Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1238199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37675425

RESUMO

Introduction: Imbalances in gut microbes have been implied in many human diseases, including colorectal cancer (CRC), inflammatory bowel disease, type 2 diabetes, obesity, autism, and Alzheimer's disease. Compared with other human diseases, CRC is a gastrointestinal malignancy with high mortality and a high probability of metastasis. However, current studies mainly focus on the prediction of colorectal cancer while neglecting the more serious malignancy of metastatic colorectal cancer (mCRC). In addition, high dimensionality and small samples lead to the complexity of gut microbial data, which increases the difficulty of traditional machine learning models. Methods: To address these challenges, we collected and processed 16S rRNA data and calculated abundance data from patients with non-metastatic colorectal cancer (non-mCRC) and mCRC. Different from the traditional health-disease classification strategy, we adopted a novel disease-disease classification strategy and proposed a microbiome-based multi-view convolutional variational information bottleneck (MV-CVIB). Results: The experimental results show that MV-CVIB can effectively predict mCRC. This model can achieve AUC values above 0.9 compared to other state-of-the-art models. Not only that, MV-CVIB also achieved satisfactory predictive performance on multiple published CRC gut microbiome datasets. Discussion: Finally, multiple gut microbiota analyses were used to elucidate communities and differences between mCRC and non-mCRC, and the metastatic properties of CRC were assessed by patient age and microbiota expression.

2.
IEEE J Biomed Health Inform ; 27(9): 4611-4622, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37368803

RESUMO

The abuse of traditional antibiotics has led to increased resistance of bacteria and viruses. Efficient therapeutic peptide prediction is critical for peptide drug discovery. However, most of the existing methods only make effective predictions for one class of therapeutic peptides. It is worth noting that currently no predictive method considers sequence length information as a distinct feature of therapeutic peptides. In this article, a novel deep learning approach with matrix factorization for predicting therapeutic peptides (DeepTPpred) by integrating length information are proposed. The matrix factorization layer can learn the potential features of the encoded sequence through the mechanism of first compression and then restoration. And the length features of the sequence of therapeutic peptides are embedded with encoded amino acid sequences. To automatically learn therapeutic peptide predictions, these latent features are input into the neural networks with self-attention mechanism. On eight therapeutic peptide datasets, DeepTPpred achieved excellent prediction results. Based on these datasets, we first integrated eight datasets to obtain a full therapeutic peptide integration dataset. Then, we obtained two functional integration datasets based on the functional similarity of the peptides. Finally, we also conduct experiments on the latest versions of the ACP and CPP datasets. Overall, the experimental results show that our work is effective for the identification of therapeutic peptides.


Assuntos
Aprendizado Profundo , Humanos , Peptídeos/química , Redes Neurais de Computação , Descoberta de Drogas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA