Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Cell Mol Biol Lett ; 29(1): 110, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153986

RESUMO

BACKGROUND: Gastric cancer (GC) is a prevalent malignant tumor, and the RNA-binding protein polypyrimidine tract-binding protein 1 (PTBP1) has been identified as a crucial factor in various tumor types. Moreover, abnormal autophagy levels have been shown to significantly impact tumorigenesis and progression. Despite this, the precise regulatory mechanism of PTBP1 in autophagy regulation in GC remains poorly understood. METHODS: To assess the expression of PTBP1 in GC, we employed a comprehensive approach utilizing western blot, real-time quantitative polymerase chain reaction (RT-qPCR), and bioinformatics analysis. To further identify the downstream target genes that bind to PTBP1 in GC cells, we utilized RNA immunoprecipitation coupled with sequencing (si-PTBP1 RNA-seq). To evaluate the impact of PTBP1 on gastric carcinogenesis, we conducted CCK-8 assays, colony formation assays, and GC xenograft mouse model assays. Additionally, we utilized a transmission electron microscope, immunofluorescence, flow cytometry, western blot, RT-qPCR, and GC xenograft mouse model experiments to elucidate the specific mechanism underlying PTBP1's regulation of autophagy in GC. RESULTS: Our findings indicated that PTBP1 was significantly overexpressed in GC tissues compared with adjacent normal tissues. Silencing PTBP1 resulted in abnormal accumulation of autophagosomes, thereby inhibiting GC cell viability both in vitro and in vivo. Mechanistically, interference with PTBP1 promoted the stability of thioredoxin-interacting protein (TXNIP) mRNA, leading to increased TXNIP-mediated oxidative stress. Consequently, this impaired lysosomal function, ultimately resulting in blockage of autophagic flux. Furthermore, our results suggested that interference with PTBP1 enhanced the antitumor effects of chloroquine, both in vitro and in vivo. CONCLUSION: PTBP1 knockdown impairs GC progression by directly binding to TXNIP mRNA and promoting its expression. Based on these results, PTBP1 emerges as a promising therapeutic target for GC.


Assuntos
Autofagia , Proteínas de Transporte , Ribonucleoproteínas Nucleares Heterogêneas , Estresse Oxidativo , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Neoplasias Gástricas , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Autofagia/genética , Humanos , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Animais , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Estresse Oxidativo/genética , Linhagem Celular Tumoral , Camundongos , Progressão da Doença , Camundongos Nus , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética , Técnicas de Silenciamento de Genes , Camundongos Endogâmicos BALB C , Masculino
2.
Int J Biol Sci ; 20(8): 2833-2859, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38904025

RESUMO

Cellular immunotherapy has emerged as an exciting strategy for cancer treatment, as it aims to enhance the body's immune response to tumor cells by engineering immune cells and designing synthetic molecules from scratch. Because of the cytotoxic nature, abundance in peripheral blood, and maturation of genetic engineering techniques, T cells have become the most commonly engineered immune cells to date. Represented by chimeric antigen receptor (CAR)-T therapy, T cell-based immunotherapy has revolutionized the clinical treatment of hematological malignancies. However, serious side effects and limited efficacy in solid tumors have hindered the clinical application of cellular immunotherapy. To address these limitations, various innovative strategies regarding synthetic cells and molecules have been developed. On one hand, some cytotoxic immune cells other than T cells have been engineered to explore the potential of targeted elimination of tumor cells, while some adjuvant cells have also been engineered to enhance the therapeutic effect. On the other hand, diverse synthetic cellular components and molecules are added to engineered immune cells to regulate their functions, promoting cytotoxic activity and restricting side effects. Moreover, novel bioactive materials such as hydrogels facilitating the delivery of therapeutic immune cells have also been applied to improve the efficacy of cellular immunotherapy. This review summarizes the innovative strategies of synthetic cells and molecules currently available in cellular immunotherapies, discusses the limitations, and provides insights into the next generation of cellular immunotherapies.


Assuntos
Imunoterapia , Humanos , Imunoterapia/métodos , Neoplasias/terapia , Neoplasias/imunologia , Animais , Células Artificiais/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Imunoterapia Adotiva/métodos
3.
G3 (Bethesda) ; 14(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38856093

RESUMO

AlphaMissense identifies 23 million human missense variants as likely pathogenic, but only 0.1% have been clinically classified. To experimentally validate these predictions, chemical mutagenesis presents a rapid, cost-effective method to produce billions of mutations in model organisms. However, the prohibitive costs and limitations in the throughput of whole-genome sequencing (WGS) technologies, crucial for variant identification, constrain its widespread application. Here, we introduce a Tn5 transposase-assisted tagmentation technique for conducting WGS in Caenorhabditis elegans, Escherichia coli, Saccharomyces cerevisiae, and Chlamydomonas reinhardtii. This method, demands merely 20 min of hands-on time for a single-worm or single-cell clones and incurs a cost below 10 US dollars. It effectively pinpoints causal mutations in mutants defective in cilia or neurotransmitter secretion and in mutants synthetically sterile with a variant analogous to the B-Raf Proto-oncogene, Serine/Threonine Kinase (BRAF) V600E mutation. Integrated with chemical mutagenesis, our approach can generate and identify missense variants economically and efficiently, facilitating experimental investigations of missense variants in diverse species.


Assuntos
Caenorhabditis elegans , Transposases , Sequenciamento Completo do Genoma , Animais , Caenorhabditis elegans/genética , Sequenciamento Completo do Genoma/métodos , Transposases/genética , Transposases/metabolismo , Chlamydomonas reinhardtii/genética , Saccharomyces cerevisiae/genética , Escherichia coli/genética
4.
J Transl Med ; 22(1): 507, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802851

RESUMO

BACKGROUND: Gastric cancer (GC) ranks fifth in global cancer incidence and third in mortality rate among all cancer types. Circular RNAs (circRNAs) have been extensively demonstrated to regulate multiple malignant biological behaviors in GC. Emerging evidence suggests that several circRNAs derived from FNDC3B play pivotal roles in cancer. However, the role of circFNDC3B in GC remains elusive. METHODS: We initially screened circFNDC3B with translation potential via bioinformatics algorithm prediction. Subsequently, Sanger sequencing, qRT-PCR, RNase R, RNA-FISH and nuclear-cytoplasmic fractionation assays were explored to assess the identification and localization of circ0003692, a circRNA derived from FNDC3B. qRT-PCR and ISH were performed to quantify expression of circ0003692 in human GC tissues and adjacent normal tissues. The protein-encoding ability of circ0003692 was investigated through dual-luciferase reporter assay and LC/MS. The biological behavior of circ0003692 in GC was confirmed via in vivo and in vitro experiments. Additionally, Co-IP and rescue experiments were performed to elucidate the interaction between the encoded protein and c-Myc. RESULTS: We found that circ0003692 was significantly downregulated in GC tissues. Circ0003692 had the potential to encode a novel protein FNDC3B-267aa, which was downregulated in GC cells. We verified that FNDC3B-267aa, rather than circ0003692, inhibited GC migration in vitro and in vivo. Mechanistically, FNDC3B-267aa directly interacted with c-Myc and promoted proteasomal degradation of c-Myc, resulting in the downregulation of c-Myc-Snail/Slug axis. CONCLUSIONS: Our study revealed that the novel protein FNDC3B-267aa encoded by circ0003692 suppressed GC metastasis through binding to c-Myc and enhancing proteasome-mediated degradation of c-Myc. The study offers the potential applications of circ0003692 or FNDC3B-267aa as therapeutic targets for GC.


Assuntos
Fibronectinas , Metástase Neoplásica , Complexo de Endopeptidases do Proteassoma , Proteínas Proto-Oncogênicas c-myc , RNA Circular , Neoplasias Gástricas , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Fibronectinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Masculino , Proteólise , Camundongos Nus , Sequência de Bases , Movimento Celular/genética , Feminino , Camundongos
5.
ACS Sens ; 9(3): 1545-1554, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38450702

RESUMO

rRNAs are prevalent in living organisms. They are produced in nucleolus and mitochondria and play essential cellular functions. In addition to the primary biofunction in protein synthesis, rRNAs have been recognized as the emerging signaling molecule and drug target for studies on nucleolus morphology, mitochondrial autophagy, and tumor cell malignancy. Currently, only a few rRNA-selective probes have been developed, and most of them encounter the drawbacks of low water solubility, poor nuclear membrane permeability, short emission wavelength, low stability against photobleaching, and high cytotoxicity. These unfavorable properties of rRNA probes limit their potential applications. In the present study, we reported a new rRNA-selective and near-infrared fluorescent turn-on probe, 4MPS-TO, capable of tracking rRNA in live human cancer cells. The real-time monitoring performance in nucleolus morphology and mitochondrial autophagy is demonstrated in HeLa cells. The probe shows great application potential for being used as a rRNA-selective, sensitive, and photostable imaging tool in chemical biology study and drug screening.


Assuntos
Mitofagia , Neoplasias , Humanos , Células HeLa , Corantes Fluorescentes/química , Imagem Óptica/métodos , Autofagia
6.
Transl Oncol ; 42: 101904, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341962

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer, with a highly aggressive phenotype and poor prognosis. RNA binding proteins (RBPs) play crucial roles in post-transcriptional gene regulation and have been implicated in tumorigenesis. RBPs have the potential to become a new therapeutic target for ccRCC. In this study, we screened and validated that insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) as an RBP, was down-regulated in ccRCC tissues and cell lines. Functionally, we verified that IGF2BP2 significantly suppressed the migration and invasion ability of ccRCC in vitro and in vivo. Mechanistically, RIP-seq and actinomycin D experiments results showed that IGF2BP2 enhanced the expression of Creatine Kinase B (CKB) by binding to CKB mRNA and enhancing its mRNA stability. Thus, IGF2BP2 inhibited ccRCC metastasis through enhancing the expression of CKB. Taken together, these finding suggests that IGF2BP2 is a novel metastasis suppressor of ccRCC and may serve as a potential therapeutic target.

7.
Biochem Biophys Res Commun ; 702: 149654, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38340657

RESUMO

Accumulating evidence underscores the pivotal role of envelope proteins in viral secondary envelopment. However, the intricate molecular mechanisms governing this phenomenon remain elusive. To shed light on these mechanisms, we investigated a Golgi-retained gD of EHV-1 (gDEHV-1), distinguishing it from its counterparts in Herpes Simplex Virus-1 (HSV-1) and Pseudorabies Virus (PRV). To unravel the specific sequences responsible for the Golgi retention phenotype, we employed a gene truncation and replacement strategy. The results suggested that Golgi retention signals in gDEHV-1 exhibiting a multi-domain character. The extracellular domain of gDEHV-1 was identified as an endoplasmic reticulum (ER)-resident domain, the transmembrane domain and cytoplasmic tail (TM-CT) of gDEHV-1 were integral in facilitating the protein's residence within the Golgi complex. Deletion or replacement of either of these dual domains consistently resulted in the mutant gDEHV-1 being retained in an ER-like structure. Moreover, (TM-CT)EHV-1 demonstrated a preference for binding to endomembranes, inducing the generation of a substantial number of vesicles, potentially originate from the Golgi complex or the ER-Golgi intermediate compartment. In conclusion, our findings provide insights into the intricate molecular mechanisms governing the Golgi retention of gDEHV-1, facilitating the comprehension of the processes underlying viral secondary envelopment.


Assuntos
Herpesvirus Equídeo 1 , Proteínas do Envelope Viral , Animais , Cavalos , Proteínas do Envelope Viral/química , Herpesvirus Equídeo 1/metabolismo , Complexo de Golgi/metabolismo , Retículo Endoplasmático/metabolismo , Domínios Proteicos
8.
Cells ; 13(2)2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38247832

RESUMO

Gastric cancer (GC) is the most common type of malignant tumor within the gastrointestinal tract, and GC metastasis is associated with poor prognosis. Polypyrimidine tract binding protein 1 (PTBP1) is an RNA-binding protein implicated in various types of tumor development and metastasis. However, the role of PTBP1 in GC metastasis remains elusive. In this study, we verified that PTBP1 was upregulated in GC tissues and cell lines, and higher PTBP1 level was associated with poorer prognosis. It was shown that PTBP1 knockdown in vitro inhibited GC cell migration, whereas PTBP1 overexpression promoted the migration of GC cells. In vivo, the knockdown of PTBP1 notably reduced both the size and occurrence of metastatic nodules in a nude mice liver metastasis model. We identified phosphoglycerate kinase 1 (PGK1) as a downstream target of PTBP1 and found that PTBP1 increased the stability of PGK1 by directly binding to its mRNA. Furthermore, the PGK1/SNAIL axis could be required for PTBP1's function in the promotion of GC cell migration. These discoveries suggest that PTBP1 could be a promising therapeutic target for GC.


Assuntos
Fosfoglicerato Quinase , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Neoplasias Gástricas , Animais , Camundongos , Camundongos Nus , RNA Mensageiro/genética , Proteínas de Ligação a RNA , Neoplasias Gástricas/genética , Humanos , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Fosfoglicerato Quinase/genética
9.
Front Endocrinol (Lausanne) ; 14: 1267252, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027129

RESUMO

Objective: Osteogenesis imperfecta (OI) is a rare genetic disorder. Clinical severity is heterogeneous. The purpose of this study was to investigate the genetic characteristics of a fetus with OI by whole exome sequencing (WES) and identify the cause of the disease. Methods: In this study, a fetus with osteogenic dysplasia was referred to our hospital. DNA was extracted from the aborted fetal tissue and peripheral blood of the parents. To identify the pathogenic genes, we conducted the trio-WES using DNA. A de novo variant in the COL1A1 gene is suspected to be the cause of the OI phenotype. We used Sanger sequencing for validation and various bioinformatics methods (such as SIFT, PolyPhen2, Mutation Taster, conservative analysis, SWISS Model, glycosylation site prediction, and I-Mutant 2.0) for analysis. Results: Both WES and Sanger sequencing identified a novel de novo variant of COL1A1 (c. 1309G>A, p. Gly437Ser) in a fetus with OI. Bioinformatic analysis showed that the affected residue, p. Gly437, was highly conserved in multiple species and predicted that the variant was deleterious and may have an impact on protein function. This variant is present in highly conserved glycine residues of Gly-X-Y sequence repeats of the triple helical region of the collagen type I α chain, which may be the cause of OI. Conclusion: This study revealed that the c.1309G>A (p. Gly437Ser) variant in the COL1A1 gene may be the genetic cause of fetal OI in this case. The discovery of this variant enriched the variation spectrum of OI. WES improves the accurate diagnosis of fetal OI, and doctors can provide patients with appropriate genetic counseling.


Assuntos
Osteogênese Imperfeita , Humanos , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/patologia , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo I/genética , DNA
10.
J Transl Med ; 21(1): 402, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340423

RESUMO

BACKGROUND: Insulin like growth factor II mRNA binding protein 3 (IGF2BP3) is an RNA binding protein with multiple roles in regulation of gene expression at the post-transcriptional level and is implicated in tumorigenesis and progression of numerous cancers including gastric cancer (GC). Circular RNAs (circRNAs) are a diverse endogenous noncoding RNA population that have important regulatory roles in cancer. However, circRNAs that regulate the expression of IGF2BP3 in GC is largely unknown. METHODS: CircRNAs that bound to IGF2BP3 were screened in GC cells using RNA immunoprecipitation and sequencing (RIP-seq). The identification and localization of circular nuclear factor of activated T cells 3 (circNFATC3) were identified using Sanger sequencing, RNase R assays, qRT-PCR, nuclear-cytoplasmic fractionation and RNA-FISH assays. CircNFATC3 expression in human GC tissues and adjacent normal tissues were measured by qRT-PCR and ISH. The biological role of circNFATC3 in GC was confirmed by in vivo and in vitro experiments. Furthermore, RIP, RNA-FISH/IF, IP and rescue experiments were performed to uncover interactions between circNFATC3, IGF2BP3 and cyclin D1 (CCND1). RESULTS: We identified a GC-associated circRNA, circNFATC3, that interacted with IGF2BP3. CircNFATC3 was significantly overexpressed in GC tissues and was positively associated with tumor volume. Functionally, the proliferation of GC cells decreased significantly after circNFATC3 knockdown in vivo and in vitro. Mechanistically, circNFATC3 bound to IGF2BP3 in the cytoplasm, which enhanced the stability of IGF2BP3 by preventing ubiquitin E3 ligase TRIM25-mediated ubiquitination, thereby enhancing the regulatory axis of IGF2BP3-CCND1 and promoting CCND1 mRNA stability. CONCLUSIONS: Our findings demonstrate that circNFATC3 promotes GC proliferation by stabilizing IGF2BP3 protein to enhance CCND1 mRNA stability. Therefore, circNFATC3 is a potential novel target for the treatment of GC.


Assuntos
RNA Circular , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclina D1/genética , Ciclina D1/metabolismo , RNA/genética , Estabilidade de RNA/genética , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Gástricas/patologia , Ubiquitinação
11.
Int Immunopharmacol ; 119: 110166, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37104918

RESUMO

BACKGROUND: Aryl hydrocarbon receptor (AhR) activation promotes intestinal barrier repair and enhances the gut mucosal barrier function in inflammatory bowel diseases (IBD). Spermidine is beneficial in several murine models of IBD and may affect AhR activity. However, the precise effects of spermidine on the intestinal barrier and AhR remain unclear. This study was designed to investigate whether spermidine affects AhR and gut barrier function in IBD models as well as, its underlying mechanism. METHODS: We used dextran sulfate sodium (DSS)- and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced mice, as well as, Caco2 cells incubated with TNF-α and IFN-γ to establish multiple IBD models, followed by spermidine intervention. Alcian blue/Periodic acid-Schiff (AB/PAS) staining, Fluorescein isothiocyanate (FITC)-dextran permeability assay, transepithelial electrical resistance (TER), tight junction protein (TJs) expression, and 16S rRNA scope in situ hybridization were performed to assess intestinal barrier function. AhR expression and the associated pathways were measured. AhR-targeted adeno-associated virus (AAV) and siRNA were used to explore the related molecular mechanisms. RESULTS: Spermidine significantly attenuated the increased intestinal permeability, decreased TER, abnormal distribution of TJs in colitis, and bacterial translocation from the gut tract. Additionally, it significantly increased AhR and Nrf2 expression and inhibited STAT3 phosphorylation. However, the protective effects of spermidine and the related alterations in pathway proteins were largely abolished by the specific inhibition of AhR. CONCLUSION: Our study demonstrated that spermidine rescues intestinal barrier defects in mice with colitis via the AhR-Nrf2 and AhR-STAT3 pathways, providing a potential therapeutic agent for IBD and other conditions associated with dysregulated gut barrier function.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Células CACO-2 , Espermidina/uso terapêutico , Espermidina/metabolismo , Espermidina/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , RNA Ribossômico 16S , Junções Íntimas , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal , Transdução de Sinais , Sulfato de Dextrana/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Fator de Transcrição STAT3/metabolismo
12.
PLoS One ; 18(1): e0280669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36662756

RESUMO

BACKGROUND: Prognostic nutritional index (PNI), as an indicator of nutritional immune status, has been shown to be associated with therapeutic effects and survival of solid tumors. However, the prognostic role of PNI before treatment in human breast cancer (BC) is still not conclusive. Hence, we performed this meta-analysis to assess the value of it in prognosis prediction for BC patients. MATERIALS AND METHODS: We searched PubMed, Embase, Web of Science and EBSCO to identify the studies evaluating the association between PNI and survival such as overall survival (OS), disease-free survival (DFS) of BC, and computed extracted data into hazard ratios (HRs) for OS, DFS and clinicopathological features with STATA 12.0. RESULTS: A total of 2322 patients with BC from 8 published studies were incorporated into this meta-analysis. We discovered that low pretreatment PNI was significantly associated with worse OS, but not with DFS in BC patients. In stratified analyses, the result showed that decreased PNI before treatment was remarkably related with lower 3-year, 5-year, 8-year and 10-year OS, but not with 1-year survival rate in BC. In addition, although reduced PNI could not impact 1-year, 3-year or 5-year DFS, it considerably deteriorated 8-year and 10-year DFS in patients. CONCLUSION: Low pretreatment PNI deteriorated OS, 8-year and 10-year DFS in BC patients, implicating that it is a valuable prognostic index and improving the nutritional immune status may offer a therapeutic strategy for these patients.


Assuntos
Neoplasias da Mama , Avaliação Nutricional , Humanos , Feminino , Prognóstico , Estado Nutricional , Intervalo Livre de Doença
13.
J Immunol Res ; 2022: 8025055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052280

RESUMO

One of the most prevalent malignant primary brain tumors is primary glioma. Although glutathione peroxidase 8 (GPX8) is intimately associated with carcinogenesis, its function in primary gliomas has not yet been thoroughly understood. Here, we leveraged Chinese Glioma Genome Atlas (CGGA), The Cancer Genome Atlas (TCGA), and Genotype-Tissue Expression (GTEx) database to investigate the association between GPX8 and overall survival (OS) of patients with primary gliomas, and our results showed that GPX8 expression was negatively correlated with OS. Moreover, the expression of GPX8 is significantly lower in normal tissue when compared to glioma tissue. According to results of univariate and multivariate analysis from CGGA using R studio, GPX8 is a valuable primary glioma prognostic indicator. Interestingly, high GPX8 expression is correlated positively with the hedgehog and kras signaling pathways and negatively with G2 checkpoint, apoptosis, reactive oxygen species (ROS) pathway, and interferon gamma pathway, which could be beneficial for the proliferation of glioma cells. Furthermore, GPX8 knockdown caused G1 cell cycle arrest, increased cell death, and reduced colony formation in U87MG and U118MG cells. In conclusion, GPX8 is a promising therapeutic target and meaningful prognostic biomarker of primary glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Peroxidases , Apoptose/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Carcinogênese , Glioma/genética , Glioma/metabolismo , Glioma/terapia , Humanos , Peroxidases/genética , Prognóstico
14.
J Exp Clin Cancer Res ; 41(1): 251, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986300

RESUMO

BACKGROUND: Gastric cancer (GC) is one of the most common malignant tumors in China. Circular RNAs (circRNAs) are novel non-coding RNAs with important regulatory roles in cancer progression. IGF2BP3 has been found to play oncogenic roles in various cancers including GC, while the exact mechanism of IGF2BP3 is largely unknown. METHODS: The expression of IGF2BP3 in GC was evaluated by Western Blot and bioinformatics analysis. CircRNA expression profiles were screened via IGF2BP3 RIP-seq in GC. Sanger sequencing, RNase R digestion, nucleo-plasmic separation and RNA-FISH assays were used to detect the existence and expression of circARID1A. RNA ISH assay was employed to test the expression of circARID1A in paraffin-embedded GC tissues. Moreover, the function of circARID1A on cellular proliferation was assessed by CCK-8, plate colony formation, EdU assays and GC xenograft mouse model in vivo. Furthermore, the location or binding of circARID1A, IGF2BP3 protein and SLC7A5 in GC was evaluated by RNA-FISH/IF or RNA pull-down assays. RESULTS: We identified a novel circRNA, circARID1A, that can bind to IGF2BP3 protein. CircARID1A was significantly upregulated in GC tissues compared with noncancerous tissues and positively correlated with tumor length, tumor volume, and TNM stage. CircARID1A knockdown inhibited the proliferation of GC cells in vitro and in vivo and circARID1A played an important role in the oncogenic function of IGF2BP3. Mechanistically, circARID1A served as a scaffold to facilitate the interaction between IGF2BP3 and SLC7A5 mRNA, finally increasing SLC7A5 mRNA stability. Additionally, circARID1A was able to directly bind SLC7A5 mRNA through complementary base-pairing and then formed the circARID1A-IGF2BP3-SLC7A5 RNA-protein ternary complex and promoted the proliferation of GC via regulating AKT/mTOR pathway. CONCLUSIONS: Altogether, our data suggest that circARID1A is involved in the function of IGF2BP3 and GC proliferation, and the circARID1A-IGF2BP3-SLC7A5 axis has the potential to serve as a novel therapeutic target for GC.


Assuntos
MicroRNAs , Neoplasias Gástricas , Animais , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/genética , Camundongos , MicroRNAs/genética , RNA/genética , RNA Circular/genética , RNA Mensageiro , Proteínas de Ligação a RNA , Neoplasias Gástricas/patologia
15.
Clin Transl Med ; 12(7): e994, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35876041

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is a common malignant tumour of the urinary tract. The major causes of poor prognosis are the lack of early diagnosis and metastasis. Accumulating research reveals that circular RNAs (circRNAs) can play key roles in the development and the progression of cancer. However, the role of circRNAs in ccRCC is still uncertain. METHODS: The circRNAs microarray (n = 4) was performed to investigate the circRNAs with differential expression in ccRCC tissues. The candidate circRNA was selected based on the cut-off criteria, such as circRNA expression abundance, circRNA size and the design of divergent primers. The circ-transportin-3 (TNPO3) levels in ccRCC tissues were tested by quantitative real-time (qRT)-PCR (n = 110). The characteristics and subcellular localization of circ-TNPO3 were identified via RNase R assay, qRT-PCR and fluorescence in situ hybridization (FISH). Then, we explored the biological roles of circ-TNPO3 in ccRCC via the function experiments in vitro and in vivo. RNA pull-down, RNA immunoprecipitation, bioinformatic analysis, RNA-FISH assays and rescue assays were applied to validate the interactions between circ-TNPO3, insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) and serpin family H member 1 (SERPINH1) to uncover the underlying molecular mechanisms of circ-TNPO3. RESULTS: We detected the obvious downregulation of circ-TNPO3 in ccRCC compared to matched adjacent normal tissues (n = 110). The lower circ-TNPO3 expression was found in ccRCC patients with distant metastasis, higher World Health Organization/International Society of Urologic Pathologists (WHO/ISUP) grade and more advanced tumour T stage. In vitro and in vivo, circ-TNPO3 significantly suppressed the proliferation and migration of ccRCC cells. Mechanistically, we elucidated that circ-TNPO3 directly bound to IGF2BP2 protein and then destabilized SERPINH1 mRNA. Moreover, IGF2BP2/SERPINH1 axis was responsible for circ-TNPO3's function of inhibiting ccRCC metastasis. Epithelial splicing regulatory protein 1 (ESRP1) was probably involved in the biogenesis of circ-TNPO3. CONCLUSIONS: Circ-TNPO3 can suppress ccRCC progression and metastasis via directly binding to IGF2BP2 protein and destabilizing SERPINH1 mRNA. Circ-TNPO3 may act as a potential target for ccRCC treatment.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP47/genética , Proteínas de Choque Térmico HSP47/metabolismo , Humanos , Hibridização in Situ Fluorescente , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , RNA , RNA Circular/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , beta Carioferinas/genética , beta Carioferinas/metabolismo
16.
Biochem Biophys Res Commun ; 617(Pt 2): 41-47, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35689841

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, with the incidence in men being about twice as compared to women. Gender differences may provide clues for finding key targets that mediate the death of dopaminergic (DA) neurons in PD. Luteinizing hormone (LH), analog of human chorionic gonadotropin (hCG), and their receptor, luteinizing hormone/choriogonadotropin receptor (LHCGR), are associated with the pathogenesis of PD. Movement-related symptoms are partially improved by hCG in PD patients. However, the relationship between hCG and PD, as well as its roles in mediating DA neuronal death, has not been elucidated. In this study, we investigated the potential of hCG as a treatment during PD progression. After establishment of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse models, we found that hCG restored the decrease of LHCGR activity caused by down-regulation of LH in the substantia nigra. Furthermore, the reduction of LHCGR activity led to DA neuronal death through knocking down the LHCGR in DA neurons by AAV-mTH-shRNA. Treatment with hCG alleviated the DA neuronal death induced by MPTP. Finally, hCG exerted neuroprotective effects by inhibiting the activation of glycogen synthase kinase 3 beta (GSK3ß) in our MPTP-induced PD mouse and MPP+-treated SH-SY5Y cell models. Together, these results demonstrate that hCG exerts neuroprotective effects for PD through LHCGR, and the inhibition of GSK3ß activation is involved in this protective effect, suggesting that hCG can be taken as a potential therapeutic for the treatment of PD.


Assuntos
Neuroblastoma , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Gonadotropina Coriônica/farmacologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Feminino , Glicogênio Sintase Quinase 3 beta , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neuroblastoma/patologia , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Substância Negra/patologia
17.
Proc Natl Acad Sci U S A ; 119(25): e2121779119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35704761

RESUMO

Cell surface proteins play essential roles in various biological processes and are highly related to cancer development. They also serve as important markers for cell identity and targets for pharmacological intervention. Despite their great potentials in biomedical research, comprehensive functional analysis of cell surface proteins remains scarce. Here, with a de novo designed library targeting cell surface proteins, we performed in vivo CRISPR screens to evaluate the effects of cell surface proteins on tumor survival and proliferation. We found that Kirrel1 loss markedly promoted tumor growth in vivo. Moreover, KIRREL was significantly enriched in a separate CRISPR screen based on a specific Hippo pathway reporter. Further studies revealed that KIRREL binds directly to SAV1 to activate the Hippo tumor suppressor pathway. Together, our integrated screens reveal a cell surface tumor suppressor involved in the Hippo pathway and highlight the potential of these approaches in biomedical research.


Assuntos
Genes Supressores de Tumor , Via de Sinalização Hippo , Proteínas de Membrana , Neoplasias , Animais , Proliferação de Células/genética , Via de Sinalização Hippo/genética , Proteínas de Membrana/metabolismo , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , Transdução de Sinais
18.
PLoS One ; 17(4): e0265897, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35436305

RESUMO

BACKGROUND: Systemic inflammatory response (SIR) plays important roles in initiation, promotion and progression of tumor. However, the prognostic role of baseline circulating platelet-to-lymphocyte ratio (PLR) (known as a marker of SIR) in human initial stage Ⅳ gastric cancer (GC) remains controversial. Hence, we performed this meta-analysis to assess the value of it in prognosis prediction for these patients. MATERIALS AND METHODS: We searched PubMed, Embase and EBSCO to identify the studies and computed extracted data with STATA 12.0. RESULTS: A total of 3025 patients with initial stage Ⅳ GC from 13 published studies were incorporated into this meta-analysis. We found that elevated baseline circulating PLR was significantly associated with decreased overall survival (OS), but not with progression-free survival (PFS) in stage Ⅳ GC patients. However, in stratified analyses, high PLR was only associated with worse 1-year and 2-year OS, but not with 3-year or 4-year OS; In addition, it was considerably related with reduced 6-month PFS, but not with 1-year or 2-year PFS. Moreover, high PLR markedly correlated with peritoneal metastasis of GC. CONCLUSION: Elevated baseline circulating PLR decreased 1-year OS and 6-month PFS in initial stage Ⅳ GC patients, implicating that it is a valuable prognostic index for these patients and modifying the inflammatory responses may have a potential for effective treatment.


Assuntos
Neoplasias Gástricas , Biomarcadores , Plaquetas/patologia , Humanos , Linfócitos/patologia , Neutrófilos/patologia , Prognóstico , Neoplasias Gástricas/patologia
19.
Ann Transl Med ; 10(4): 192, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35280357

RESUMO

Background: Stereoelectroencephalography (SEEG) has become a common diagnostic method in epilepsy surgery and is found to be safe for a wide range of clinical applications. SEEG combined with radiofrequency thermocoagulation (RF-TC) not only reveals the seizure onset zone by hypothesis, but also acts as a treatment option without any additional cost to institutions and patients. Thus, we analyzed the treatment of the SEEG-guided RF-TC. Methods: This retrospective study analyzed seventeen epileptic patients treated with RF-TC between April 2019 and December 2020. All patients underwent a single round of SEEG-guided RF-TC treatment after more than three habitual seizures were recorded. The demographic characteristics of the patients were retrospectively reviewed. Outcomes were assessed using the Engel classification system. Results: All patients underwent SEEG-guided RF-TC without catastrophic functional damage. Follow-up data of all patients were complete. The number of contacts per patients where RF-TC was applied ranged from 9 to 43 (mean: 17.7±10.2). After RF-TC, the types of anti-epileptic drugs used reduced from 2.4±0.7 to 1.6±0.7. With RF-TC alone, four (23.5%) patients achieved Engel Ia, two (11.8%) patients achieved Engel Ib, one patient underwent resection without seizure at the 5-month follow-up, five patients had a relapse after 3-10 months of seizure freedom, and five patients had recurrence after 1 month. After RF-TC, six patients underwent secondary interventions followed by resection. Overall, 12 patients achieved Engel Ia or Ib, three patients achieved Engel IIa or IIb, and two patients achieved Engel IIIa. There were no Engel IV cases. Conclusions: SEEG-guided RF-TC performed in our institution was found to be a safe ablation procedure for the treatment of drug-resistant focal epilepsy. All patients experienced a reduction in the frequency of seizures after receiving RF-TC. RF-TC can be used as a palliative treatment option for patients with epilepsy who refuse surgery or cannot undergo resection surgery. Recurrence of focal epilepsy after RF-TC can be treated with resection surgery to achieve the seizure-free status.

20.
BMC Oral Health ; 22(1): 34, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35148735

RESUMO

BACKGROUND: An interdisciplinary treatment simulation and smile design before a complex esthetic rehabilitation is important for clinicians' decision-making and patient motivation. Meanwhile, intervention and interaction are necessary for dental specialists in these complex rehabilitations. However, it is difficult to visualize an interdisciplinary treatment plan by using the conventional method, especially when orthognathic surgery is involved, thus hindering communication between dental specialists. This research aims to establish a 3D digital workflow of interdisciplinary treatment simulation to solve this problem. METHODS: An interdisciplinary 3D digital workflow of simulated treatment plan for complex esthetic rehabilitation was established. Eleven patients were enrolled and illustrated with their treatment plans using 3D treatment simulation, as well as 2D digital smile design (DSD) plus wax-up. Visual analogue scales (VAS) were used to rate the intuitiveness, understanding, and satisfaction or help between the two methods by patients and dental specialists. RESULTS: According to the ratings from the patients, 3D treatment simulation showed obvious advantages in the aspects of intuitiveness (9.7 ± 0.5 vs 6.4 ± 1.4) and treatment understanding (9.1 ± 0.8 vs 6.6 ± 1.5), and the satisfaction rates were also higher (9.0 ± 0.6 vs 7.1 ± 1.8). Dental specialists regarded the 3D digital plans as more intuitive (8.9 ± 0.8 vs 5.9 ± 1.0) and useful to understand the plans from the other specialists (8.9 ± 0.7 vs 6.1 ± 1.0) and helpful to their own treatment plans (8.7 ± 0.9 vs 5.9 ± 1.4). CONCLUSIONS: The interdisciplinary 3D digital treatment simulation helps both patients and dental specialists to improve treatment understanding, and facilitates dental specialists for decision-making before complex esthetic rehabilitation. TRIAL REGISTRATION: This study was registered in the National Clinical Trials Registry under the identification number MR-11-20-002862. This is an observational study in which we did not assign the intervention.


Assuntos
Estética Dentária , Sorriso , Simulação por Computador , Desenho Assistido por Computador , Humanos , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA