Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Int Immunopharmacol ; 134: 112197, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38733826

RESUMO

BACKGROUND: In China, CRC incidence is escalating. The main hurdles are heterogeneity and drug resistance. This research delves into cellular senescence in CRC, aiming to devise a prognostic model and pinpoint mechanisms impacting drug resistance. METHODS: Mendelian randomization (MR) analysis confirmed the association between CRC and cellular aging. The Cancer Genome Atlas (TCGA)-CRC data served as the training set, with GSE38832 and GSE39582 as validation sets. Various bioinformatics methods were employed to construct and validate a risk model. CRC cells with NADPH Oxidase 4 (NOX4) knockout were generated using CRISPR-Cas9 technology. Protein blotting and colony formation assays elucidated the role of NOX4 in CRC cell aging and drug resistance. RESULTS: A prognostic model, derived from dataset analysis, uncovered a link between high-risk groups and cancer progression. Notable differences in the tumor microenvironment were observed between risk groups. Finally, NOX4 was found to be linked with aging and drug resistance in CRC. CONCLUSION: This research presents a novel senescence-based CRC prognosis model. It identifies NOX4's role in CRC drug resistance, suggesting it is a potential treatment target.

2.
BMC Cancer ; 24(1): 516, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654221

RESUMO

BACKGROUND: Numerous studies have indicated that cancer-associated fibroblasts (CAFs) play a crucial role in the progression of colorectal cancer (CRC). However, there are still many unknowns regarding the exact role of CAF subtypes in CRC. METHODS: The data for this study were obtained from bulk, single-cell, and spatial transcriptomic sequencing data. Bioinformatics analysis, in vitro experiments, and machine learning methods were employed to investigate the functional characteristics of CAF subtypes and construct prognostic models. RESULTS: Our study demonstrates that Biglycan (BGN) positive cancer-associated fibroblasts (BGN + Fib) serve as a driver in colorectal cancer (CRC). The proportion of BGN + Fib increases gradually with the progression of CRC, and high infiltration of BGN + Fib is associated with poor prognosis in terms of overall survival (OS) and recurrence-free survival (RFS) in CRC. Downregulation of BGN expression in cancer-associated fibroblasts (CAFs) significantly reduces migration and proliferation of CRC cells. Among 101 combinations of 10 machine learning algorithms, the StepCox[both] + plsRcox combination was utilized to develop a BGN + Fib derived risk signature (BGNFRS). BGNFRS was identified as an independent adverse prognostic factor for CRC OS and RFS, outperforming 92 previously published risk signatures. A Nomogram model constructed based on BGNFRS and clinical-pathological features proved to be a valuable tool for predicting CRC prognosis. CONCLUSION: In summary, our study identified BGN + Fib as drivers of CRC, and the derived BGNFRS was effective in predicting the OS and RFS of CRC patients.


Assuntos
Biglicano , Fibroblastos Associados a Câncer , Neoplasias Colorretais , Aprendizado de Máquina , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/metabolismo , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Prognóstico , Biglicano/metabolismo , Biglicano/genética , Proliferação de Células , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Masculino , Regulação Neoplásica da Expressão Gênica , Feminino , Movimento Celular , Microambiente Tumoral
3.
BMC Med Genomics ; 17(1): 88, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627714

RESUMO

BACKGROUND: Liver cancer ranks sixth in incidence and third in mortality globally and hepatocellular carcinoma (HCC) accounts for 90% of it. Hypoxia, glycolysis, and lactate metabolism have been found to regulate the progression of HCC separately. However, there is a lack of studies linking the above three to predict the prognosis of HCC. The present study aimed to identify a hypoxia-glycolysis-lactate-related gene signature for assessing the prognosis of HCC. METHODS: This study collected 510 hypoxia-glycolysis-lactate genes from Molecular Signatures Database (MSigDB) and then classified HCC patients from TCGA-LIHC by analyzing their hypoxia-glycolysis-lactate genes expression. Differentially expressed genes (DEGs) were screened out to construct a gene signature by LASSO-Cox analysis. Univariate and multivariate regression analyses were used to evaluate the independent prognostic value of the gene signature. Analyses of immune infiltration, somatic cell mutations, and correlation heatmap were conducted by "GSVA" R package. Single-cell analysis conducted by "SingleR", "celldex", "Seurat", and "CellCha" R packages revealed how signature genes participated in hypoxia/glycolysis/lactate metabolism and PPI network identified hub genes. RESULTS: We classified HCC patients from TCGA-LIHC into two clusters and screened out DEGs. An 18-genes prognostic signature including CDCA8, CBX2, PDE6A, MED8, DYNC1LI1, PSMD1, EIF5B, GNL2, SEPHS1, CCNJL, SOCS2, LDHA, G6PD, YBX1, RTN3, ADAMTS5, CLEC3B, and UCK2 was built to stratify the risk of HCC. The risk score of the hypoxia-glycolysis-lactate gene signature was further identified as a valuable independent factor for estimating the prognosis of HCC. Then we found that the features of clinical characteristics, immune infiltration, somatic cell mutations, and correlation analysis differed between the high-risk and low-risk groups. Furthermore, single-cell analysis indicated that the signature genes could interact with the ligand-receptors of hepatocytes/fibroblasts/plasma cells to participate in hypoxia/glycolysis/lactate metabolism and PPI network identified potential hub genes in this process: CDCA8, LDHA, YBX1. CONCLUSION: The hypoxia-glycolysis-lactate-related gene signature we built could provide prognostic value for HCC and suggest several hub genes for future HCC studies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ácido Láctico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Prognóstico , Hipóxia , Proteínas do Olho , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6 , Dineínas do Citoplasma
4.
Cell Signal ; 118: 111134, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38484942

RESUMO

Colorectal cancer (CRC) is one of the most common malignant tumors with complex molecular regulatory mechanisms. Alternative splicing (AS), a fundamental regulatory process of gene expression, plays an important role in the occurrence and development of CRC. This study analyzed AS Percent Spliced In (PSI) values from 49 pairs of CRC and normal samples in the TCGA SpliceSeq database. Using Lasso and SVM, AS features that can differentiate colorectal cancer from normal were screened. Univariate COX regression analysis identified prognosis-related AS events. A risk model was constructed and validated using machine learning, Kaplan-Meier analysis, and Decision Curve Analysis. The regulatory effect of protein arginine methyltransferase 5 (PRMT5) on poly(RC) binding protein 1 (PCBP1) was verified by immunoprecipitation experiments, and the effect of PCBP1 on the AS of Obscurin (OBSCN) was verified by PCR. Five AS events, including HNF4A.59461.AP and HNF4A.59462.AP, were identified, which can distinguish CRC from normal tissue. A machine learning model using 21 key AS events accurately predicted CRC prognosis. High-risk patients had significantly shorter survival times. PRMT5 was found to regulate PCBP1 function and then influence OBSCN AS, which may drive CRC progression. The study concluded that some AS events is significantly different in CRC and normal tissues, and some of these AS events are related to the prognosis of CRC. In addition, PRMT family-driven arginine modifications play an important role in CRC-specific AS events.


Assuntos
Processamento Alternativo , Neoplasias Colorretais , Humanos , Processamento Alternativo/genética , Arginina , Estimativa de Kaplan-Meier , Metiltransferases , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Proteína-Arginina N-Metiltransferases/genética
5.
Cell Death Dis ; 15(2): 153, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378679

RESUMO

Breast cancer (BC) is the most commonly diagnosed malignant tumour in females worldwide. Although remarkable advances in early detection and treatment strategies have led to decreased mortality, recurrence and metastasis remain the major causes of cancer death in BC patients. Increasing evidence has demonstrated that circular RNAs (circRNAs) play critical roles in cancer progression. However, the detailed biological functions and molecular mechanisms of circRNAs in BC are unclear. The aim of this study was to investigate the possible role of circRNAs in the progression of BC. Differentially expressed circRNAs in BC were identified by integrating breast tumour-associated somatic CNV data and circRNA high-throughput sequencing. Aberrant hsa_circ_0007990 expression and host gene copy number were detected in BC cell lines via quantitative polymerase chain reaction (qPCR). The expression level of hsa_circ_0007990 in BC tissues was validated by in situ hybridization (ISH). Loss- and gain-of-function experiments were performed in vitro and in vivo, respectively, to explore the potential biological function of hsa_circ_0007990 in BC. The underlying mechanisms of hsa_circ_0007990 were investigated through MS2 RNA pull-down, RNA immunoprecipitation, RNA fluorescence in situ hybridization, immunofluorescence, chromatin immunoprecipitation and luciferase reporter assays. The levels of hsa_circ_0007990 were elevated in BC tissues and cell lines, an effect that was partly due to host gene copy number gains. Functional assays showed that hsa_circ_0007990 promoted BC cell growth. Mechanistically, hsa_circ_0007990 could bind to YBX1 and inhibit its degradation by preventing ubiquitin/proteasome-dependent degradation, thus enhancing the expression of the cell cycle-associated gene E2F1. Rescue experiments suggested that hsa_circ_0007990 promoted BC progression through YBX1. In general, our study demonstrated that hsa_circ_0007990 modulates the ubiquitination and degradation of YBX1 protein and further regulates E2F1 expression to promote BC progression. We explored the possible function and molecular mechanism of hsa_circ_0007990 in BC and identified a novel candidate target for the treatment of BC.


Assuntos
Neoplasias da Mama , MicroRNAs , Feminino , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias da Mama/patologia , Proteólise , Hibridização in Situ Fluorescente , Linhagem Celular Tumoral , Proliferação de Células/genética , RNA/genética , MicroRNAs/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo , Fator de Transcrição E2F1/metabolismo
6.
Front Immunol ; 14: 1185208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37691929

RESUMO

Background: Liver metastasis (LM) is a leading cause of cancer-related deaths in CRC patients, whereas the associated mechanisms have not yet been fully elucidated. Therefore, it is urgently needed to deeply explore novel metastasis accelerators and therapeutic targets of LM-CRC. Methods: The bulk RNA sequencing data and clinicopathological information of CRC patients were enrolled from the TCGA and GEO databases. The single-cell RNA sequencing (scRNA-seq) datasets of CRC were collected from and analyzed in the Tumor Immune Single-cell Hub (TISCH) database. The infiltration levels of cancer-associated fibroblasts (CAFs) and macrophages in CRC tissues were estimated by multiple immune deconvolution algorithms. The prognostic values of genes were identified by the Kaplan-Meier curve with a log-rank test. GSEA analysis was carried out to annotate the significantly enriched gene sets. The biological functions of cells were experimentally verified. Results: In the present study, hundreds of differentially expressed genes (DEGs) were selected in LM-CRC compared to primary CRC, and these DEGs were significantly associated with the regulation of endopeptidase activity, blood coagulation, and metabolic processes. Then, SPP1, CAV1, ANGPTL2, and COLEC11 were identified as the characteristic DEGs of LM-CRC, and higher expression levels of SPP1 and ANGPTL2 were significantly associated with worse clinical outcomes of CRC patients. In addition, ANGPTL2 and SPP1 mainly distributed in the tumor microenvironment (TME) of CRC tissues. Subsequent scRNA-seq analysis demonstrated that ANGPTL2 and SPP1 were markedly enriched in the CAFs and macrophages of CRC tissues, respectively. Moreover, we identified the significantly enriched gene sets in LM-CRC, especially those in the SPP1+macrophages and ANGPTL2+CAFs, such as the HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION and the HALLMARK_COMPLEMENT. Finally, our in vitro experiments proved that ANGPTL2+CAFs and SPP1+macrophages promote the metastasis of CRC cells. Conclusion: Our study selected four characteristic genes of LM-CRC and identified ANGPTL2+CAFs and SPP1+macrophages subtypes as metastasis accelerators of CRC which provided a potential therapeutic target for LM-CRC.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Algoritmos , Proteína 2 Semelhante a Angiopoietina , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Macrófagos , Osteopontina , Microambiente Tumoral/genética
7.
Microbiol Spectr ; : e0055023, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37732751

RESUMO

To investigate the antibiotic resistance of Helicobacter pylori (H. pylori) in outpatients and to explore the consistency between genotype and phenotype of H. pylori antibiotic resistance. A retrospective study on outpatients screened with urea breath test for H. pylori infection in Nanjing First Hospital from April 2018 to January 2022. Patients who tested positive underwent a consented upper endoscopy, and the H. pylori infection was confirmed by rapid urease test (RUT) and H. pylori culture. For antibiotic resistance phenotype analysis, the H. pylori strains isolated from gastric biopsy were tested for antibiotic resistance phenotype by the Kirby-Bauer disk diffusion test. In addition, the antibiotic resistance genotype of isolated H. pylori was tested with a real-time polymerase chain reaction. A total of 4,399 patients underwent H. pylori infection screening, and 3,306 H. pylori strains were isolated. The antibiotic resistance phenotype test revealed that the resistance rates of metronidazole (MTZ), clarithromycin (CLR), levofloxacin (LEV), amoxicillin (AMX), furazolidone (FR), and tetracycline (TE) were 74.58%, 48.61%, 34.83%, 0.76%, 0.27%, and 0.09%, respectively. Additionally, the antibiotic resistance genotype test revealed that rdxA gene mutation A610G (92.96%), A91G (92.95%), C92A (93.00%), and G392A (95.07%) were predominant in H. pylori with MTZ resistance; 23S rRNA gene mutation A2143G (86.47%) occurred in most H. pylori with CLR resistance; and gyrA gene mutation 87Ile/Lys/Tyr/Arg (97.32%) and 91Asn/Gly/Tyr (90.61%) were the most popular mutations in strains with LEV resistance. The phenotypic resistance and genotypic resistance to CLR (kappa value = 0.824) and LEV (kappa value = 0.895) were in good agreement. The history of eradication with MTZ, CLR, LEV, and AMX was correlated with H. pylori resistance. In short, this study demonstrated that drug resistance of H. pylori was mainly to MTZ, CLR, and LEV in local outpatients. Three drugs can be selected for increased MICs (Minimum Inhibitory Concentration) via single chromosomal mutations. In addition, the genotype could be used to predict the phenotypic H. pylori resistance to CLR and LEV. IMPORTANCE Helicobacter pylori is a key bacterium that causes stomach diseases. There was a high prevalence of H. pylori in the Chinese population. We analyzed the resistance phenotype and genotype characteristics of H. pylori in 4,399 outpatients at the First Hospital of Nanjing, China. We found a higher resistance rate to metronidazole (MTZ) , clarithromycin (CLR), and levofloxacin (LEV), and the genotype could be used to predict the phenotypic H. pylori resistance to CLR and LEV. This study provides information on H. pylori infection and also provides guidance for clinical doctors' drug treatment.

8.
Mol Carcinog ; 62(12): 1787-1802, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37539967

RESUMO

Cancer-associated fibroblasts (CAFs) are a key component of the tumor microenvironment and a critical factor in the progression of colorectal cancer (CRC). The aim of this study was to screen for CAFs specific genes that could serve as promising therapeutic targets for CRC patients. Our findings showed a significant increase in the proportion of fibroblasts in CRC tissues, and a high proportion of fibroblasts was associated with immune escape and poor prognosis in CRC. Collagen triple helix repeat containing 1 (CTHRC1) and inhibin subunit beta A (INHBA) were identified as key genes in the progression of CRC, primarily expressed in CAFs and significantly upregulated in CRC tissues. We defined CTHRC1 and INHBA as cancer-associated fibroblast-related genes (CAFRGs), which were associated with poor prognosis in CRC and macrophage polarization. CAFRGs promoted immune escape and metastasis in CRC and were good predictors of immune therapy response. Drug sensitivity analysis showed that the high expression group of CAFRGs was sensitive to 15 chemotherapy drugs, while the low expression group was sensitive to only 3. Clustering of fibroblasts in the tumor revealed that CTHRC1+ INHBA+ CAF was a poor prognostic factor in CRC and was associated with extracellular matrix remodeling and immune regulation. In conclusion, our study provides new theoretical basis for effective treatment strategies and therapeutic targets for CRC.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/patologia , Fibroblastos/metabolismo , Fibroblastos Associados a Câncer/patologia , Microambiente Tumoral/genética , Proteínas da Matriz Extracelular/genética
9.
Aging (Albany NY) ; 15(12): 5734-5750, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37348024

RESUMO

Mounting evidence demonstrates that long noncoding RNAs (lncRNAs) have critical roles in the initiation and progression of cancer. Here, we report that small nucleolar RNA host gene 3 (SNHG3) is a key regulator of breast cancer progression. We analyzed RNA sequencing data to explore abnormally expressed lncRNAs in breast cancer. The effects of SNHG3 on breast cancer were investigated via in vitro and in vivo assays (CCK-8 assay, colony formation assay, flow cytometry assay, EdU assay, xenograft model, immunohistochemistry, and Western blot). The mechanism of SNHG3 action was explored through bioinformatics, RNA fluorescence in situ hybridization, luciferase reporter assay, RNA pull-down assay, chromatin immunoprecipitation assay and RNA immunoprecipitation assay. We found that SNHG3 expression was upregulated in breast cancer tissues and that its high expression level was associated with poor survival. We also found that high SNHG3 expression was partly induced by STAT3. Moreover, SNHG3 knockdown significantly repressed breast cancer cell growth both in vitro and in vivo. In the cytoplasm, SNHG3 facilitated the expression of Casein kinase II-A1 (CSNK2A1) by absorbing miR-485-5p and recruiting the HuR protein, participating in the malignant progression of breast cancer. Taken together, our study reveals a SNHG3-based regulatory network, which plays an oncogenic role in breast cancer and suggests that SNHG3 may serve as a potential target for the diagnosis and treatment of breast cancer.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Mama/genética , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Hibridização in Situ Fluorescente , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células/genética
10.
Front Immunol ; 14: 1161382, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180113

RESUMO

Background: Metastasis remains the leading cause of mortality in patients diagnosed with colorectal cancer (CRC). The pivotal contribution of the immune microenvironment in the initiation and progression of CRC metastasis has gained significant attention. Methods: A total of 453 CRC patients from The Cancer Genome Atlas (TCGA) were included as the training set, and GSE39582, GSE17536, GSE29621, GSE71187 were included as the validation set. The single-sample gene set enrichment analysis (ssGSEA) was performed to assess the immune infiltration of patients. Least absolute shrinkage and selection operator (LASSO) regression analysis, Time-dependent receiver operating characteristic (ROC) and Kaplan-Meier analysis were used to construct and validate risk models based on R package. CTSW and FABP4-knockout CRC cells were constructed via CRISPR-Cas9 system. Western-blot and Transwell assay were utilized to explore the role of fatty acid binding protein 4 (FABP4) / cathepsin W (CTSW) in CRC metastasis and immunity. Results: Based on the normal/tumor, high-/low-immune cell infiltration, and metastatic/non-metastatic group, we identified 161 differentially expressed genes. After random assignment and LASSO regression analysis, a prognostic model containing 3 metastasis- and immune-related gene pairs was constructed and represented good prognostic prediction efficiency in the training set and 4 independent CRC cohorts. According to this model, we clustered patients and found that the high-risk group was associated with stage, T and M stage. In addition, the high-risk group also shown higher immune infiltration and high sensitivity to PARP inhibitors. Further, FABP4 and CTSW derived from the constitutive model were identified to be involved in metastasis and immunity of CRC. Conclusion: In conclusion, a validated prognosis predictive model for CRC was constructed. CTSW and FABP4 are potential targets for CRC treatment.


Assuntos
Bioensaio , Neoplasias Colorretais , Humanos , Prognóstico , Western Blotting , Divisão Celular , Neoplasias Colorretais/genética , Microambiente Tumoral/genética
11.
J Cancer Res Clin Oncol ; 149(8): 4731-4739, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36222897

RESUMO

PURPOSE: Microbial imbalances have been well elucidated in esophageal adenocarcinoma (EAC), but few studies address the oral microbiota in esophageal squamous cell carcinoma (ESCC). In view of the fact, we aimed to explore the associations of oral microbiota with these patients suffering from ESCC. METHODS: In our study, a total of 109 individuals were enrolled (control = 53, ESCC = 56). We profiled the microbiota in oral swabs from individuals with control (ConT) and ESCC (ESCCT). 16S rRNA gene sequencing was applied to analyze the microbiome. The α and ß diversity differences were tested by Tukey Test and Partial Least Squares Discriminant Analysis (PLS-DA) respectively. Linear discriminant analysis effect size (LEfSe) analysis was performed to assess taxonomic differences between the two groups. RESULTS: Our results showed that the microbial richness and diversity was a slightly higher in ESCCT groups than that in ConT groups. Bacteroidota, Firmicutes, Proteobacteria, Fusobacteria, Actinobacteria and Patescibacteria were the six dominant bacteria of oral flora in the two groups. When compared with control group, increased Fusobacterioa at phylum level, Neisseriaceae at family level and Leptotrichia at genus level were detected. LEfSe analysis indicated a greater abundance of Leptotrichiaceae, Leptotrichia, Fusobacteriales, Fusobacteria and Fusobacteriota in ESCC groups. CONCLUSION: Our study suggests a potential association between oral microbiome dysbiosis and ESCC and provides insights on a potential screening marker for esophageal cancer.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Microbiota , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/patologia , RNA Ribossômico 16S/genética , Microbiota/genética , Adenocarcinoma/patologia , Bactérias
12.
Cancer Sci ; 114(4): 1396-1409, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36562402

RESUMO

Emerging evidence has suggested that circular RNAs (circRNAs) have vital functions during the initiation and progression of various diseases. However, circRNA potential mechanisms in colorectal cancer (CRC) are largely unknown. Here, we sought to investigate the role and underlying regulatory mechanism of circ0104103 in CRC. circ0104103 was validated by quantitative RT-PCR (qRT-PCR) and Sanger sequencing. Gain- and loss-of-function assays in cell lines and mouse xenograft models were utilized to investigate the effects of circ0104103 in CRC. RNA pull-down assays, RNA immunoprecipitation assays, bioinformatics analyses, RNA FISH, and luciferase reporter assays were used to elucidate the potential mechanism of circ0104103 in CRC. We identified circ0104103, which is strongly downregulated in CRC tissues and cell lines. Functional studies revealed that circ0104103 inhibited CRC cell growth, migration, and invasion both in vitro and in vivo. Mechanistically, circ0104103 binds to HuR, a functional RNA-binding protein commonly expressed in CRC. HuR binds to the 3'UTR of LACTB mRNA to facilitate stabilization and increase its expression. Moreover, circ0104103 was verified as a competing endogenous RNA (ceRNA) via negative regulation of miR-373-5p to increase LACTB expression, resulting in inhibiting the occurrence and progression of CRC. Taken together, our study revealed that circ0104103 acts as a tumor suppressor and may be a novel biomarker and therapeutic target in CRC.


Assuntos
Neoplasias Colorretais , Proteína Semelhante a ELAV 1 , MicroRNAs , RNA Circular , Animais , Humanos , Camundongos , beta-Lactamases/genética , beta-Lactamases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Proteínas de Membrana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Mitocondriais/metabolismo , Interferência de RNA , RNA Circular/genética , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo
13.
Front Genet ; 13: 948920, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212126

RESUMO

Background: The traditional TNM staging system is often insufficient to differentiate the survival discrepancies of colorectal cancer (CRC) patients at TNM stage I/II. Our study aimed to reclassify stage I/II CRC patients into several subgroups with different prognoses and explore their suitable therapeutic methods. Methods: Single-cell RNA (scRNA) sequencing data, bulk RNA sequencing data, and clinicopathological information of CRC patients were enrolled from the TCGA and GEO databases. The tumor microenvironment of CRC tissues was accessed by the ESTIMATE algorithm. The prognostic genes were identified by Cox regression analysis. GO and KEGG analyses were conducted in the DAVID database. GSEA analysis was performed for annotation of the correlated gene sets. Results: We successfully reclassified stage I/II CRC patients into two subgroups and discovered that patients in cluster-2 underwent worse overall survival than those in cluster-1. GSEA analysis showed that immune-associated gene sets were positively enriched in cluster-2. Besides, the differentially expressed genes (DEGs) between cluster-1 and cluster-2 patients also participated in immune-related biological processes and signaling pathways. Moreover, we found that more immune cells infiltrated the microenvironment of cluster-2 patients compared to that of cluster-1 patients, such as Tregs and tumor-associated macrophages. ScRNA sequencing analysis uncovered that most of the enriched immune-associated signaling in cluster-2 patients was mainly attributed to these upregulated immune cells whose infiltration levels were also high in CRC tissues rather than in normal tissues. In addition, we demonstrated that the expression of immune checkpoint genes was significantly higher in cluster-2 patients compared to cluster-1 patients. ScRNA sequencing analysis revealed that the infiltrated CD8+T cells in CRC were naïve T cells and can be activated into effector T cells after immune checkpoint blockade (ICB) treatment. Conclusion: TNM stage I/II CRC patients can be divided into two subgroups, which have different overall survival rates, tumor microenvironment, and response to ICB therapy.

14.
Discov Oncol ; 13(1): 89, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36114893

RESUMO

PURPOSE: The angiogenesis is among the primary factors that affect tumor recurrence and distant organ metastasis in colorectal cancer (CRC). N6-methyladenosine (m6A) modification is one of the most common chemical modifications in eukaryotic mRNA, especially at the post-transcriptional level. Methyltransferase-like 3 (METTL3) promoting angiogenesis in a variety of tumors has been reported. However, the mechanism of how METTL3 dual-regulates the stability of long non-coding RNAs (lncRNAs) and vascular-related factor RNAs to affect angiogenesis in CRC is unclear. METHODS: 64 paired CRC and adjacent normal tissues were collected. In vitro, quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), actinomycin assay, methylated RNA immunoprecipitation (MeRIP) experiment,3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT) and colony formation assay were performed. The functions were also studied in zebrafish model animals in vivo. RESULTS: We found that the vascular endothelial growth factor A(VEGFA), METTL3 and LINC00662 RNAs were highly expressed in CRC, and that METTL3 was significantly positively correlated with LINC00662 and VEGFA. The protein expression levels of CD31, CD34, VEGFA, m6A and METTL3 were all significantly increased in the CRC tissues. The angiogenesis experiments both in vivo and in vitro found that METTL3 and LINC00662 promoted angiogenesis in CRC. The actinomycin assay indicated that METTL3 maintained the stability of LINC00662 and VEGFA RNAs. In addition, the MeRIP experiment confirmed that the LINC00662 and VEGFA RNAs had METTL3-enriched sites. CONCLUSION: These findings suggest that METTL3 and LINC00662 may both serve as diagnostic and prognostic predictive biomarkers for CRC and potential targets for anti-vascular therapy.

15.
J Biomed Res ; 36(4): 231-241, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35965433

RESUMO

Mounting evidence indicates that long non-coding RNAs (lncRNAs) have critical roles in colorectal cancer (CRC) progression, providing many potential diagnostic biomarkers, prognostic biomarkers, and treatment targets. Here, we sought to investigate the role and underlying regulatory mechanism of lncRNA small nucleolar RNA host gene 16 ( SNHG16) in CRC. The expressions of SNHG16 in CRC were identified by RNA-sequencing and quantitative reverse transcription PCR. The functions of SNHG16 were explored by a series of in vitro and in vivo assays (colony formation assay, flow cytometry assay, and xenograft model). Bioinformatics analysis, RNA fluorescence in situ hybridization and luciferase reporter assay were used to investigate the regulatory mechanism of effects of SNHG16. SNHG16 was found to be significantly elevated in human CRC tissues and cell lines. Functional studies suggested that SNHG16 promoted CRC cell growth both in vitro and in vivo. Mechanistically, we identified that SNHG16 is expressed predominantly in the cytoplasm. SNHG16 could interact with miR-214-3p and up-regulated its target ABCB1. This study indicated that SNHG16 plays an oncogenic role in CRC, suggesting it could be a novel biomarker and therapeutic target in CRC.

16.
Pharmgenomics Pers Med ; 15: 441-448, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548064

RESUMO

Background: DNA methylation in the CpG island is associated with gastric cancer, genetic variations residue in genes involved in methylation pathway could contribute to the occurrence of gastric cancer. Here, we investigated the association between DNMTs (DNMT1/DNMT3A/DNMT3B), MTHFR genetic variations and gastric cancer risk and patients' survival. Patients and Methods: We recruited 490 gastric cancer patients and 488 age- and sex-matched healthy controls. The genotypes of the genetic variations were detected by a Mass-array platform. A commercial Helicobacter pylori (H. pylori) immunogold testing kit was used to determine the H. pylori infection. Results: We found that carriers of DNMT1 rs2228612C allele was associated with decreased gastric cancer risk (CT vs. TT: adjusted OR = 0.70, 95% CI = 0.53-0.94, P = 0.02; CT/CC vs.TT: adjusted OR = 0.73, 95% CI = 0.56-0.96, P = 0.02). Further stratified analysis showed that DNMT1 rs2228612 CT/CC were associated with a decreased gastric cancer risk in the subgroups of age ≤64 years old (adjusted OR = 0.61, 95% CI = 0.41-0.90, P = 0.01), male (adjusted OR = 0.72, 95% CI = 0.53-0.98, P = 0.03), negative H. pylori infection (adjusted OR = 0.67, 95% CI = 0.45-0.98, P = 0.04), tumor stage T3-T4 (adjusted OR = 0.69, 95% CI = 0.51-0.92, P = 0.01), and non-gastric cardiac adenocarcinoma (NGCA) (adjusted OR = 0.72, 95% CI = 0.54-0.97, P = 0.03). However, none of the genetic variations of this study was associated with overall survival. Conclusion: We concluded that the DNMT1 rs2228612C genotype is a protective factor for gastric cancer in Han Chinese population.

18.
Neoplasma ; 69(3): 729-740, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35471981

RESUMO

The value of serum tumor biomarkers used for lung cancer diagnosis is still controversial in clinical practice. This study aimed to further dissect and evaluate the clinical value of serum progastrin-releasing peptide (ProGRP), neuron-specific enolase (NSE), squamous cell carcinoma antigen (SCC-Ag), carcinoembryonic antigen (CEA), cytokeratin-19 fragment (CYFRA21-1) together with a potential new biomarker, the human epididymis protein 4 (HE4) for lung cancer diagnosis, in a large cohort of a Chinese population. Ostensibly healthy individuals, as well as those with benign non-cancerous diseases, benign tumors, lung cancers, and other types of malignancies, were enrolled in the study. Serum ProGRP, NSE, SCC-Ag, CEA, CYFRA21-1, and HE4 were analyzed using the chemiluminescence immunoassay. Data were analyzed utilizing the SPSS and GraphPad Prism software. Detailed dissection of the diagnostic characteristics of serum 6 biomarkers on lung cancer was performed. All 6 biomarkers showed capabilities in characterizing lung cancer from other diseases. ProGRP and NSE were highly specific to small cell lung cancer (SCLC); SCC-Ag was a fair biomarker for NSCLC, specifically SCC histotype; CEA showed specificity to SCLC, followed by NSCLC; CYFRA21-1 was a good biomarker for both SCLC and NSCLC; HE4 showed high specificity to SCLC. For NSCLC characterization, CYFRA21-1+HE4+CEA was the best combinatory pattern in the terms of diagnostic performance (AUC=0.8110). The best combinatory analysis for SCLC was ProGRP+NSE+HE4 (AUC=0.9282). Patients with advanced stage, larger tumor, males, and age 50 or older had higher serum biomarkers levels than those with early stage, smaller tumor, females, and age under 50. Six biomarkers had capabilities in characterizing lung cancer with high or fair diagnostic performance. HE4 is a potential biomarker for both SCLC and NSCLC diagnosis, which merits further investigation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Proteína 2 do Domínio Central WAP de Quatro Dissulfetos , Antígenos de Neoplasias/sangue , Biomarcadores Tumorais/sangue , Antígeno Carcinoembrionário/sangue , Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Feminino , Humanos , Queratina-19/sangue , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/diagnóstico , Masculino , Pessoa de Meia-Idade , Proteína 2 do Domínio Central WAP de Quatro Dissulfetos/metabolismo
19.
Heliyon ; 8(3): e09033, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35284678

RESUMO

The emergence of 5-Fluorouracil (5-FU) resistance is the barrier to effective clinical outcomes for colorectal cancer (CRC) patients. Autophagy was found to be involved in protecting tumor cells from 5-FU. However, the specific role of autophagy-related genes in CRC 5-FU resistance remains unclear. In this study, HSPB8 among 34 differentially expressed ARGs in CRC was identified to be the hub ARGs in 5-FU resistant which was down-regulated in CRC samples when compared with normal samples but up-regulated in CRC samples with relatively higher lymphatic invasion, later stages and poor prognosis of CRC. Mechanistic analysis demonstrated that due to the recruitment of CAFs, HSPB8 expression was enhanced in CRC cells so that HSPB8 could act together with its co-chaperone BAG3 in autophagy drived 5-FU resistance. Furthermore, the augmented expression level of HSPB8 was found to be significantly correlated to the immune cell infiltration such as Treg cells, macrophages, monocyte and dendritic cells and so on. Our results suggested CAFs driving HSPB8 induced CRC 5-FU resistance by promoting tumor autophagy would provide a new strategy in seeking potential CRC therapeutic target.

20.
J Cancer Res Clin Oncol ; 148(8): 1965-1982, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35357586

RESUMO

PURPOSE: Long intergenic non-coding RNA LINC01088 is a newly discovered long non-coding RNA (lncRNA). Its biological function in colorectal cancer (CRC) remains unknown. METHODS: Here, 36 paired CRC and para-cancerous tissues were collected. In vitro, fluorescence in situ hybridization (FISH) assay, qPCR, western blotting analysis and cellular functional experiments, RNA immunoprecipitation (RIP) assay and dual-luciferase reporter system analysis were performed. In vivo, xenograft tumor mouse models were generated. Besides, patient-derived intestinal organoid (PDO) was generated ex vivo. RESULTS: We found that LINC01088 was significantly upregulated in colorectal cancer tissues and CRC cell lines compared to adjacent normal tissues and colonic epithelial cells. High LINC01088 levels were correlated with adverse outcomes in patients with CRC. LINC01088 was mainly located in the cytoplasm. LINC01088 knockdown suppressed the proliferation, migration, invasion, and immune escape of colorectal cancer cells. Mechanistically, LINC01088 bound directly to miR-548b-5p and miR-548c-5p that were significantly upregulated Ras GTPase-activating protein-binding proteins 1 (G3BP1) and programmed death ligand 1 (PD-L1) expression, altering CRC cell phenotypes. In mouse xenograft models, LINC01088 knockdown restrained CRC tumor growth and lung metastasis. Furthermore, G3BP1 overexpression reversed LINC01088-knockdown-mediated inhibitory effects on tumor growth. Notably, LINC01088 knockdown downregulated PD-L1 expression, while G3BP1 overexpression restored PD-L1 expression in xenograft tumors. Besides, LINC01088 knockdown repressed CRC organoid growth ex vivo. CONCLUSION: Overall, these findings suggested that LINC01088 directly targeted miR-548b-5p and miR-548c-5p, promoting G3BP1 and PD-L1 expression, which facilitated colorectal cancer progression and immune escape.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Animais , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/patologia , DNA Helicases/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Hibridização in Situ Fluorescente , Camundongos , MicroRNAs/genética , Fenótipo , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , RNA Longo não Codificante/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA