Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
HLA ; 103(4): e15440, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38605657

RESUMO

Single nucleotide polymorphisms (SNPs) of HLA-E are related to the occurrence of many diseases, but their functions remain unclear. In this study, the function of SNPs at HLA-E rs76971248 and rs1264457 on the myeloid leukemia cells was analyzed by a progressive procedure, included genotyping, mRNA transcription, regulatory element, protein expression, and anti-tumor effect. The frequencies of rs76971248 G and rs1264457 G were found higher in myeloid leukemia patients than those in healthy blood donors (p < 0.05). For myeloid leukemia, rs76971248 T was protective, while rs1264457 G was susceptible. We also found that rs76971248 affected HLA-E mRNA transcription and membrane HLA-E (mHLA-E) expression in K562 cells through differently binding to transcription factor HOXA5 (p < 0.0001), while rs1264457 affected mHLA-E expression by changing mRNA transcription and an encoding amino acid (p < 0.01). In contrast, the expression of soluble HLA-E (sHLA-E) was not influenced by both rs1264457 and rs76971248. The higher HLA-E expression was detected among myeloid leukemia patients, and the K562 cells with higher HLA-E molecules played a significant inhibitory effect on the killing activity of NK-92MI cells (p < 0.05). In conclusion, the higher HLA-E expression of myeloid leukemia cells is promoted by rs76971248 G and rs1264457 G, which helps escape from NK-92MI cells' killing.


Assuntos
Leucemia Mieloide , Polimorfismo de Nucleotídeo Único , Humanos , Antígenos HLA-E , Alelos , Antígenos de Histocompatibilidade Classe I/genética , Leucemia Mieloide/genética , RNA Mensageiro/genética
2.
Dis Markers ; 2022: 9847708, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392495

RESUMO

Background: The HLA-E gene is a member of the HLA-I gene family. Its genetic polymorphism is regarded as associated with numerous diseases. Establishing a rapid and accurate detection method of disease-related SNP sites in HLA-E is particularly important. Methods: Blood samples from 226 healthy blood donors and 228 leukemia patients were collected, and DNA was extracted. Three typing methods based on PCR-sequence-based typing, TaqMan genotyping, and high-resolution melting curve were established to identify rs76971248 (G>T). The Chi-square test was used for statistical analysis by SPSS. Results: Three methods based on PCR-SBT, TaqMan genotyping, and HRM were all able to identify rs76971248. The software for analyzing the results of HLA-E sequencing was easy to use, and the results were accurate. The frequency of rs76971248 in different types of leukemia patients was significantly lower than that in healthy blood donors (p < 0.05). And the frequency of the G/G genotype in leukemia patients was significantly higher than that in healthy blood donors (p < 0.05). Conclusions: For the screening of known SNP sites in large-scale populations, among the three methods, the TaqMan genotyping method had the advantage of shortest time consumption, simplest operation, and greatest specificity, which was the most appropriate method for this experiment. The analysis software for HLA-E gene sequencing needed to be further optimized. rs76971248 had a protective effect against leukemia. And the G/G genotype was a risk factor for leukemia.


Assuntos
Técnicas de Genotipagem , Leucemia , DNA , Genótipo , Humanos , Leucemia/diagnóstico , Leucemia/genética , Polimorfismo Genético
3.
DNA Cell Biol ; 41(2): 235-244, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34986028

RESUMO

Human leukocyte antigen (HLA)-E is one of the least polymorphic nonclassical major histocompatibility complex (MHC) I genes; its nucleotide variability can affect immune response. In this study, we assess the correlation between HLA-E polymorphism and leukemia and further study the transcriptional activity of promoter variation at nucleotide position-26. A total of 142 healthy blood donors and 111 leukemia patients were collected. The genomic sequence of HLA-E was amplified by high-fidelity reaction system and identified by Sanger and cloning sequencing. The dual luciferase reporter gene assay was used to detect the transcription activity of promoter variation at nucleotide position-26. In the HLA-E genomic sequence results, a total of 16 alleles and 32 genotypes were detected; the HLA-E*01:01:01:06 allele had a significantly lower frequency in leukemia patients than in healthy participants (p = 0.026 < 0.05). And the HLA-E*01:03:02:01, *01:03:02:01 genotype showed the greatest difference in frequency between the two groups of participants (p = 0.028 < 0.05). Eight HLA-E alleles were first reported worldwide in Chinese individuals. The results of the dual luciferase reporter gene experiment showed that the transcription activity of the mutant-type promoter (HLA-E*01:01:01:06 with "T" allele at nucleotide position-26) was significantly lower compared with the wild-type promoter (HLA-E*01:01:01:01 with "G" allele at nucleotide position-26) (p = 0.0242 < 0.05). HLA-E*01:01:01:06 allele has a protective effect against leukemia through decreasing transcription activity by "T" variation at nucleotide position-26.


Assuntos
Genoma Humano , Antígenos HLA , Leucemia , Antígenos HLA/genética , Humanos , Leucemia/genética , Polimorfismo Genético , Regiões Promotoras Genéticas
4.
Leuk Lymphoma ; 60(1): 208-215, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29969046

RESUMO

Human leukocyte antigen (HLA)-E is a nonclassical HLA molecule with limited polymorphisms. Genotype frequency and expression of HLA-E were examined here for the first time in acute leukemia patients and healthy controls. The frequency of HLA-E*01:03/*01:03 individuals was significantly higher (p = .008, OR = 1.845), while the frequency of HLA-E*01:01/*01:01 individuals was much lower in the patient group (p = .002, OR = .363) than in control group. The surface expression on HLA-E*01:03/*01:03 individuals was found to be significantly higher than on HLA-E*01:01/*01:01 individuals in both of acute leukemia and control groups, but no significant difference was observed between the corresponding genotypes in two groups. However, the level of expression of soluble HLA-E is significantly higher in patients than in the control group, but there was no genotype-specific expression in either group. These findings indicate that soluble HLA-E secretion and HLA-E*01:03/*01:03 genotype that brings higher surface expression might play important roles in the mechanisms underlying tumor escape in acute leukemia.


Assuntos
Antígenos de Histocompatibilidade Classe I/genética , Leucemia Mieloide Aguda/genética , Evasão Tumoral/genética , Adolescente , Adulto , Alelos , Estudos de Casos e Controles , Feminino , Frequência do Gene , Voluntários Saudáveis , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Leucemia Mieloide Aguda/imunologia , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Adulto Jovem , Antígenos HLA-E
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA