Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Food Funct ; 15(5): 2604-2615, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38356343

RESUMO

Krill oil (KO) is rich in bioactive ingredients including phospholipids, omega-3 fatty acids, and astaxanthin. While health benefits and roles of KO in modulating lipid metabolism are well documented, its ability to alleviate symptoms related to infectious colitis and modulate gut microbial interactions is still largely unknown. Here we used a multi-omics approach, including transcriptome, microbiome, and metabolome analyses, to understand how KO mediates gut microbial interactions and promotes epithelial healing in an infectious colitis model. KO reversed the infection-induced intestinal hyperplasia to baseline. KO dampened intestinal inflammation via multiple targets, mediating several proinflammatory pathways, including IL17 signaling, and reducing luminal histamine levels. KO supplementation enriched butyrate-producing bacteria, including Roseburia and Clostridium, and strengthened beneficial microbial interactions in the gut microbial community. Supplementation with phospholipid-rich KO also increased microbial phylogenetic diversity. KO enhanced mucosal barrier function by increasing the production of Muc6 and the antimicrobial peptide, Leap2. KO played an active role during epithelial healing by inhibiting the expression of granzyme K while increasing the expression of a colitis protective factor, Dclk1. Together, our findings demonstrate that KO rich in omega-3 phospholipids can play a protective role in infectious colitis and should be considered a dietary option for promoting gut health.


Assuntos
Colite , Euphausiacea , Ácidos Graxos Ômega-3 , Animais , Humanos , Fosfolipídeos , Filogenia , Ácidos Graxos Ômega-3/farmacologia , Colite/induzido quimicamente
2.
Sci Rep ; 13(1): 11007, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420084

RESUMO

To further elucidate the expression, regulation and function of Signaling Lymphocytic Activation Molecule Family (SLAMF) protein members in human monocytes and macrophages. Un-differentiated monocytic THP-1 cell (u-THP-1) and differentiated THP-1 macrophage (d-THP-1) were used as culture models in the study. Responses of cells to the differentiation agents phorbol ester (25 ng/ml) and TLR (Toll-like receptor) ligands were assessed. RT-PCR and Western blot analysis were used to determine mRNA and protein level. Pro-inflammatory cytokine mRNA expression levels and phagocytosis were used as functional markers. Data analyzed using t-test, one-way or two-way ANOVA followed by post hoc test. SLAMFs were differentially expressed in THP-1 cells. Differentiation of u-THP-1 to d-THP-1 led to significantly higher SLAMF7 mRNA and protein levels than other SLAMF. In addition, TLR stimuli increased SLAMF7 mRNA expression but not protein expression. Importantly, SLAMF7 agonist antibody and TLR ligands synergistically increased the mRNA expression levels of IL-1ß, IL-6 and TNF-α, but had no effect on phagocytosis. SLAMF7 knocked-down in d-THP-1 significantly lowered TLR-induced mRNA expressions of pro-inflammatory markers. SLAM family proteins are differentially regulated by differentiation and TLRs. SLAMF7 enhanced TLR-mediated induction of pro-inflammatory cytokines in monocytes and macrophages but not phagocytosis.


Assuntos
Macrófagos , Monócitos , Família de Moléculas de Sinalização da Ativação Linfocitária , Receptores Toll-Like , Humanos , Citocinas/metabolismo , Família , Ligantes , Lipopolissacarídeos , Macrófagos/metabolismo , Monócitos/metabolismo , RNA Mensageiro/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Receptores Toll-Like/metabolismo
3.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293398

RESUMO

Adipose stem cells (ASCs) are reported to play a role in normal physiology as well as in inflammation and disease. The objective of this work was to elucidate inter-individual differences in growth, gene expression and response to inflammatory stimuli in ASCs from different donors. Human ASC1 (male donor) and ASC2 (female donor) were purchased from Lonza (Walkersville, MD). Cell proliferation was determined by the sulforhodamine B assay. After time-dependent treatment of ASCs with or without bacterial lipopolysaccharide (LPS), marker gene mRNAs for proliferation, steroid hormones, and xenobiotic and immune pathways were determined using RT-PCR, and secreted cytokine levels in media were measured using the Bio-Plex cytokine assay kit. ASCs from both donors expressed androgen receptors but not estrogen receptors. ASC2 had a 2-fold higher proliferation rate and a 6-fold higher level of proliferation marker Ki67 mRNA than ASC1. ASC2 exhibited significantly greater fold induction of TNF-α and CCL2 by LPS compared to ASC1. TNF-α and GM-CSF protein levels were also significantly higher in the LPS-induced ASC2 media, but IL-6 secretion was higher in the LPS-induced ASC1 media. Our findings suggest that inter-individual variability and/or possible sex differences exist in ASCs, which may serve as a key determinant to inflammatory responses of ASCs.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Lipopolissacarídeos , Feminino , Masculino , Humanos , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Receptores Androgênicos/metabolismo , Xenobióticos/metabolismo , Tecido Adiposo/metabolismo , Proliferação de Células , RNA Mensageiro/metabolismo , Citocinas/genética , Citocinas/metabolismo , Hormônios/metabolismo , Expressão Gênica
4.
J Agric Food Chem ; 70(29): 9039-9047, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35820155

RESUMO

The soluble free, soluble conjugated, and insoluble bound phenolic compounds in tomato seeds were extracted and analyzed using ultra-high-performance liquid chromatography-high-resolution mass spectrometry. Total phenolic content (TPC) and free radical scavenging activities along with the antiproliferative effects against the human colorectal cancer cell line (HCT-116) were also examined for the soluble free, soluble conjugated, and insoluble bound phenolic fractions. 13, 7, and 10 compounds were tentatively identified in the soluble free, soluble conjugated, and insoluble bound phenolic fractions, respectively, including indole-3-acetic acid derivatives, flavonoids, phenolic acid, and tyramine-derived hydroxycinnamic acid amines. The insoluble bound phenolic fraction was observed to have a greater TPC value and stronger free radical scavenging activities against ABTS•+, DPPH•, and peroxyl radicals and a stronger inhibitory effect against HCT-116 cells compared with the soluble free and the soluble conjugated fractions. Soluble free and insoluble bound fractions significantly inhibited the proliferation of the HCT-116 cell line, and no antiproliferative effects were observed with the soluble conjugated fraction under the experimental conditions. The results may provide a foundation for future application of tomato seeds as nutraceuticals in dietary supplements and functional foods.


Assuntos
Solanum lycopersicum , Antioxidantes/química , Radicais Livres , Humanos , Solanum lycopersicum/metabolismo , Fenóis/química , Extratos Vegetais/química , Sementes/química
5.
Nutrients ; 13(3)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808801

RESUMO

LNCaP athymic xenograft model has been widely used to allow researchers to examine the effects and mechanisms of experimental treatments such as diet and diet-derived cancer preventive and therapeutic compounds on prostate cancer. However, the biological characteristics of human LNCaP cells before/after implanting in athymic mouse and its relevance to clinical human prostate outcomes remain unclear and may dictate interpretation of biological efficacies/mechanisms of diet/diet-derived experimental treatments. In this study, transcriptome profiles and pathways of human prostate LNCaP cells before (in vitro) and after (in vivo) implanting into xenograft mouse were compared using RNA-sequencing technology (RNA-seq) followed by bioinformatic analysis. A shift from androgen-responsive to androgen nonresponsive status was observed when comparing LNCaP xenograft tumor to culture cells. Androgen receptor and aryl-hydrocarbon pathway were found to be inhibited and interleukin-1 (IL-1) mediated pathways contributed to these changes. Coupled with in vitro experiments modeling for androgen exposure, cell-matrix interaction, inflammation, and hypoxia, we identified specific mechanisms that may contribute to the observed changes in genes and pathways. Our results provide critical baseline transcriptomic information for a tumor xenograft model and the tumor environments that might be associated with regulating the progression of the xenograft tumor, which may influence interpretation of diet/diet-derived experimental treatments.


Assuntos
Dieta , Xenoenxertos , Neoplasias da Próstata/prevenção & controle , Transcriptoma , Animais , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Citocinas/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias da Próstata/genética , Receptores Androgênicos/metabolismo
6.
Molecules ; 26(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803186

RESUMO

In the current study, the chemical composition and total phenolic content of tomato seed flours, along with potential health beneficial properties, including free radical scavenging capacities, anti-inflammatory capacities, and gut microbiota profile modulation, were examined using two different batches. Eight compounds were identified in the tomato seed flour, including malic acid, 2-hydroxyadipic acid, salicylic acid, naringin, N-acetyl-tryptophan, quercetin-di-O-hexoside, kaempferol-di-O-hexoside, and azelaic acid. The total phenolic contents of tomato seed flour were 1.97-2.00 mg gallic acid equivalents/g. Oxygen radical absorbing capacities (ORAC), 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacities (DPPH), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical scavenging capacities (ABTS) were 86.32-88.57, 3.57-3.81, and 3.39-3.58 µmoles Trolox equivalents/g, respectively, on a per flour dry weight basis. The mRNA expression of the pro-inflammatory markers, interleukin-1 beta (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α), were dose-dependently suppressed by tomato seed flour extracts. The extracts altered five of the eight bacterial phyla and genera evaluated. The results may provide some scientific support for the use of tomato seed flour as value-added food ingredients.


Assuntos
Sementes/química , Solanum lycopersicum/química , Animais , Anti-Inflamatórios/análise , Antioxidantes/análise , Bactérias/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão/métodos , Fezes/microbiologia , Sequestradores de Radicais Livres/química , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenóis/química , Extratos Vegetais/química
7.
Sci Rep ; 11(1): 5922, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723275

RESUMO

Plant polyphenol gossypol has anticancer activities. This may increase cottonseed value by using gossypol as a health intervention agent. It is necessary to understand its molecular mechanisms before human consumption. The aim was to uncover the effects of gossypol on cell viability and gene expression in cancer cells. In this study, human colon cancer cells (COLO 225) were treated with gossypol. MTT assay showed significant inhibitory effect under high concentration and longtime treatment. We analyzed the expression of 55 genes at the mRNA level in the cells; many of them are regulated by gossypol or ZFP36/TTP in cancer cells. BCL2 mRNA was the most stable among the 55 mRNAs analyzed in human colon cancer cells. GAPDH and RPL32 mRNAs were not good qPCR references for the colon cancer cells. Gossypol decreased the mRNA levels of DGAT, GLUT, TTP, IL families and a number of previously reported genes. In particular, gossypol suppressed the expression of genes coding for CLAUDIN1, ELK1, FAS, GAPDH, IL2, IL8 and ZFAND5 mRNAs, but enhanced the expression of the gene coding for GLUT3 mRNA. The results showed that gossypol inhibited cell survival with decreased expression of a number of genes in the colon cancer cells.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Gossipol/farmacologia , Biomarcadores , Biomarcadores Tumorais , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Neoplasias do Colo/genética , Óleo de Sementes de Algodão/química , Relação Dose-Resposta a Droga , Regulação para Baixo , Genes Reporter , Gossipol/química , Humanos , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia
8.
Nutrients ; 13(1)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440675

RESUMO

The risk of recurrence of estrogen receptor-positive breast cancer remains constant, even 20 years after diagnosis. Recurrence may be more likely in patients pre-programmed for it already in the womb, such as in the daughters born to obese mothers. Maternal obesity persistently alters offspring's gut microbiota and impairs tumor immune responses. To investigate if the gut dysbiosis is linked to increased risk of mammary cancer recurrence in the offspring of obese rat dams, we fed adult offspring genistein which is known to have beneficial effects on the gut bacteria. However, the effects of genistein on breast cancer remain controversial. We found that genistein intake after tamoxifen response prevented the increased risk of local recurrence in the offspring of obese dams but had no effect on the control offspring. A significant increase in the abundance of inflammatory Prevotellaceae and Enterobacteriaceae, and a reduction in short-chain fatty acid producing Clostridiaceae was observed in the offspring of obese dams. Genistein supplementation reversed these changes as well as reversed increased gut metabolite N-acetylvaline levels which are linked to increased all-cause mortality. Genistein supplementation also reduced genotoxic tyramine levels, increased metabolites improving pro-resolving phase of inflammation, and reversed the elevated tumor mRNA expression of multiple immunosuppressive genes in the offspring of obese dams. If translatable to breast cancer patients, attempts to prevent breast cancer recurrences might need to focus on dietary modifications which beneficially modify the gut microbiota.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Genisteína/farmacologia , Neoplasias Mamárias Animais/microbiologia , Obesidade/microbiologia , Efeitos Tardios da Exposição Pré-Natal/microbiologia , Animais , Feminino , Neoplasias Mamárias Animais/tratamento farmacológico , Obesidade/etiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Ratos , Ratos Sprague-Dawley
9.
Nutrients ; 12(10)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076301

RESUMO

Enteropathogenic and enterohemorrhagic Escherichia coli are important enteric pathogens that induce hemorrhagic colitis or even fatal hemolytic uremic syndrome. Emerging evidence shows that some bio-actives derived from fruits and vegetables may serve as alternatives to antibiotics for overcoming multidrug resistant E. coli infections. In this study, the Citrobacter rodentium (Cr) infection model was utilized to mimic E. coli-induced acute intestinal inflammation, and the effects of a cruciferous vegetable-derived cancer protective compound, indole-3-carbinol (I3C), on the immune responses of Cr-susceptible C3H/HeN mice were investigated. Dietary I3C significantly inhibited the loss of body weight and the increase in spleen size in Cr infected mice. In addition, I3C treatment reduced the inflammatory response to Cr infection by maintaining anti-inflammatory cytokine IL-22 mRNA levels while reducing expression of other pro-inflammatory cytokines including IL17A, IL6, IL1ß, TNF-α, and IFN-γ. Moreover, the serum cytokine levels of IL17, TNF-α, IL12p70, and G-CSF also were down-regulated by I3C in Cr-infected mice. Additionally, dietary I3C specifically enhanced the Cr-specific IgG response to Cr infection. In general, dietary I3C reduced the Cr-induced pro-inflammatory response in susceptible C3H/HeN mice and alleviated the physiological changes and tissue damage induced by Cr infection but not Cr colonization.


Assuntos
Antibacterianos , Anti-Inflamatórios , Brassicaceae/química , Citrobacter rodentium , Suplementos Nutricionais , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/imunologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/imunologia , Imunoglobulina G/imunologia , Indóis/administração & dosagem , Fitoterapia , Esplenomegalia/tratamento farmacológico , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Infecções por Enterobacteriaceae/complicações , Infecções por Enterobacteriaceae/patologia , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/patologia , Indóis/isolamento & purificação , Indóis/farmacologia , Mediadores da Inflamação/metabolismo , Interleucinas/metabolismo , Masculino , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Esplenomegalia/etiologia , Esplenomegalia/patologia , Interleucina 22
10.
Microbiome ; 8(1): 83, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32498703

RESUMO

BACKGROUND: The anti-inflammatory property of ω-3 polyunsaturated fatty acids (PUFA) has been exploited in the management of inflammatory bowel disease (IBD) with promising results. However, it remains unclear if PUFA play a significant role in the resolution of inflammation and promotion of mucosal healing. Krill oil (KO) is a natural product rich in PUFA and the potent antioxidant, astaxanthin. In this study, we attempted to understand the mechanisms through which KO modulates the gut microbiome and metabolome using in vitro and in vivo colitis models and a multi-omics based approach. RESULTS: KO significantly decreased LPS-induced IL1ß and TNFα expression in human macrophages in vitro in a dose-dependent manner by regulating a broad spectrum of signaling pathways, including NF-κB and NOD-like receptor signaling, and displayed a synergistic effect with COX2 and IKK2 inhibitors in attenuating inflammatory pathways. Moreover, KO was involved in the resolution of inflammation by promoting M2 polarization and enhancing macrophage-mediated intracellular bacterial killing. Parasite-dependent intestinal mucosal damage and microbial dysbiosis induced by Trichuris suis infection in pigs were partially restored by feeding KO. KO supplementation reduced the abundance of Rickettsiales and several species of Lactobacillus, which were among the important features identified by random forests analysis contributing to classification accuracy for KO supplementation. Several microbial signatures with strong predictive power for the status of both infection and supplementation were identified. The inhibitory effect of KO on histidine metabolism was identified using untargeted metabolomics. KO supplementation reduced several key metabolites related to histamine metabolism by suppressing the expression of a gene encoding L-histidine decarboxylase in the colon mucosa and reducing histamine biosynthesis of microbial origin. Moreover, the pro-resolving properties of KO were validated using a Citrobacter rodentium-induced Th1-dependent colitis murine model. Further, microbial signatures with high prediction accuracy for colitis-related pathophysiological traits were identified in mice. CONCLUSION: The findings from this study provided a mechanistic basis for optimizing microbiome-inspired alternative therapeutics in the management of IBD. The microbial signatures identified, particularly those with strong predictive accuracy for colitis phenotypes, will facilitate the development of biomarkers associated with appropriate dietary intervention to manage intestinal inflammation. Video abstract.


Assuntos
Colite , Euphausiacea , Microbioma Gastrointestinal , Mucosa Intestinal , Óleos , Animais , Células Cultivadas , Colite/tratamento farmacológico , Euphausiacea/química , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Óleos/farmacologia , Óleos/uso terapêutico , Suínos
11.
Nutrients ; 12(4)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230738

RESUMO

Intestinal inflammation is associated with an increased risk of developing colorectal cancer and may result from dysregulated responses to commensal bacteria or exposure to bacterial pathogens. Dietary modulation of intestinal inflammation may protect against development of colon cancer. However, the precise diet-derived components and underlying mechanisms remain elusive. Citrobacter rodentium (Cr) induces acute intestinal inflammation and has been used to study the role of inflammation in the susceptibility to colon cancer. Here we examine the effects of indole-3-carbinol (I3C), a dietary compound with anticarcinogenic properties, on intestinal immune and inflammatory responses to Cr infection and adhesion to colonic cells in vitro. C57BL/6J mice were fed a diet with/without 1 µmol/g I3C and infected with Cr. Compared to infected mice fed with a control diet, consumption of a 1 µmol I3C/g diet significantly reduced fecal excretion of Cr, Cr colonization of the colon, and reduced colon crypt hyperplasia. Furthermore, expression of Cr-induced inflammatory markers such as IL-17A, IL-6, and IL1ß were attenuated in infected mice fed with the I3C diet, compared to mice fed a control diet. The expression of cytotoxic T cell markers CD8 and FasL mRNA were increased in I3C-fed infected mice. In-vitro, I3C inhibited Cr growth and adhesion to Caco-2 cells. I3C alleviates Cr-induced murine colitis through multiple mechanisms including inhibition of Cr growth and adhesion to colonic cells in vitro and enhancement of cytotoxic T cell activity.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Citrobacter rodentium/efeitos dos fármacos , Colite , Indóis/farmacologia , Linfócitos T Citotóxicos , Animais , Células CACO-2 , Colite/metabolismo , Colite/microbiologia , Citocinas , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/microbiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia
12.
Food Sci Nutr ; 8(2): 1215-1225, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32148827

RESUMO

The blackberry seed flour was cold-extracted using 50% acetone and examined for its phytochemical composition and health-beneficial properties including in vitro gut microbiota modulatory, free radical scavenging, anti-inflammatory, and antiproliferative capacities. Among identified thirteen components of blackberry seed flour extract through UHPLC-MS analysis, sanguiin H6 was the primary component and followed by ellagic acid and pedunculagin. For health-beneficial properties, the blackberry seed flour extract increased the total number of gut bacteria and shifted the abundance of specific bacterial phylum, family, or genus. The extract had RDSC, ORAC, HOSC, and ABTS•+ scavenging capacities of 362, 304, 2,531, and 267 µmol Trolox equivalents (TE)/g, respectively. In addition, the blackberry seed flour extract showed capacities for anti-inflammation and antiproliferation by suppressing LPS induced IL-1ß mRNA expressions in the cultured J774A.1 mouse macrophages and the proliferation of LNCaP prostate cancer cells. The results suggest potential health benefits and further utilization of blackberry seed flour as functional foods.

13.
Mol Nutr Food Res ; 64(8): e1901014, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32003143

RESUMO

SCOPE: Butyrate, an intestinal microbiota metabolite of dietary fiber, exhibits colon cancer preventive effects. In contrast, a high fat intake increases fecal secondary bile acids, such as deoxycholic acid (DCA, a potential cancer promoter), which selectively enrich mutant epithelial cells with an abnormally high resistance to DCA-induced apoptosis in the colon. This study is conducted to test the hypothesis that physiological concentrations of butyrate inhibit DCA-resistant colonic cell proliferation. METHODS AND RESULTS: With human HCT-116 cells as parental colonic cells, a human DCA-resistant colonic cell line (DCA-RCL) is developed. DCA treatment increases apoptosis and intracellular reactive oxygen species (an apoptotic trigger) at a rate threefold greater in HCT-116 cells than in DCA-RCL cells. Subsequently, 41 apoptosis related genes (including signaling pathways) with greater than onefold (mRNA) change in DCA-RCL cells are identified compared with HCT-116 cells. Moreover, butyrate treatment inhibits DCA-RCL cell proliferation with similar efficacy when compared with HCT116 cells via cellular myelocytomatosis oncogene (c-Myc)/p38 mitogen-activated protein kinase pathway. CONCLUSION: It is demonstrated that butyrate inhibits DCA-RCL cell proliferation at the cellular and molecular level. These data provide a proof of concept that butyrate can protect against colon carcinogenesis through a specific targeting of DCA-resistant colonic cells.


Assuntos
Anticarcinógenos/farmacologia , Apoptose/efeitos dos fármacos , Butiratos/farmacologia , Ácido Desoxicólico/farmacologia , Apoptose/genética , Apoptose/fisiologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colo/citologia , Fibras na Dieta/farmacologia , Resistencia a Medicamentos Antineoplásicos , Regulação da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Inflamm Res ; 69(2): 167-178, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31865399

RESUMO

OBJECTIVE: To elucidate the regulation, function of the chemokine CXC-motif ligand 12 (CXCL12) and its receptors (CXCR) 4 and 7 in prostate cancer tumor microenvironment. MATERIAL: In-silico-analysis of expression in prostate cancer tissues. In-vitro comparison, testing of regulation in human prostate cancer cells LNCaP, DU145, and PC3. TREATMENT: Dihydrotestosterone (DHT) treatments (0-10 nM) were for 0-48 h. The inflammatory agent Flagellin treatment (20 ng/ml) was for 2 h. Migration assays were performed for 24 h using 10 ng/ml CXCL12. METHODS: Real-time PCR, western analysis, and migration assays were used to determine mRNA, protein, and functional changes, respectively. RESULTS: Malignant prostate cancer tissues exhibit higher CXCR4/7 mRNA ratio, and higher CXCR7 mRNA levels were detected in the androgen-responsive LNCaP cells. Putative androgen-responsive elements were identified in CXCR4, 7 gene, and exposure to DHT, flagellin increased CXCR4 mRNA but decreased CXCR7 mRNA levels in LNCaP cells. Androgen receptor siRNA significantly attenuated the effects of DHT on CXCR4, 7 mRNA in LNCaP cells. However, DHT and flagellin only decrease CXCR7 protein and additively increased migration of LNCaP cells towards CXCL12. CONCLUSIONS: Down regulation of CXCR7 protein by DHT and flagellin increased migration, supporting CXCR7 as decoy receptor counteracting CXCL12/CXCR4-mediated migration in prostate cancer cells.


Assuntos
Androgênios/metabolismo , Inflamação/metabolismo , Neoplasias da Próstata/genética , Receptores CXCR4/genética , Receptores CXCR/genética , Linhagem Celular Tumoral , Movimento Celular , Quimiocina CXCL12/biossíntese , Quimiocina CXCL12/genética , Simulação por Computador , Di-Hidrotestosterona/farmacologia , Flagelina/farmacologia , Humanos , Masculino , Neoplasias da Próstata/patologia , RNA Mensageiro/biossíntese , RNA Neoplásico/biossíntese , Receptores Androgênicos/biossíntese , Receptores Androgênicos/genética , Receptores CXCR/biossíntese , Receptores CXCR4/biossíntese , Microambiente Tumoral
15.
Nutr Res ; 72: 57-69, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31757634

RESUMO

Resveratrol (Res), a natural polyphenol compound found in grapes and red wine, has been shown to exhibit anti-inflammatory, antioxidant, and anticarcinogenic effects. However, proinflammatory/tumor-promoting properties of Res have also been reported, rendering the polyphenol's reported therapeutic benefits less convincing and controversial. To evaluate the underlying plausible factors contributing to the differential immunomodulatory effects imparted by Res, herein, we investigated, at both physiological and pharmacological doses, the in vitro effects of Res on cell survival/proliferation, inflammatory genes, and cytokine production in human monocytic cell line (THP-1) and phorbol 12-myristate 13-acetate differentiated human THP-1-derived macrophages. We hypothesized that the differential effects observed in monocytes and macrophages may largely depend on dietary vs pharmacological doses of Res, duration of treatment, and the target cells it acts upon. Our data showed that Res, at physiological concentrations, inhibited proliferation of THP-1 monocytes with S phase arrest. On the other hand, at pharmacological concentrations, Res induced cell apoptosis and caused G0/G1 phase arrest. Additionally, Res showed differential effects on proinflammatory cytokine expression and production measured by reverse-transcription polymerase chain reaction and enzyme-linked immunosorbent assay, respectively, in THP-1 monocytes vs macrophages: promoting inflammation in monocytes while exhibiting anti-inflammatory effects in macrophages. Comparative analysis on Res and 2 other phytochemicals, pterostilbene and genistein, revealed that the immunomodulatory effects of Res were consistent with those observed in pterostilbene and not genistein. Our results reveal a pleiotropic immunomodulatory property of Res that is dose-time-target cell-dependent and thus serve as a caution for the use of Res in the treatment of inflammatory diseases.


Assuntos
Antioxidantes/farmacologia , Imunidade Inata/efeitos dos fármacos , Macrófagos/imunologia , Monócitos/imunologia , Resveratrol/farmacologia , Células Cultivadas , Humanos , Imunidade Inata/imunologia , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Resveratrol/imunologia , Células THP-1
16.
J Exp Clin Cancer Res ; 38(1): 307, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307507

RESUMO

BACKGROUND: We reported previously that phenethyl isothiocyanate (PEITC), a dietary compound, can reactivate p53R175H mutant in vitro and in SK-BR-3 (p53R175H) breast xenograft model resulting in tumor inhibition. Because of the diversity of human cancers with p53 mutations, these findings raise important questions whether this mechanism operates in different cancer types with same or different p53 mutations. In this study, we investigated whether PEITC recuses mutant p53 in prostate cancer cells harboring different types of p53 mutants, structural and contact, in vitro and in vivo. METHODS: Cell proliferation, cell apoptosis and cell cycle arrest assays were performed to examine the effects of PEITC on prostate cancer cell lines with p53 mutation(s), wild-type p53, p53 null or normal prostate cells in vitro. Western blot analysis was used to monitor the expression levels of p53 protein, activation of ATM and upregulation of canonical p53 targets. Immunoprecipitation, subcellular protein fraction and qRT-PCR was performed to determine change in conformation and restoration of transactivation functions/ inhibition of gain-of-function (GOF) activities to p53 mutant(s). Mice xenograft models were established to evaluate the antitumor efficacy of PEITC and PEITC-induced reactivation of p53 mutant(s) in vivo. Immunohistochemistry of xenograft tumor tissues was performed to determine effects of PEITC on expression of Ki67 and mutant p53 in vivo. RESULTS: We demonstrated that PEITC inhibits the growth of prostate cancer cells with different "hotspot" p53 mutations (structural and contact), however, preferentially towards structural mutants. PEITC inhibits proliferation and induces apoptosis by rescuing mutant p53 in p53R248W contact (VCaP) and p53R175H structural (LAPC-4) mutant cells with differential potency. We further showed that PEITC inhibits the growth of DU145 cells that co-express p53P223L (structural) and p53V274F (contact) mutants by targeting p53P223L mutant selectively, but not p53V274F. The mutant p53 restored by PEITC induces apoptosis in DU145 cells by activating canonical p53 targets, delaying cells in G1 phase and phosphorylating ATM. Importantly, PEITC reactivated p53R175H and p53P223L/V274F mutants in LAPC-4 and DU145 prostate xenograft models, respectively, resulting in significant tumor inhibition. CONCLUSION: Our studies provide the first evidence that PEITC's anti-cancer activity is cancer cell type-independent, but p53 mutant-type dependent.


Assuntos
Anticarcinógenos/administração & dosagem , Isotiocianatos/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Proteína Supressora de Tumor p53/genética , Animais , Anticarcinógenos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Isotiocianatos/farmacologia , Masculino , Camundongos , Mutação , Fosforilação , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Food Funct ; 10(5): 2461-2470, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-30977500

RESUMO

Cold-pressed milk thistle seed flour was extracted with 50% acetone and evaluated for its phytochemical composition, and gut microbiota modulating, free radical scavenging, anti-inflammatory and anti-proliferative capacities. UHPLC-MS analysis detected fifteen compounds in the milk thistle seed flour extract with silychristin as the primary component followed by silybin B and isosilybins A & B. The milk thistle seed flour extract enhanced the total bacteria number and altered the abundance of a specific bacterial phylum or genus under the experimental conditions. The extract had RDSC, ORAC, HOSC, and ABTS˙+ scavenging capacities of 49, 634, 10 420 and 116 µmol Trolox equivalents (TE) per g flour, respectively. In addition, the milk thistle seed flour extract suppressed LPS induced IL-1ß mRNA expression in the cultured J774A.1 mouse macrophages and the proliferation of LNCaP prostate cancer cells. The results suggest milk thistle seed flour's potential health benefits in functional foods.


Assuntos
Farinha/análise , Extratos Vegetais/química , Silybum marianum/química , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Manipulação de Alimentos , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Extratos Vegetais/farmacologia , Sementes/química
18.
Nutrients ; 11(2)2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30813350

RESUMO

Accumulated evidence suggests that the cruciferous vegetables-derived compound indole-3-carbinol (I3C) may protect against prostate cancer, but the precise mechanisms underlying its action remain unclear. This study aimed to verify the hypothesis that the beneficial effect of dietary I3C may be due to its modulatory effect on the gut microbiome of mice. Athymic nude mice (5⁻7 weeks old, male, Balb c/c nu/nu) with established tumor xenografts were fed a basal diet (AIN-93) with or without 1 µmoles I3C/g for 9 weeks. The effects of dietary I3C on gut microbial composition and microbial species interactions were then examined by 16s rRNA gene-based sequencing and co-occurrence network analysis. I3C supplementation significantly inhibited tumor growth (p < 0.0001) and altered the structure of gut microbiome. The abundance of the phylum Deferribacteres, more specifically, Mucispirillum schaedleri, was significantly increased by dietary I3C. Additionally, I3C consumption also changed gut microbial co-occurrence patterns. One of the network modules in the control group, consisting of seven bacteria in family S-27, was positively correlated with tumor size (p < 0.009). Moreover, dietary I3C disrupted microbial interactions and altered this association between specific microbial network and tumor development. Our results unraveled complex relationships among I3C ingestion, gut microbiota, and prostate tumor development and may provide a novel insight into the mechanism for the chemopreventive effect of dietary I3C on prostate cancer.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Indóis/administração & dosagem , Neoplasias Experimentais/tratamento farmacológico , Ração Animal , Animais , Ceco/microbiologia , DNA/química , Dieta , Fezes/química , Fezes/microbiologia , Indóis/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/prevenção & controle
19.
Anal Biochem ; 573: 73-76, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30853376

RESUMO

In the present study, we evaluated, under transient transfection conditions, five different cationic lipid-based transfection reagents on the activation of NF-κB, MAP kinases signaling pathways and induction of cytokines expression. We found that the reagents studied differentially regulated the NF-κB and the MAP kinases signaling pathways in the human THP-1 macrophage. Additionally, mRNA expression levels of the cytokines, IL-1ß and TNF-α in THP-1 macrophage were also induced by selected test reagents. Hence, careful selection of cationic lipid-based transfection reagent for transient transfection is warranted, especially in studies of gene expression and function mediated through NF-κB- and MAP kinases-mediated pathways.


Assuntos
Citocinas/genética , Lipídeos/química , RNA Mensageiro/metabolismo , Transdução de Sinais , Transfecção/métodos , Linhagem Celular , Humanos , Interleucina-1beta/genética , Macrófagos/citologia , Macrófagos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/genética
20.
J Agric Food Chem ; 66(35): 9309-9317, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30068076

RESUMO

Carrot, cucumber, and broccoli seed flours were extracted with 50% acetone and evaluated for their phytochemical compositions along with their potential gut microbiota modulating, free radical scavenging, and anti-inflammatory capacities. Nine and ten compounds were detected in the broccoli and carrot seed flour extracts, with kaempferol-3- O-rutinoside and glucoraphanin as the primary component of each, respectively. All three seed flour extracts enhanced total number of gut bacteria and altered the abundance of specific bacterial phylum or genus in vitro. The broccoli seed flour extract had the greatest relative DPPH radical scavenging capacity, oxygen radical absorbing capacity, and hydroxyl radical (HO•) scavenging capacity values of 85, 634, and 270 µmol trolox equivalent (TE)/g, respectively. Carrot seed flour extract showed the greatest ABTS•+ scavenging capacity of 250 µmol TE/g. Also, three seed flour extracts suppressed LPS induced IL-1ß and COX-2 mRNA expressions in J774A.1 cells. The results might be used to promote the value-added utilization of these vegetable seed flours in improving human health.


Assuntos
Anti-Inflamatórios/química , Brassica/química , Cucumis sativus/química , Daucus carota/química , Sequestradores de Radicais Livres/química , Microbioma Gastrointestinal/efeitos dos fármacos , Extratos Vegetais/química , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Temperatura Baixa , Fezes/microbiologia , Farinha/análise , Sequestradores de Radicais Livres/isolamento & purificação , Sequestradores de Radicais Livres/farmacologia , Humanos , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA