Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 136: 112338, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38850787

RESUMO

Cardiac fibrosis is a typical feature of cardiac pathological remodeling, which is associated with adverse clinical outcomes and has no effective therapy. Nicotine is an important risk factor for cardiac fibrosis, yet its underlying molecular mechanism remains poorly understood. This study aimed to identify its potential molecular mechanism in nicotine-induced cardiac fibrosis. Our results showed nicotine exposure led to the proliferation and transformation of cardiac fibroblasts (CFs) into myofibroblasts (MFs) by impairing autophagy flux. Through the use of drug affinity responsive target stability (DARTS) assay, cellular thermal shift assay (CETSA), and surface plasmon resonance (SPR) technology, it was discovered that nicotine directly increased the stability and protein levels of lactate dehydrogenase A (LDHA) by binding to it. Nicotine treatment impaired autophagy flux by regulating the AMPK/mTOR signaling pathway, impeding the nuclear translocation of transcription factor EB (TFEB), and reducing the activity of cathepsin B (CTSB). In vivo, nicotine treatment exacerbated cardiac fibrosis induced in spontaneously hypertensive rats (SHR) and worsened cardiac function. Interestingly, the absence of LDHA reversed these effects both in vitro and in vivo. Our study identified LDHA as a novel nicotine-binding protein that plays a crucial role in mediating cardiac fibrosis by blocking autophagy flux. The findings suggest that LDHA could potentially serve as a promising target for the treatment of cardiac fibrosis.


Assuntos
Autofagia , Fibrose , Nicotina , Animais , Autofagia/efeitos dos fármacos , Ratos , Masculino , Ratos Endogâmicos SHR , Transdução de Sinais/efeitos dos fármacos , Miocárdio/patologia , Miocárdio/metabolismo , Lactato Desidrogenase 5/metabolismo , Células Cultivadas , Humanos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Ratos Sprague-Dawley
2.
Redox Biol ; 58: 102540, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36399957

RESUMO

BACKGROUND: s: Hyperhomocysteinemia (HHcy) is one of risk factors for vascular cognitive impairment (VCI). GTP cyclohydrolase 1 (GCH1) deficiency is critical to oxidative stress in vascular dysfunction. The aim of this study was designed to examine whether HHcy induces VCI through GCH1 S-nitrosylation, a redox-related post-translational modification of cysteine. METHODS: The VCI model was induced by feeding mice homocysteine thiolactone (HTL) for 16 consecutive weeks. The cognitive functions were evaluated by step-down avoidance test, passive avoidance step-through task test, and Morris water maze (MWM) test. Protein S-nitrosylation was assayed using a biotin-switch method. RESULTS: In cell-free system, nitric oxide (NO) donor induced GCH1 protein S-nitrosylation and decreased GCH1 activity. In endothelial cells, HTL increased GCH1 S-nitrosylation, reduced tetrahydrobiopterin, and induced oxidative stress, which were attenuated by N-acetyl-cysteine, L-N6-1-Iminoethyl-lysine, mutant of GCH1 cysteine 141 to alanine (MT-GCH1) or gene deletion of inducible NO synthase (iNOS). Further, HTL incubation or iNOS overexpression promoted endothelial cellular senescence, but abolished by exogenous expression of MT-GCH1 or pharmacological approaches including N-acetyl-cysteine, L-sepiapterin, and tempol. In wildtype mice, long-term administration of HTL induced GCH1 S-nitrosylation and vascular stiffness, decreased cerebral blood flow, and damaged the cognitive functions. However, these abnormalities induced by HTL administration were rescued by enforced expression of MT-GCH1 or gene knockout of iNOS. In human subjects, GCH1 S-nitrosylation was increased and cognitive functions were impaired in patients with HHcy. CONCLUSION: The iNOS-mediated nitrosative stress induced by HTL drives GCH1 S-nitrosylation to induce cerebral vascular stiffness and cognitive impairments.


Assuntos
Disfunção Cognitiva , Hiper-Homocisteinemia , Animais , Humanos , Camundongos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Cisteína/metabolismo , Células Endoteliais/metabolismo , GTP Cicloidrolase , Hiper-Homocisteinemia/induzido quimicamente , Hiper-Homocisteinemia/metabolismo , Óxido Nítrico/metabolismo , Estresse Nitrosativo
3.
Iran J Basic Med Sci ; 25(4): 483-488, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35656076

RESUMO

Objectives: Epigallocatechin-3-gallate (EGCG) has a good therapeutic effect on type 2 diabetes mellitus (T2DM). This work was designed to explore EGCG's effectiveness in insulin resistance (IR) and pancreas islet ß-cell function in a rat model of T2DM. Materials and Methods: Eight-week-old male Sprague Dawley rats were randomly divided into 6 groups, including the Control (normal diet), Diabetes (high-sucrose high-fat [HSHF] diet combined with tail vein injection of streptozotocin [STZ] for T2DM induction) and Treatment Diabetic rats which were treated with metformin [500 mg/kg/d] or EGCG [25, 50 or 100 mg/kg/d] intragastric administration for 10 weeks. With the exception of control animals, the other groups were fed the HSHF diet. EGCG's effects on IR and insulin secretion were assessed by measuring body weights, and fasting blood glucose (FBG), postprandial blood glucose (PBG) and insulin levels. The morphological and molecular changes of pancreas islet ß-cells were examined by hematoxylin-eosin (H&E) staining, transmission electron microscopy (TEM) and immunofluorescence. Results: Rats fed the HSHF diet combined with STZ treatment had increased body weights and blood glucose amounts, accompanied by IR and impaired ß-cell function, induced T2DM, and EGCG dose-dependently restored the above indicators. Additionally, EGCG upregulated the pancreatic transcription factors pancreatic duodenal homeobox protein-1 (PDX-1) and musculoaponeurotic fibrosarcoma oncogene homolog A (MafA). Conclusion: These results suggest that EGCG reduces blood glucose amounts, and improve IR and islet ß-cell disorder in T2DM.

4.
Indian J Pharmacol ; 54(2): 118-125, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35546463

RESUMO

OBJECTIVES: This work aimed to determine tert-Butylhydroquinone (TBHQ)'s effects on insulin resistance (IR) and liver steatosis in diabetic animals and to explore the underpinning mechanisms. MATERIALS AND METHODS: Male ApoE-/-mice underwent streptozocin (STZ) administration while receiving a sucrose/fat-rich diet for type 2 diabetes mellitus (T2DM) establishment. This was followed by a 6-week TBHQ administration. Body weight, fasting (FBG) and postprandial (PBG) blood glucose amounts, and insulin concentrations were measured, and the oral glucose tolerance test (OGTT) was carried out. Hematoxylin and eosin (H and E) staining and immunoblot were carried out for assessing histology and protein amounts in the liver tissue samples. In addition, cultured HepG2 cells were administered HClO and insulin for IR induction, and immunoblot was carried out for protein evaluation. Finally, the cells were stained with the Hoechst dye for apoptosis evaluation. RESULTS: The model animals showed T2DM signs, and TBHQ decreased FBG, ameliorated glucose tolerance and reduced liver steatosis in these animals. In addition, TBHQ markedly upregulated AMPKα2, GLUT4 and GSK3 ß, as well as phosphorylated PI3K and AKT in the liver of mice with T2DM. In agreement, TBHQ decreased HClO-and insulin-related IR in cells and suppressed apoptosis through AMPKα2/PI3K/AKT signaling. CONCLUSIONS: TBHQ alleviates IR and liver steatosis in a mouse model of T2DM likely through AMPKα2/PI3K/AKT signaling.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Resistência à Insulina , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Quinase 3 da Glicogênio Sintase/metabolismo , Hidroquinonas , Insulina , Fígado/metabolismo , Masculino , Camundongos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt
5.
Cell Death Discov ; 8(1): 161, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379787

RESUMO

Moderate autophagy can remove damaged proteins and organelles. In some inflammatory diseases, autophagy plays a protective role by inhibiting the NOD-like receptor family pyrin domain containing 3(NLRP3). (Pro)renin receptor (PRR, or ATP6AP2) is a critical component of the V-ATPase required for autophagy. It remains controversial about ATP6AP2 in the pathological process. The impact of ATP6AP2 on NLRP3 inflammasome and autophagic flux remains unknown under pressure overload stress. This research explores the potential link between ATP6AP2, autophagic flux, and NLRP3. There was upregulation of ATP6AP2 from 5-day post-TAC, and this expression remained at a high level until 8-weeks post-TAC in wild mice. Meanwhile, autophagic flux switched from early compensatory activation to blocking in the heart failure phase. NLRP3 activation can be seen at 8-week post-TAC. Adenovirus-mediated knockdown of ATP6AP2(shR-ATP6AP2) accelerated the progress of heart failure. After TAC was induced, shR-ATP6AP2 significantly deteriorated heart function and fibrosis compared with the shR-Scr group. Meanwhile, there was an elevated expression of NLRP3 and autophagic flux blockage. A transgenic mouse(Tg) with cardio-restricted ATP6AP2/(P)RR overexpression was constructed. Although high expression in cardiac tissue, there were no spontaneous functional abnormalities under the basal state. Cardiac function, fibrosis, hypertrophy remained identical to the control TAC group. However, SQSTM1/P62 was reduced, which indicated the relief of autophagic flux blockage. Further, Neonatal rat ventricular myocyte (NRVMs) transfected with shR-ATP6AP2 showed more susceptibility than sh-Scr NRVMs to phenylephrine-induced cell death. More reactive oxygen species (ROS) or mito-ROS accumulated in the shR-ATP6AP2 group when phenylephrine stimulation. Blocking NLRP3 activation in vivo partly rescued cardiac dysfunction and fibrosis. In conclusion, ATP6AP2 upregulation is a compensatory response to pressure overload. If not effectively compensated, it compromises autophagic flux, leads to dysfunctional mitochondria accumulation, further produces ROS to activate NLRP3, eventually accelerates heart failure.

6.
J Cell Mol Med ; 25(1): 27-36, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33128338

RESUMO

The effects of long-term nitrate therapy are compromised due to protein S-Nitrosylation, which is mediated by nitric oxide (NO). This study is to determine the role of Akt S-Nitrosylation in the recovery of heart functions after ischaemia. In recombinant Akt protein and in HEK293 cells, NO donor decreased Akt activity and induced Akt S-Nitrosylation, but was abolished if Akt protein was mutated by replacing cysteine 296/344 with alanine (Akt-C296/344A). In endothelial cells, NO induced Akt S-Nitrosylation, reduced Akt activity and damaged multiple cellular functions including proliferation, migration and tube formation. These alterations were ablated if cells expressed Akt-C296/344A mutant. In Apoe-/- mice, nitroglycerine infusion increased both Akt S-Nitrosylation and infarct size, reduced Akt activity and capillary density, and delayed the recovery of cardiac function in ischaemic hearts, compared with mice infused with vehicle. Importantly, these in vivo effects of nitroglycerine in Apoe-/- mice were remarkably prevented by adenovirus-mediated enforced expression of Akt-C296/344A mutant. In conclusion, long-term usage of organic nitrate may inactivate Akt to delay ischaemia-induced revascularization and the recovery of cardiac function through NO-mediated S-Nitrosylation.


Assuntos
Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Revascularização Miocárdica , Nitratos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Adenoviridae/metabolismo , Sequência de Aminoácidos , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cisteína/metabolismo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Mutação/genética , Neovascularização Fisiológica/efeitos dos fármacos , Óxido Nítrico/metabolismo , Nitroglicerina/farmacologia , Nitroprussiato/farmacologia , Nitrosação
7.
J Cell Mol Med ; 24(5): 3139-3148, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31970902

RESUMO

Macrophage activation participates in the pathogenesis of pulmonary inflammation. As a coenzyme, vitamin B6 (VitB6) is mainly involved in the metabolism of amino acids, nucleic acids, glycogen and lipids. We have previously reported that activation of AMP-activated protein kinase (AMPK) produces anti-inflammatory effects both in vitro and in vivo. Whether VitB6 via AMPK activation prevents pulmonary inflammation remains unknown. The model of acute pneumonia was induced by injecting mice with lipopolysaccharide (LPS). The inflammation was determined by measuring the levels of interleukin-1 beta (IL-1ß), IL-6 and tumour necrosis factor alpha (TNF-α) using real time PCR, ELISA and immunohistochemistry. Exposure of cultured primary macrophages to VitB6 increased AMP-activated protein kinase (AMPK) Thr172 phosphorylation in a time/dose-dependent manner, which was inhibited by compound C. VitB6 downregulated the inflammatory gene expressions including IL-1ß, IL-6 and TNF-α in macrophages challenged with LPS. These effects of VitB6 were mirrored by AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR). However, VitB6 was unable to inhibit LPS-induced macrophage activation if AMPK was in deficient through siRNA-mediated approaches. Further, the anti-inflammatory effects produced by VitB6 or AICAR in LPS-treated macrophages were abolished in DOK3 gene knockout (DOK3-/- ) macrophages, but were enhanced in macrophages if DOK3 was overexpressed. In vivo studies indicated that administration of VitB6 remarkably inhibited LPS-induced both systemic inflammation and acute pneumonia in wild-type mice, but not in DOK3-/- mice. VitB6 prevents LPS-induced acute pulmonary inflammation in mice via the inhibition of macrophage activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Interleucina-1beta/genética , Pneumonia/tratamento farmacológico , Fator de Necrose Tumoral alfa/genética , Vitamina B 6/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Modelos Animais de Doenças , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Ativação de Macrófagos/efeitos dos fármacos , Camundongos , Fosforilação/efeitos dos fármacos , Pneumonia/induzido quimicamente , Pneumonia/genética , Pneumonia/patologia , Transdução de Sinais
8.
J Cell Mol Med ; 24(3): 2319-2329, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31880857

RESUMO

Cardiac fibrosis is a key factor to determine the prognosis in patient with myocardial infarction (MI). The aim of this study is to investigate whether the transcriptional factor paired-related homeobox 2 (Prrx2) regulates Wnt5a gene expression and the role in myocardial fibrosis following MI. The MI surgery was performed by ligation of left anterior descending coronary artery. Cardiac remodelling was assessed by measuring interstitial fibrosis performed with Masson staining. Cell differentiation was examined by analysis the expression of alpha-smooth muscle actin (α-SMA). Both Prrx2 and Wnt5a gene expressions were up-regulated in mice following MI, accompanied with increased mRNA and protein levels of α-SMA, collagen I and collagen III, compared to mice with sham surgery. Adenovirus-mediated gene knock down of Prrx2 increased survival rate, alleviated cardiac fibrosis, decreased infarction sizes and improved cardiac functions in mice with MI. Importantly, inhibition of Prrx2 suppressed ischaemia-induced Wnt5a gene expression and Wnt5a signalling. In cultured cardiac fibroblasts, TGF-ß increased gene expressions of Prrx2 and Wnt5a, and induced cell differentiations, which were abolished by gene silence of either Prrx2 or Wnt5a. Further, overexpression of Prrx2 or Wnt5a mirrored the effects of TGF-ß on cell differentiations of cardiac fibroblasts. Gene silence of Wnt5a also ablated cell differentiations induced by Prrx2 overexpression in cardiac fibroblasts. Mechanically, Prrx2 was able to bind with Wnt5a gene promoter to up-regulate Wnt5a gene expression. In conclusions, targeting Prrx2-Wnt5a signalling should be considered to improve cardiac remodelling in patients with ischaemic heart diseases.


Assuntos
Fibrose/genética , Proteínas de Homeodomínio/genética , Infarto do Miocárdio/genética , Regulação para Cima/genética , Proteína Wnt-5a/genética , Animais , Diferenciação Celular/genética , Colágeno Tipo I/genética , Colágeno Tipo III/genética , Fibroblastos/patologia , Regulação da Expressão Gênica/genética , Coração/fisiologia , Masculino , Camundongos , Infarto do Miocárdio/patologia , Miocárdio/patologia , Miofibroblastos/patologia , Regiões Promotoras Genéticas/genética , Transdução de Sinais/genética , Fator de Crescimento Transformador beta1/genética
9.
Clin Pharmacol Ther ; 105(1): 201-209, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29672839

RESUMO

Development of nitrate tolerance is a major drawback to nitrate therapy. Prostacyclin (PGI2) is a powerful vasodilator produced from prostaglandin (PGH2) by prostacyclin synthase (PGIS) in endothelial cells. This study aimed to determine the role of PGIS S-nitrosylation in nitrate tolerance induced by nitroglycerin (GTN). In endothelial cells, GTN increased PGIS S-nitrosylation and disturbed PGH2 metabolism, which were normalized by mutants of PGIS cysteine 231/441 to alanine (C231/441A). Clearance of nitric oxide by carboxy-PTIO or inhibition of S-nitrosylation by N-acetyl-cysteine decreased GTN-induced PGIS S-nitrosylation. Enforced expression of mutated PGIS with C231/441A markedly abolished GTN-induced PGIS S-nitrosylation and nitrate cross-tolerance in Apoe-/- mice. Inhibition of cyclooxygenase 1 by aspirin, supplementation of PGI2 by beraprost, and inhibition of PGIS S-nitrosylation by N-acetyl-cysteine improved GTN-induced nitrate cross-tolerance in rats. In patients, increased PGIS S-nitrosylation was associated with nitrate tolerance. In conclusion, GTN induces nitrate cross-tolerance through PGIS S-nitrosylation at cysteine 231/441.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Tolerância a Medicamentos/fisiologia , Oxirredutases Intramoleculares/metabolismo , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Nitroglicerina/farmacologia , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Animais , Bovinos , Cricetinae , Sistema Enzimático do Citocromo P-450/genética , Relação Dose-Resposta a Droga , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Oxirredutases Intramoleculares/genética , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Vasodilatadores/farmacologia
10.
Int J Cardiol ; 277: 205-211, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30316647

RESUMO

AIMS: The impaired angiogenesis is the major cause of diabetic delayed wound healing. The molecular insight remains unknown. Previous study has shown that high glucose (HG) activates Na+/H+ exchanger 1 (NHE1) and induces intracellular alkalinization, resulting in endothelial dysfunction. The aim of this study is to investigate whether activation of NHE1 in endothelial cells by HG damages the angiogenesis in vitro and in vivo. METHODS AND RESULTS: We used western blot to detect the phosphorylations of both Akt and Girdin, and pH-sensitive BCECF fluorescence to assay NHE1 activity and pHi value, respectively. The angiogenesis was evaluated by measuring the number of tube formation in vitro, and blood perfusion by laser doppler and neovascularization by staining CD31 in vivo. Our results indicated that induction of intracellular acidosis (IA) increased p-Akt and p-Girdin in human umbilical vein endothelial cells (HUVEC). HG activated NHE1 and increased pHi value in a time-dependent manner, associated with the decreased phosphorylations of both Akt and Gridin, while inhibition of NHE1 by amiloride abolished the HG-induced reductions of p-Akt and p-Girdin. However, silence of Akt by siRNA transfection or pharmacological inhibitors (wortmannin and LY294002) bypassed IA-induced Girdin phosphorylation. Overexpression of constitutively active Akt abolished HG-reduced Girdin phosphorylation. In addition, upregulation of Akt or inhibition of NHE1 remarkably attenuated HG-impaired tube formation in HUVEC. In vivo study revealed that amiloride dramatically rescued hyperglycemia-delayed blood perfusion and neovascularization by augmenting ischemia-induced angiogenesis. CONCLUSION: IA promotes ischemia-induced angiogenesis via Akt-dependent Girdin phosphorylation in diabetic mice.


Assuntos
Acidose/metabolismo , Hiperglicemia/metabolismo , Isquemia/metabolismo , Proteínas dos Microfilamentos/metabolismo , Neovascularização Patológica/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Acidose/patologia , Animais , Membro Posterior/irrigação sanguínea , Membro Posterior/metabolismo , Membro Posterior/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hiperglicemia/patologia , Líquido Intracelular/metabolismo , Isquemia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/patologia , Transdução de Sinais/fisiologia
11.
J Mol Med (Berl) ; 96(5): 403-412, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29502204

RESUMO

Diabetes mellitus is one of risk factors of cardiovascular diseases including atherosclerosis. Whether and how diabetes promotes the formation of unstable atherosclerotic plaque is not fully understood. Here, we show that streptozotocin-induced type 1 diabetes reduced collagen synthesis, leading to the formation of unstable atherosclerotic plaque induced by collar placement around carotid in apolipoprotein E knockout (Apoe-/-) mice. These detrimental effects of hyperglycemia on plaque stability were reversed by metformin in vivo without altering the levels of blood glucose and lipids. Mechanistically, we found that high glucose reduced the phosphorylated level of AMP-activated protein kinase alpha (AMPKα) and the transcriptional activity of activator protein 2 alpha (AP-2α), increased the expression of miR-124 expression, and downregulated prolyl-4-hydroxylase alpha 1 (P4Hα1) protein expression and collagen biosynthesis in cultured vascular smooth muscle cells. Importantly, these in vitro effects produced by high glucose were abolished by AMPKα pharmacological activation or adenovirus-mediated AMPKα overexpression. Further, adenovirus-mediated AMPKα gain of function remitted the process of diabetes-induced plaque destabilization in Apoe-/- mice injected with streptozotocin. Administration of metformin enhanced pAP-2α level, reduced miR-124 expression, and increased P4Hα1 and collagens in carotid atherosclerotic plaque in diabetic Apoe-/- mice. We conclude that streptozotocin-induced toxic diabetes promotes the formation of unstable atherosclerotic plaques based on the vulnerability index in Apoe-/- mice, which is related to the inactivation of AMPKα/AP-2α/miRNA-124/P4Hα1 axis. Clinically, targeting AMPKα/AP-2α/miRNA-124/P4Hα1 signaling should be considered to increase the plaque stability in patients with atherosclerosis. KEY MESSAGES: Hyperglycemia reduced collagen synthesis, leading to the formation of unstable atherosclerotic plaque induced by collar placement around carotid in apolipoprotein E knockout mice. Hyperglycemia destabilizes atherosclerotic plaque in vivo through an AMPKα/AP-2α/miRNA-124/P4Hα1-dependent collagen synthesis. Metformin functions as a stabilizer of atherosclerotic plaque to reduce acute coronary accent.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , MicroRNAs/metabolismo , Placa Aterosclerótica/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Fator de Transcrição AP-2/metabolismo , Animais , Colágeno Tipo I/metabolismo , Colágeno Tipo II/metabolismo , Hipoglicemiantes/farmacologia , Masculino , Metformina/farmacologia , Camundongos Knockout para ApoE , Miócitos de Músculo Liso/metabolismo
12.
J Diabetes Res ; 2016: 1748065, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26881239

RESUMO

Backgrounds. VitB6 deficiency has been associated with a number of adverse health effects. However, the effects of VitB6 in metabolic syndrome are poorly understood. Methods. VitB6 (50 mg/kg/day) was given to Apoe (-/-) mice with hkdigh-fat diet (HFD) for 8 weeks. Endothelial dysfunction, insulin resistance, and hepatic lipid contents were determined. Results. VitB6 administration remarkably increased acetylcholine-induced endothelium-dependent relaxation and decreased random blood glucose level in Apoe (-/-) mice fed with HFD. In addition, VitB6 improved the tolerance of glucose and insulin, normalized the histopathology of liver, and reduced hepatic lipid accumulation but did not affect the liver functions. Clinical and biochemical analysis indicated that the levels of VitB6 were decreased in patients with fatty liver. Conclusions. Vitamin B6 prevents endothelial dysfunction, insulin resistance, and hepatic lipid accumulation in Apoe (-/-) mice fed with HFD. Supplementation of VitB6 should be considered to prevent metabolic syndrome.


Assuntos
Apolipoproteínas E/fisiologia , Endotélio Vascular/efeitos dos fármacos , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Vitamina B 6/farmacologia , Animais , Dieta Hiperlipídica , Endotélio Vascular/fisiologia , Proteína Forkhead Box O1 , Transportador de Glucose Tipo 4 , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/etiologia , Vitamina B 6/sangue
13.
J Diabetes Res ; 2016: 1802036, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26697498

RESUMO

It has been recognized that sodium hydrogen exchanger 1 (NHE1) is involved in the development of diabetic nephropathy. The role of NHE1 in kidney dysfunction induced by advanced glycation end products (AGEs) remains unknown. Renal damage was induced by AGEs via tail vein injections in rats. Function and morphology of kidney were determined. Compared to vehicle- or BSA-treated rats, AGEs caused abnormalities of kidney structures and functions in rats, accompanied with higher MDA level and lower GSH content. Gene expressions of NHE1 gene and TGF-ß1 in the renal cortex and urine were also increased in AGEs-injected rats. Importantly, all these detrimental effects induced by AGEs were reversed by inhibition of NHE1 or suppression of oxidative stress. These pieces of data demonstrated that AGEs may activate NHE1 to induce renal damage, which is related to TGF-ß1.


Assuntos
Produtos Finais de Glicação Avançada/farmacologia , Rim/efeitos dos fármacos , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Rim/metabolismo , L-Lactato Desidrogenase/metabolismo , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
14.
J Cell Mol Med ; 19(11): 2607-16, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26177349

RESUMO

Berberine, as an alkaloid found in many Chinese herbs, improves vascular functions in patients with cardiovascular diseases. We determined the effects of berberine in hypertension and vascular ageing, and elucidated the underlying mechanisms. In isolated aortas, berberine dose-dependently elicited aortic relaxation. In cultured cells, berberine induced the relaxation of vascular smooth muscle cells (VSMCs). Overexpression of transient receptor potential vanilloid 4 (TRPV4) channel by genetic approaches abolished the berberine-induced reduction in intracellular Ca(2+) concentration in VSMCs and attenuated berberine-elicited vessel dilation in mice aortas. In deoxycorticosterone acetate (DOCA)-induced hypertensive model, treatment of mice with berberine or RN-1734, a pharmacological inhibitor of TRPV4, significantly decreased systemic blood pressure (BP) in control mice or mice infected with an adenovirus vector. However, berberine-induced effects of lowering BP were reversed by overexpressing TRPV4 in mice by infecting with adenovirus. Furthermore, long-term administration of berberine decreased mean BP and pulse BP, increased artery response to vasodilator and reduced vascular collagen content in aged mice deficient in apolipoprotein E (Apoe-KO), but not in Apoe-KO old mice with lentivirus-mediated overexpression of TRPV4 channel. In conclusion, berberine induces direct vasorelaxation to lower BP and reduces vascular stiffness in aged mice through suppression of TRPV4.


Assuntos
Berberina/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Rigidez Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Berberina/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Doenças Cardiovasculares/tratamento farmacológico , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Camundongos , Técnicas de Cultura de Órgãos , Rigidez Vascular/fisiologia , Vasodilatação/fisiologia
15.
PLoS One ; 9(3): e90096, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24594984

RESUMO

OBJECTIVES: MicroRNA-7 (miR-7) is highly connected to cancerous cell proliferation and metastasis. It is also involved in myocardial ischemia-reperfusion (I/R) injury and is upregulated in cardiomyocyte under simulated I/R (SI/R). We aimed to investigate the role of miR-7 during myocardial I/R injury in vitro and in vivo and a possible gene target. METHODS AND RESULTS: Real-time PCR revealed that miR-7a/b expression was upregulated in H9c2 cells after SI/R. Flow cytometry showed SI/R-induced cell apoptosis was decreased with miR-7a/b mimic transfection but increased with miR-7a/b inhibitor in H9c2 cells. In a rat cardiac I/R injury model, infarct size determination and TUNEL assay revealed that miR-7a/b mimic decreased but miR-7a/b inhibitor increased cardiac infarct size and cardiomyocyte apoptosis as compared with controls. We previously identified an important gene connected with cell apoptosis--poly(ADP-ribose) polymerase (PARP)--as a candidate target for miR-7a/b and verified the target by luciferase reporter activity assay and western blot analysis. CONCLUSIONS: miR-7a/b is sensitive to I/R injury and protects myocardial cells against I/R-induced apoptosis by negatively regulating PARP expression in vivo and in vitro. miR-7a/b may provide a new therapeutic approach for treatment of myocardial I/R injury. Poly(ADP-ribose) polymerase.


Assuntos
MicroRNAs/fisiologia , Miócitos Cardíacos/patologia , Poli(ADP-Ribose) Polimerases/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases , Linhagem Celular , Humanos , Marcação In Situ das Extremidades Cortadas , Miócitos Cardíacos/enzimologia , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
J Transl Med ; 6: 55, 2008 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-18834541

RESUMO

BACKGROUND: High resistance to drug is taken as a characteristic of human tumors, which is usually mediated by multidrug resistance-associated genes. ABCC2, an ATP-binding cassette multidrug resistance transporter, is found to be expressed in a variety of human cancers. In this study the effect of a RNAi construct targeting ABCC2 on the chemosensitivity of NPC cell line CNE2 against cisplatin was investigated. METHODS: Lentiviral vectors were constructed to allow an efficient expression of anti-ABCC2 siRNA. The effective target sequence comprised nucleotides 1707-1727 of the human ABCC2 mRNA. The cell clones expressing the construct were picked and expanded, followed by identification using qRT-PCR and western blot method. As control, lentiviral vector containing invalid RNAi sequence was transfected to CNE2 cells. In vitro, cellular accumulation of cisplatin was detected by HPLC. The capacity of cellular growth and sensitivity of cells against cisplatin were detected by MTT assay. In vivo, the sensitivity of the tumor tissues against cisplatin were evaluated by transplanted CNE2 nude mice model. RESULTS: Two CNE2 cell clones with reduced expression of targeted ABCC2 mRNA and protein for more than 70% by qRT-PCR and western blot were established, and no differences were shown in proliferation rates compared to control CNE2 cells by growth curves analysis. In vitro the accumulation of intracellular cisplatin in these CNE2 cell clones with reduced expression of ABCC2 increased markedly, accompanied by increased sensitivity against cisplatin. In vivo, the growth of CNE2 solid tumors with a stably transfected anti-ABCC2 siRNA construct was significantly inhibited by cisplatin in transplanted nude mice model. CONCLUSION: Our investigation demonstrated that lentivirus-mediated RNAi silencing targeting ABCC2 might reverse the ABCC2-related drug resistance of NPC cell line CNE2 against cisplatin.


Assuntos
Cisplatino/farmacologia , Lentivirus/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/deficiência , Neoplasias Nasofaríngeas/patologia , Interferência de RNA/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Neoplasias Nasofaríngeas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA