Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 116(11): 1197-1208, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37728826

RESUMO

Regulation of prodigiosin biosynthesis is received wide attention due to the antimicrobial, immunosuppressive and anticancer activities of prodigiosin. Here, we constructed a transposon mutant library in S. marcescens FS14 to identify genes involved in the regulation of prodigiosin biosynthesis. 62 strains with apparently different colors were obtained. Identification of the transposon insertion sites revealed that they are classified into three groups: the coding region of cyaA and two component system eepS/R and the promoter region of rpoH. Since the effect of cyaA and eepS/R genes on prodigiosin was extensively investigated in Serratia marcescens, we chose the mutant of rpoH for further investigation. Further deletion mutation of rpoH gene showed no effect on prodigiosin production suggesting that the effect on prodigiosin production caused by transposon insertion is not due to the deletion of RpoH. We further demonstrated that multicopy expression of RpoH reduced prodigiosin biosynthesis indicating that transposon insertion caused RpoH enhanced expression. Previous results indicate that RpoS is the sigma factor for transcription of pig gene cluster in FS14, to test whether the enhanced expression of RpoH prevents prodigiosin by competing with RpoS, we found that multicopy expression of RpoS could alleviate the prodigiosin production inhibition by enhanced RpoH. We proposed that multicopy expressed RpoH competes with RpoS for core RNA polymerase (RNAP) resulting in decreased transcription of pig gene cluster and prodigiosin production reduction. We also demonstrated that RpoH is not directly involved in prodigiosin biosynthesis. Our results suggest that manipulating the transcription level of sigma factors may be applied to regulate the production of secondary metabolites.


Assuntos
Prodigiosina , Serratia marcescens , Animais , Suínos , Serratia marcescens/metabolismo , Prodigiosina/metabolismo , Fator sigma/genética , Fator sigma/metabolismo , Sequência de Bases
2.
Proteins ; 91(7): 956-966, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36869636

RESUMO

Violacein is a pigment synthesized by gram-negative bacteria with various biological activities such as antimicrobial, antiviral, and anticancer activities. VioD is a key oxygenase converting protodeoxyviolaceinic acid to protoviolaceinic acid in violacein biosynthesis. To elucidate the catalytic mechanism of VioD, here, we resolved two crystal structures of VioD, a binary complex structure containing VioD and a FAD and a ternary complex structure composed of VioD, a FAD and a 2-ethyl-1-hexanol (EHN). Structural analysis revealed a deep funnel like binding pocket with wide entrance, this pocket is positively charged. The EHN is located at the deep bottom of the binding pocket near isoalloxazine ring. Further docking simulation help us to propose the mechanism of the hydroxylation of the substrate catalyzed by VioD. Bioinformatic analysis suggested and emphasized the importance of the conserved residues involved in substrate binding. Our results provide a structural basis for the catalytic mechanism of VioD.


Assuntos
Catálise , Cristalografia por Raios X
3.
Bioresour Technol ; 373: 128744, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36791978

RESUMO

Tetrasphaera-enhanced biological phosphorus removal (T-EBPR) was developed by augmenting conventional EBPR (C-EBPR) with Tetrasphaera to improve phosphorus removal from anaerobic digestate of swine wastewater. At influent total phosphorus (TP) concentrations of 45-55 mg/L, T-EBPR achieved effluent TP concentration of 4.17 ± 1.02 mg/L, 54 % lower than that in C-EBPR (8.98 ± 0.76 mg/L). The enhanced phosphorous removal was presumably due to the synergistic effect of Candidatus Accumulibacter and Tetrasphaera occupying different ecological niches. Bioaugmentation with Tetrasphaera promoted the polyphosphate accumulation metabolism depending more on the glycolysis pathway, as evidenced by an increase in intracellular storage compounds of glycogen and polyhydroxyalkanoates by 0.87 and 0.34 mmol C/L, respectively. The enhanced intracellular storage capacity was coincidentally linked to the increase in phosphorus release and uptake rates by 1.23 and 1.01 times, respectively. These results suggest bioaugmentation with Tetrasphaera could be an efficient way for improved phosphorus removal from high-strength wastewater.


Assuntos
Actinomycetales , Águas Residuárias , Animais , Suínos , Fósforo/metabolismo , Anaerobiose , Polifosfatos/metabolismo , Reatores Biológicos , Actinomycetales/metabolismo , Esgotos
4.
IUCrJ ; 9(Pt 2): 316-327, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35371495

RESUMO

Prodigiosin, a red linear tripyrrole pigment, is a typical secondary metabolite with numerous biological functions, such as anticancer, antibacterial and immunosuppressant activities, and is synthesized through a bifurcated biosynthesis pathway from 4-methoxy-2,2'-bipyrrole-5-carbaldehyde (MBC) and 2-methyl-3-n-amylpyrrole (MAP). The last step in the biosynthetic pathway of MBC is catalysed by PigF, which transfers a methyl group to 4-hydroxy-2,20-bipyrrole-5-carbaldehyde (HBC) to form the final product MBC. However, the catalytic mechanism of PigF is still elusive. In this study, crystal structures of apo PigF and S-adenosylhomocysteine (SAH)-bound PigF were determined. PigF forms a homodimer and each monomer consists of two domains: a C-terminal catalytic domain and an N-terminal dimerization domain. Apo PigF adopts an open conformation, while the structure of the complex with the product SAH adopts a closed conformation. The binding of SAH induces dramatic conformational changes of PigF, suggesting an induced-fit substrate-binding mechanism. Further structural comparison suggests that this induced-fit substrate-recognition mechanism may generally exist in O-methyltransferases. Docking and mutation studies identified three key residues (His98, His247 and Asp248) that are crucial for enzyme activity. The essential function of His247 and Asp248 and structure analysis suggests that both residues are involved in activation of the HBC substrate of PigF. The invariance of Asp248 in PigF further confirmed its essential role. The invariance and essential role of His98 in PigF suggests that it is involved in correctly positioning the substrate. This study provides new insight into the catalytic mechanism of PigF, reveals an induced-fit substrate-recognition model for PigF and broadens the understanding of O-methyltransferases.

5.
Int J Biol Macromol ; 156: 1556-1564, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31785296

RESUMO

Myroilysin is a novel bacterial member of M12A metalloproteases family with an uncommon "cysteine switch" activation mechanism and a unique "cap" structure. However, activation of pro-myroilysin is elusive. Here, mature myroilysin was obtained for structure determination by treating pro-myroilysin with trypsin. The structure of mature myroilysin showed that the active-site zinc ion of the mature protein is coordinated by three histidine residues, a water molecule, and a tyrosine residue (Tyr208) in the conserved Met-turn motif (SIMHY). The "cap" structure moves away from the active-site to leave the active cleft open; the newly formed N-terminus is deeply buried in myroilysin, and Glu151 forms a salt bridge directly with the first amino acid residue (Gly38), whereas they are far from each other in the pro-myroilysin. The mutation of Tyr208 indicates that Tyr208 plays an important role in activity of myroilysin. The proteolytic activity and thermostability of mutant E151A decreased dramatically, implying that Glu151 is not only important for catalysis, but also crucial for structural stability in myroilysin. Structural comparison also reveals differences existed between myroilysin and astacin. Our biochemical and structural data provide new insights into the activation of myroilysin and functional involvement of crucial residues Tyr208 and Glu151.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Metaloproteases/química , Metaloproteases/metabolismo , Motivos de Aminoácidos , Cristalografia por Raios X , Ativação Enzimática , Estabilidade Enzimática
6.
Artigo em Inglês | MEDLINE | ID: mdl-31263685

RESUMO

Enolase is an evolutionarily conserved enzyme involved in the processes of glycolysis and gluconeogenesis. Mycoplasma hyopneumoniae belongs to Mycoplasma, whose species are wall-less and among the smallest self-replicating bacteria, and is an important colonizing respiratory pathogen in the pig industry worldwide. Mycoplasma hyopneumoniae enolase (Mhp Eno) expression is significantly increased after infection and was previously found to be a virulence factor candidate. Our studies show that Mhp Eno is a cell surface-localized protein that can adhere to swine tracheal epithelial cells (STECs). Adhesion to STECs can be specifically inhibited by an Mhp Eno antibody. Mhp Eno can recognize and interact with plasminogen with high affinity. Here, the first crystal structure of the mycoplasmal enolase from Mycoplasma hyopneumoniae was determined. The structure showed unique features of Mhp Eno in the S3/H1, H6/S6, H7/H8, and H13 regions. All of these regions were longer than those of other enolases and were exposed on the Mhp Eno surface, making them accessible to host molecules. These results show that Mhp Eno has specific structural characteristics and acts as a multifunctional adhesin on the Mycoplasma hyopneumoniae cell surface.


Assuntos
Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Membrana Celular/metabolismo , Mycoplasma hyopneumoniae/enzimologia , Fosfopiruvato Hidratase/química , Fosfopiruvato Hidratase/metabolismo , Adesinas Bacterianas/genética , Adesinas Bacterianas/isolamento & purificação , Animais , Cristalografia por Raios X , Células Epiteliais/microbiologia , Modelos Moleculares , Mycoplasma hyopneumoniae/metabolismo , Mycoplasma hyopneumoniae/patogenicidade , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/isolamento & purificação , Plasminogênio/metabolismo , Pneumonia Suína Micoplasmática/microbiologia , Conformação Proteica , Alinhamento de Sequência , Análise de Sequência de Proteína , Especificidade da Espécie , Ressonância de Plasmônio de Superfície , Suínos , Fatores de Virulência
7.
J Biol Chem ; 292(13): 5195-5206, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28188295

RESUMO

Proteases play important roles in all living organisms and also have important industrial applications. Family M12A metalloproteases, mainly found throughout the animal kingdom, belong to the metzincin protease family and are synthesized as inactive precursors. So far, only flavastacin and myroilysin, isolated from bacteria, were reported to be M12A proteases, whereas the classification of myroilysin is still unclear due to the lack of structural information. Here, we report the crystal structures of pro-myroilysin from bacterium Myroides sp. cslb8. The catalytic zinc ion of pro-myroilysin, at the bottom of a deep active site, is coordinated by three histidine residues in the conserved motif HEXXHXXGXXH; the cysteine residue in the pro-peptide coordinates the catalytic zinc ion and inhibits myroilysin activity. Structure comparisons revealed that myroilysin shares high similarity with the members of the M12A, M10A, and M10B families of metalloproteases. However, a unique "cap" structure tops the active site cleft in the structure of pro-myroilysin, and this "cap" structure does not exist in the above structure-reported subfamilies. Further structure-based sequence analysis revealed that myroilysin appears to belong to the M12A family, but pro-myroilysin uses a "cysteine switch" activation mechanism with a unique segment, including the conserved cysteine residue, whereas other reported M12A family proteases use an "aspartate switch" activation mechanism. Thus, our results suggest that myroilysin is a new bacterial member of the M12A family with an exceptional cysteine switch activation mechanism. Our results shed new light on the classification of the M12A family and may suggest a divergent evolution of the M12 family.


Assuntos
Flavobacteriaceae/enzimologia , Metaloproteases/classificação , Proteínas de Bactérias , Domínio Catalítico , Sequência Conservada , Cristalização , Cisteína/farmacologia , Ativação Enzimática/efeitos dos fármacos , Histidina , Metaloendopeptidases/química , Metaloendopeptidases/classificação , Metaloendopeptidases/metabolismo , Metaloproteases/metabolismo , Estrutura Molecular , Zinco
8.
Mol Neurobiol ; 47(3): 1000-10, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23329343

RESUMO

Interferon-beta (IFN-ß) is a cytokine with anti-viral, anti-proliferative, and immunomodulatory effects. In this study, we investigated the effects of IFN-ß on the induction of autophagy and the relationships among autophagy, growth inhibition, and apoptosis induced by IFN-ß in human glioma cells. We found that IFN-ß induced autophagosome formation and conversion of microtubule associated protein 1 light chain 3 (LC3) protein, whereas it inhibited cell growth through caspase-dependent cell apoptosis. The Akt/mTOR signaling pathway was involved in autophagy induced by IFN-ß. A dose- and time-dependent increase of p-ERK 1/2 expression was also observed in human glioma cells treated with IFN-ß. Autophagy induced by IFN-ß was suppressed when p-ERK1/2 was impaired by treatment with U0126. We also demonstrated that suppression of autophagy significantly enhanced growth inhibition and cell apoptosis induced by IFN-ß, whereas inhibition of caspase-dependent cell apoptosis impaired autophagy induced by IFN-ß. Collectively, these findings indicated that autophagy induced by IFN-ß was associated with the Akt/mTOR and ERK 1/2 signaling pathways, and inhibition of autophagy could enhance the growth inhibitory effects of IFN-ß and increase apoptosis in human glioma cells. Together, these findings support the possibility that autophagy inhibitors may improve IFN-ß therapy for gliomas.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Glioma/patologia , Interferon beta/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Glioma/enzimologia , Glioma/ultraestrutura , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Fagossomos/ultraestrutura , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
9.
J Mol Biol ; 367(2): 547-57, 2007 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-17270211

RESUMO

Oxaloacetate decarboxylase is a membrane-bound multiprotein complex that couples oxaloacetate decarboxylation to sodium ion transport across the membrane. The initial reaction catalyzed by this enzyme machinery is the carboxyl transfer from oxaloacetate to the prosthetic biotin group. The crystal structure of the carboxyltransferase at 1.7 A resolution shows a dimer of alpha(8)beta(8) barrels with an active site metal ion, identified spectroscopically as Zn(2+), at the bottom of a deep cleft. The enzyme is completely inactivated by specific mutagenesis of Asp17, His207 and His209, which serve as ligands for the Zn(2+) metal ion, or by Lys178 near the active site, suggesting that Zn(2+) as well as Lys178 are essential for the catalysis. In the present structure this lysine residue is hydrogen-bonded to Cys148. A potential role of Lys178 as initial acceptor of the carboxyl group from oxaloacetate is discussed.


Assuntos
Carboxiliases/química , Carboxil e Carbamoil Transferases/química , Modelos Moleculares , ATPase Trocadora de Sódio-Potássio/química , Vibrio cholerae/enzimologia , Zinco/química , Sequência de Aminoácidos , Sítios de Ligação , Carboxiliases/genética , Carboxil e Carbamoil Transferases/genética , Cátions Bivalentes , Cristalografia por Raios X , Dimerização , Ligação de Hidrogênio , Dados de Sequência Molecular , Mutação , ATPase Trocadora de Sódio-Potássio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA