chinensis var. tsukusiensis. The structures of all isolates were determined through the analysis of physical data (including appearance, UV, IR, and optical rotation) and spectroscopic data (including 1D, 2D NMR, and HRESIMS). Thirty-four compounds were evaluated for their anti-lymphangiogenic effects in human lymphatic endothelial cells (LECs). Among them, totarolone (6) displayed the most potent anti-lymphangiogenic activity by suppressing cell growth (IC50 = 6 ± 1 µM) of LECs. Moreover, 3ß-hydroxytotarol (7), 7-oxototarol (8), and 1-oxo-3ß-hydroxytotarol (9) showed moderate growth-inhibitory effects on LECs with IC50 values of 29 ± 1, 28 ± 1, and 45 ± 2 µM, respectively. Totarolone (6) also induced a significant concentration-dependent inhibition of LEC tube formation (IC50 = 9.3 ± 2.5 µM) without cytotoxicity. The structure-activity relationship discussion of aromatic totarane-type diterpenes against lymphangiogenesis of LECs is also included in this study. Altogether, our findings unveiled the promising potential of J. chinensis var. tsukusiensis in developing therapeutics targeting tumor lymphangiogenesis.

5.
Pharmacol Res ; 197: 106945, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37797662

RESUMO

Multidrug resistance (MDR) is a major challenge in cancer chemotherapy. Nanoparticles as drug delivery systems (DDSs) show promise for MDR cancer therapy. However, current DDSs require sophisticated design and construction based on xenogeneic nanomaterials, evoking feasibility and biocompatibility concerns. Herein, a simple but versatile biological DDS (bDDS) composed of human red blood cell (RBC)-derived vesicles (RDVs) with excellent biocompatibility was surface-linked with doxorubicin (Dox) using glutaraldehyde (glu) to form Dox-gluRDVs that remarkably suppressed MDR in uterine sarcoma through a lysosomal-mitochondrial axis-dependent cell death mechanism. Dox-gluRDVs can efficiently deliver and accumulate Dox in lysosomes, bypassing drug efflux transporters and facilitating cellular uptake and retention of Dox in drug-resistant MES-SA/Dx5 cells. The transfer of lysosomal calcium to the mitochondria during mitochondria-lysosome contact due to lysosomal Dox accumulation may result in mitochondrial ROS overproduction, mitochondrial membrane potential loss, and activation of apoptotic signaling for the superior anti-MDR activity of Dox-gluRDVs in vitro and in vivo. This work highlights the great promise of RDVs to serve as a bDDS of Dox to overcome MDR cancers but also opens up a reliable strategy for lysosomal-mitochondrial axis-dependent cell death for fighting against other inoperable cancers.


Assuntos
Neoplasias , Humanos , Preparações Farmacêuticas , Morte Celular , Lisossomos , Mitocôndrias , Eritrócitos , Doxorrubicina/farmacologia
6.
Biochem Pharmacol ; 218: 115853, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37832794

RESUMO

Osteosarcoma is a malignant tumor with high metastatic potential, such that the overall 5-year survival rate of patients with metastatic osteosarcoma is only 20%. Therefore, it is necessary to unravel the mechanisms of osteosarcoma metastasis to identify predictors of metastasis by which to develop new therapies. Fibroblast growth factor 2 (FGF2) is a growth factor involved in embryonic development, cell migration, and proliferation. The overexpression of FGF2 and FGF receptors (FGFRs) has been shown to enhance cancer cell proliferation in lung, breast, gastric, and prostate cancers as well as melanoma. Nonetheless, the roles of FGF2 and FGFRs in human osteosarcoma cells remain unknown. In the present study, we found that FGF2 was overexpressed in human osteosarcoma sections and correlated with lung metastasis. Treatment of FGF2 induced migration activity, invasion activity, and intercellular adhesion molecule (ICAM)-1 expression in osteosarcoma cells. In particular, the downregulation or antagonism of FGFR1-4 suppressed FGF2-induced ICAM-1 expression and cancer cell migration. Furthermore, FGFR1, FGFR2, FGFR3, and FGFR4 were involved in FGF2-induced the phospholipase Cß/protein kinase Cα/proto-oncogene c-Src signaling pathway and triggered c-Jun nuclear translocation. Subsequent c-Jun upregulation of activator protein-1 transcription activity on the ICAM-1 promoter led to an increased migration of osteosarcoma cells. Moreover, the knockdown of endogenous FGF2 suppressed ICAM-1 expression and migration of osteosarcoma cells. These findings suggest that FGF2/FGFR1-4 signaling promotes metastasis via its direct downstream target gene ICAM-1, revealing a novel potential therapeutic target for osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Masculino , Neoplasias Ósseas/genética , Fator 2 de Crescimento de Fibroblastos/genética , Molécula 1 de Adesão Intercelular , Osteossarcoma/genética , Osteossarcoma/patologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais
7.
Free Radic Biol Med ; 208: 833-845, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37776916

RESUMO

The incidence rate of colorectal cancer (CRC) has been increasing and poses severe threats to human health worldwide and developing effective treatment strategies remains an urgent task. In this study, Chaetoglobosin A (ChA), an endophytic fungal metabolite from the medicinal herb-derived fungus Chaetomium globosum Km1126, was identified as a potent and selective antitumor agent in human CRC. ChA induced growth inhibition of CRC cells in a concentration-dependent manner but did not impair the viability of normal colon cells. ChA triggered mitochondrial intrinsic and caspase-dependent apoptotic cell death. In addition, apoptosis antibody array analysis revealed that expression of Heme oxygenase-1 (HO-1) was significantly increased by ChA. Inhibition of HO-1 increased the sensitivity of CRC cells to ChA, suggesting HO-1 may play a protective role in ChA-mediated cell death. ChA induced cell apoptosis via the induction of reactive oxygen species (ROS) and ROS scavenger (NAC) prevented ChA-induced cell death, mitochondrial dysfunction, and HO-1 activation. ChA promoted the activation of c-Jun N-terminal kinase (JNK), and co-administration of JNK inhibitor or siRNA markedly reversed ChA-mediated apoptosis. ChA significantly decreased the tumor growth without eliciting any organ toxicity or affecting the body weight of the CRC xenograft mice. This is the first study to demonstrate that ChA exhibits promising anti-cancer properties against human CRC both in vitro and in vivo. ChA is a potential therapeutic agent worthy of further development in clinical trials for cancer treatment.


Assuntos
Neoplasias Colorretais , Heme Oxigenase-1 , Humanos , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Apoptose , Neoplasias Colorretais/metabolismo , Mitocôndrias/metabolismo , Linhagem Celular Tumoral
8.
Aging (Albany NY) ; 15(11): 4774-4793, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286356

RESUMO

Lymph node metastasis is a recognized prognostic factor in esophageal cancer. Adipokines, including visfatin, and the molecule vascular endothelial growth factor (VEGF)-C, are implicated in lymphangiogenesis, but whether any association exists between esophageal cancer, adipokines and VEGF-C is unknown. We examined the relevance of adipokines and VEGF-C in esophageal squamous cell carcinoma (ESCC) in the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. We found significantly higher levels of visfatin and VEGF-C expression in esophageal cancer tissue than in normal tissue. Immunohistochemistry (IHC) staining identified that higher levels of visfatin and VEGF-C expression were correlated with advanced stage ESCC. Visfatin treatment of ESCC cell lines upregulated VEGF-C expression and VEGF-C-dependent lymphangiogenesis in lymphatic endothelial cells. Visfatin induced increases in VEGF-C expression by activating the mitogen-activated protein kinase kinases1/2-extracellular signal-regulated kinase (MEK1/2-ERK) and Nuclear Factor Kappa B (NF-κB) signaling cascades. Transfecting ESCC cells with MEK1/2-ERK and NF-κB inhibitors (PD98059, FR180204, PDTC, and TPCK) and siRNAs inhibited visfatin-induced increases in VEGF-C expression. It appears that visfatin and VEGF-C are promising therapeutic targets in the inhibition of lymphangiogenesis in esophageal cancer.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , NF-kappa B/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Linfangiogênese/genética , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Fator A de Crescimento do Endotélio Vascular , Adipocinas
10.
Eur J Pharmacol ; 951: 175770, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37209940

RESUMO

Prostate cancer metastasis is associated with poor prognosis and is difficult to treat clinically. Numerous studies have shown that Asiatic Acid (AA) has antibacterial, anti-inflammatory, and antioxidant effects. However, the effect of AA on prostate cancer metastasis is still unclear. This purpose of this study is to investigate the effect of AA on prostate cancer metastasis and to better understand its molecular mechanisms of action. Our results indicate that AA ≤ 30 µM did not influence cell viability and cell cycle distribution in PC3, 22Rv1 and DU145 cells. AA inhibited the migratory and invasive capabilities of three prostate cancer cells to be due to its effects on Snail, but did not have activity on Slug. We observed that AA inhibited the Myeloid zinc finger 1 (MZF-1) and ETS Like-1 (Elk-1) protein interaction and affected the complex's binding capacity to the Snail promoter region, ultimately blocking Snail transcription activity. Kinase cascade analysis revealed that phosphorylation of MEK3/6 and p38MAPK was inhibited by AA treatment. Moreover, knockdown of p38MAPK enhanced AA-suppressed protein levels of MZF-1, Elk-1, and Snail, suggesting that p38MAPK influences prostate cancer cell metastasis. These results provide promise for AA as a future candidate in the development of drug therapies to prevent or treat prostate cancer metastasis.


Assuntos
Neoplasias da Próstata , Transdução de Sinais , Masculino , Humanos , Linhagem Celular Tumoral , Neoplasias da Próstata/patologia , Fatores de Transcrição da Família Snail , Movimento Celular
11.
Biochem Pharmacol ; 210: 115472, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36863615

RESUMO

New therapeutic approaches are needed for metastatic osteosarcoma (OS), as survival rates remain low despite surgery and chemotherapy. Epigenetic changes, such as histone H3 methylation, play key roles in many cancers including OS, although the underlying mechanisms are not clear. In this study, human OS tissue and OS cell lines displayed lower levels of histone H3 lysine trimethylation compared with normal bone tissue and osteoblast cells. Treating OS cells with the histone lysine demethylase inhibitor 5-carboxy-8-hydroxyquinoline (IOX-1) dose-dependently increased histone H3 methylation and inhibited cellular migratory and invasive capabilities, suppressed matrix metalloproteinase expression, reversed epithelial-to-mesenchymal transition by increasing levels of epithelial markers E-cadherin and ZO-1 and decreasing the expression of mesenchymal markers N-cadherin, vimentin, and TWIST, and also reduced stemness properties. An analysis of cultivated MG63 cisplatin-resistant (MG63-CR) cells revealed lower histone H3 lysine trimethylation levels compared with levels in MG63 cells. Exposing MG63-CR cells to IOX-1 increased histone H3 trimethylation and ATP-binding cassette transporter expression, potentially sensitizing MG63-CR cells to cisplatin. In conclusion, our study suggests that histone H3 lysine trimethylation is associated with metastatic OS and that IOX-1 or other epigenetic modulators present promising strategies to inhibit metastatic OS progression.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Histonas/metabolismo , Lisina/metabolismo , Cisplatino/farmacologia , Osteossarcoma/tratamento farmacológico , Neoplasias Ósseas/tratamento farmacológico
12.
Aging (Albany NY) ; 15(5): 1652-1667, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36917086

RESUMO

Lung cancer is an extremely common cancer and metastatic lung cancer has a greatly low survival rate. Lymphangiogenesis is essential for the development and metastasis of lung cancer. The adipokine angiopoietin-like protein 2 (ANGPTL2) regulates tumor progression and metastasis, although the functions of ANGPTL2 in lung cancer are unknown. Analysis of data from TCGA genomics program, the GEPIA web server and the Oncomine database revealed that higher levels of ANGPTL2 expression were correlated with progressive disease and lymph node metastasis. ANGPTL2 enhanced VEGF-A-dependent lymphatic endothelial cell (LEC) tube formation and migration. Integrin α5ß1, p38 and nuclear factor (NF)-κB signaling mediated ANGPTL2-regulated lymphangiogenesis. Importantly, overexpression ANGPTL2 facilitated tumor growth and lymphangiogenesis in vivo. Thus, ANGPTL2 is a promising therapeutic object for treating lung cancer.


Assuntos
Neoplasias Pulmonares , Linfangiogênese , Humanos , Proteína 2 Semelhante a Angiopoietina , Fator A de Crescimento do Endotélio Vascular , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Transdução de Sinais , NF-kappa B/metabolismo , Linhagem Celular Tumoral
13.
Cells ; 12(5)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36899935

RESUMO

Neovascular age-related macular degeneration (AMD) is described as abnormal angiogenesis in the retina and the leaking of fluid and blood that generates a huge, dark, blind spot in the center of the visual field, causing severe vision loss in over 90% of patients. Bone marrow-derived endothelial progenitor cells (EPCs) contribute to pathologic angiogenesis. Gene expression profiles downloaded from the eyeIntegration v1.0 database for healthy retinas and retinas from patients with neovascular AMD identified significantly higher levels of EPC-specific markers (CD34, CD133) and blood vessel markers (CD31, VEGF) in the neovascular AMD retinas compared with healthy retinas. Melatonin is a hormone that is mainly secreted by the pineal gland, and is also produced in the retina. Whether melatonin affects vascular endothelial growth factor (VEGF)-induced EPC angiogenesis in neovascular AMD is unknown. Our study revealed that melatonin inhibits VEGF-induced stimulation of EPC migration and tube formation. By directly binding with the VEGFR2 extracellular domain, melatonin significantly and dose-dependently inhibited VEGF-induced PDGF-BB expression and angiogenesis in EPCs via c-Src and FAK, NF-κB and AP-1 signaling. The corneal alkali burn model demonstrated that melatonin markedly inhibited EPC angiogenesis and neovascular AMD. Melatonin appears promising for reducing EPC angiogenesis in neovascular AMD.


Assuntos
Células Progenitoras Endoteliais , Melatonina , Degeneração Macular Exsudativa , Humanos , Inibidores da Angiogênese , Fator A de Crescimento do Endotélio Vascular , Acuidade Visual
14.
J Food Drug Anal ; 31(4): 696-710, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38526828

RESUMO

Hepatocellular carcinoma (HCC) is the most common form of liver cancer, with the second highest mortality rate in all cancer. Energy reprogramming is one of the hallmarks of cancer, and emerging evidence showed that targeting glycolysis is a promising strategy for HCC treatment. Cryptocaryone has been shown to display promising anti-cancer activity against numerous types of cancer. Previous study also indicated that cryptocaryone induces cytotoxicity by inhibiting glucose transport in cancer cells, but the detailed mechanism still needs to be elucidated. Therefore, this study aimed to investigate the relationship between the anti-cancer effect and glycolytic metabolism of cryptocaryone in human HCC cells. In this study, we found that cryptocaryone potently induced growth inhibition by apoptotic cell death in HCC cells. Cryptocaryone also suppressed the ATP synthesis, lactate production and glycolytic capacity of HCC cells. Mechanistic investigations showed that phosphorylation of Akt and c-Src, as well as the expression of HK1 were impeded by cryptocaryone. Moreover, cryptocaryone markedly increased the expression level of transcription factor FoxO1. Importantly, clinical database analysis confirmed the negative correlation between HK1 and FoxO1. High expression levels of HK-1 were positively correlated with poorer survival in patients with HCCs. These results suggest that cryptocaryone may promote cell apoptosis by inhibiting FoxO1-mediated aerobic glycolysis through Akt and c-Src signaling cascades in human HCC cells. This is the first study to indicate that cryptocaryone exerts anti-cancer property against human HCC cells. Cryptocaryone is a potential natural product worthy of further development into a promising candidate for HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Pironas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Glicólise , Apoptose
15.
Cells ; 11(21)2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36359873

RESUMO

New treatments for chondrosarcoma are extremely important. Chondrosarcoma is a primary malignant bone tumor with a very unfavorable prognosis. High-grade chondrosarcoma has a high potential to metastasize to any organ in the body. Platelet-derived growth factor (PDGF) is a potent angiogenic factor that promotes tumor angiogenesis and metastasis. The adipocytokine visfatin promotes metastatic potential of chondrosarcoma; however, the role of visfatin in angiogenesis in human chondrosarcoma is unclear. We report that the levels of PDGF-C expression were positively correlated with tumor stages, significantly higher than the levels of expression in normal cartilage. Visfatin increased PDGF-C expression and endothelial progenitor cell (EPC) angiogenesis through the PI3K/Akt/mTOR signaling pathway, and dose-dependently down-regulated the synthesis of miR-1264, which targets the 3'-UTR of PDGF-C. Additionally, we discovered inhibition of visfatin or PDGF-C in chondrosarcoma tumors significantly reduced tumor angiogenesis and size. Our results indicate that visfatin inhibits miR-1264 production through the PI3K/Akt/mTOR signaling cascade, and thereby promotes PDGF-C expression and chondrosarcoma angiogenesis. Visfatin may be worth targeting in the treatment of chondrosarcoma angiogenesis.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Células Progenitoras Endoteliais , MicroRNAs , Humanos , Células Progenitoras Endoteliais/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Condrossarcoma/metabolismo , Neovascularização Patológica/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Ósseas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
16.
Biomed Pharmacother ; 153: 113351, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35785707

RESUMO

Trichodermin (TCD), a trichothecene first isolated from marine Trichoderma viride, is an inhibitor of eukaryotic protein synthesis. However, the potential effects of TCD on human oral squamous cell carcinoma (OSCC) cells and the underlying molecular mechanisms remain unknown. In this study, the exposure of OSCC cells (Ca922 and HSC-3 cells) to TCD suppressed cell proliferation assessed using MTT assays and colony formation assays. TCD inhibited the migration and invasion of OSCC cells (Ca922 and HSC-3 cells) through the downregulation of matrix metalloproteinase 9. After treatment of OSCC cells with TCD, the G2/M phase was arrested, caspase-related apoptosis (cleaved caspase-3 and PARP expression) was induced, and the protein level of x-linked inhibitor of apoptosis was reduced. Meanwhile, the TCD-induced cell death was reversed by the pan-caspase inhibitor Z-VAD-FMK. Furthermore, TCD diminished mitochondrial membrane potential, mitochondrial oxidative phosphorylation and glycolytic function in OSCC cells. In addition, TCD decreased the levels of histone deacetylase 2 (HDAC-2) and downstream signaling proteins, including phosphorylated STAT3 and NF-κB. Finally, TCD significantly suppressed tumor growth in a zebrafish OSCC xenotransplantation model. Overall, this evidence demonstrates that TCD is a novel promising strategy for the treatment of OSCCs.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Animais , Apoptose , Carcinoma de Células Escamosas/patologia , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Histona Desacetilase 2 , Humanos , Mitocôndrias/metabolismo , Neoplasias Bucais/patologia , Tricodermina/farmacologia , Peixe-Zebra/metabolismo
17.
Biomedicines ; 10(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35884919

RESUMO

Oral squamous cell carcinoma (OSCC) is a common malignant tumor with a poor prognosis and is a major public health burden in Taiwan. Angiogenesis, the formation of new blood vessels, promotes tumor proliferation, maintenance, and metastasis. Angiopoietin 2 (Angpt2), a mitogen with a strong angiogenic effect, is highly specific to endothelial cells and a key player in angiogenesis. The inflammatory chemokine (C-C motif) ligand 4 (CCL4) is also important in the pathogenesis and progression of cancer. In this study, an analysis of records from The Cancer Genome Atlas (TCGA) database found higher CCL4 expression in oral cancer tissue than in normal healthy tissue. CCL4 treatment of oral cancer cells upregulated Angpt2 expression and stimulated mitogen-activated protein kinase kinase (MEK), extracellular signal-regulated kinase 1/2 (ERK), and signal transducer and activator of transcription 3 (STAT3) phosphorylation. Transfection of oral cancer cells with MEK, ERK, and STAT3 inhibitors and their small interfering RNAs inhibited CCL4-induced promotion of Angpt2 expression and angiogenesis. In a mouse model of OSCC, CCL4-treated cells promoted neovascularization in implanted Matrigel plugs, whereas inhibiting CCL4 expression suppressed Angpt2 expression and angiogenesis. CCL4 shows promise as a new molecular therapeutic target for inhibiting angiogenesis and metastasis in OSCC.

18.
Cell Death Dis ; 13(7): 619, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851582

RESUMO

Checkpoint kinase 2 (CHK2) plays an important role in safeguarding the mitotic progression, specifically the spindle assembly, though the mechanism of regulation remains poorly understood. Here, we identified a novel mitotic phosphorylation site on CHK2 Tyr156, and its responsible kinase JAK2. Expression of a phospho-deficient mutant CHK2 Y156F or treatment with JAK2 inhibitor IV compromised mitotic spindle assembly, leading to genome instability. In contrast, a phospho-mimicking mutant CHK2 Y156E restored mitotic normalcy in JAK2-inhibited cells. Mechanistically, we show that this phosphorylation is required for CHK2 interaction with and phosphorylation of the spindle assembly checkpoint (SAC) kinase Mps1, and failure of which results in impaired Mps1 kinetochore localization and defective SAC. Concordantly, analysis of clinical cancer datasets revealed that deletion of JAK2 is associated with increased genome alteration; and alteration in CHEK2 and JAK2 is linked to preferential deletion or amplification of cancer-related genes. Thus, our findings not only reveal a novel JAK2-CHK2 signaling axis that maintains genome integrity through SAC but also highlight the potential impact on genomic stability with clinical JAK2 inhibition.


Assuntos
Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Serina-Treonina Quinases , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Instabilidade Genômica , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Cinetocoros/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/genética , Mitose/genética , Fosforilação/fisiologia , Fuso Acromático/genética , Fuso Acromático/metabolismo
19.
Biomedicines ; 10(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35625769

RESUMO

Carbonic anhydrase VIII (CAVIII) is a member of the CA family, while CA8 is the oncogene. Here we observed increased expression of CAVIII with high expression in colorectal cancer tissues. CAVIII is also expressed in more aggressive types of human colorectal cancer cells. Upregulated CAVIII expression in SW480 cell lines increased vascular endothelial growth factor (VEGF) and reduced miRNA16-5p. Conversely, knockdown of the CAVIII results in VEGF decline by up-regulated miRNA16-5p. Moreover, the collection of different grades of CAVIII expression CRC cells supernatant co-culture with endothelial progenitor cells (EPCs) promotes the ability of tube formation in soft agar and migration in the Transwell experiment, indicating that CAVIII might facilitate cancer-cell-released VEGF via the inhibition of miRNA16-5p signaling. Furthermore, in the xenograft tumor angiogenesis model, knockdown of CAVIII significantly reduced tumor growth and tumor-associated angiogenesis. Taken together, our results prove that the CAVIII/miR-16-5p signaling pathway might function as a metastasis suppressor in CRC. Targeting CAVIII/miR-16-5p may provide a strategy for blocking its metastasis.

20.
J Hepatocell Carcinoma ; 9: 327-341, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35496076

RESUMO

Objective: Protodioscin (PD), a steroidal saponin, has a diverse pharmacological activity including neuroprotection, male fertility improvement, and cytotoxicity against various cancers cell lines of different origins. However, the effect of PD on hepatocellular carcinoma (HCC) is still unclear. Methods: Cell viability, colony formation and flow cytometry analysis for apoptosis profile, mitochondrial membrane potential endoplasmic reticulum (ER) expansion were employed to determine the effect of PD against HCC cells. Transient transfection of siRNA, immunofluorescent imaging and immunoprecipitation were used to elucidate the anti-cancer mechanism of PD. The in vivo toxicity and efficacy of PD were assessed by a xenograft mouse model. Results: PD induced apoptosis, loss of mitochondrial membrane potential and ER expansion in HCC cells. Either downregulation of Mfn1 or Bak reversed PD-induced apoptosis and loss of mitochondrial membrane potential. Further analysis revealed that Mfn1 and Bak will form a complex with IP3R to facilitate the transfer of Ca2+ from ER to mitochondria and apoptosis. In addition, our tumour xenograft model further verifies the in vivo anti-tumour effect of PD. Conclusion: Our study sheds light on the understanding of the anti-HCC effects of PD and may open new aspects for the development of novel treatment for human hepatocellular carcinoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA