Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38645231

RESUMO

Antibody-drug conjugates (ADCs) have experienced a surge in clinical approvals in the past five years. Despite this success, a major limitation to ADC efficacy in solid tumors is poor tumor penetration, which leaves many cancer cells untargeted. Increasing antibody doses or co-administering ADC with an unconjugated antibody can improve tumor penetration and increase efficacy when target receptor expression is high. However, it can also reduce efficacy in low-expression tumors where ADC delivery is limited by cellular uptake. This creates an intrinsic problem because many patients express different levels of target between tumors and even within the same tumor. Here, we generated High-Avidity, Low-Affinity (HALA) antibodies that can automatically tune the cellular ADC delivery to match the local expression level. Using HER2 ADCs as a model, HALA antibodies were identified with the desired HER2 expression-dependent competitive binding with ADCs in vitro. Multi-scale distribution of trastuzumab emtansine and trastuzumab deruxtecan co-administered with the HALA antibody were analyzed in vivo, revealing that the HALA antibody increased ADC tumor penetration in high-expression systems with minimal reduction in ADC uptake in low-expression tumors. This translated to greater ADC efficacy in immunodeficient mouse models across a range of HER2 expression levels. Furthermore, Fc-enhanced HALA antibodies showed improved Fc-effector function at both high and low expression levels and elicited a strong response in an immunocompetent mouse model. These results demonstrate that HALA antibodies can expand treatment ranges beyond high expression targets and leverage strong immune responses.

2.
Antibodies (Basel) ; 8(3)2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31544849

RESUMO

With the current biotherapeutic market dominated by antibody molecules, bispecific antibodies represent a key component of the next-generation of antibody therapy. Bispecific antibodies can target two different antigens at the same time, such as simultaneously binding tumor cell receptors and recruiting cytotoxic immune cells. Structural diversity has been fast-growing in the bispecific antibody field, creating a plethora of novel bispecific antibody scaffolds, which provide great functional variety. Two common formats of bispecific antibodies on the market are the single-chain variable fragment (scFv)-based (no Fc fragment) antibody and the full-length IgG-like asymmetric antibody. Unlike the conventional monoclonal antibodies, great production challenges with respect to the quantity, quality, and stability of bispecific antibodies have hampered their wider clinical application and acceptance. In this review, we focus on these two major bispecific types and describe recent advances in the design, production, and quality of these molecules, which will enable this important class of biologics to reach their therapeutic potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA