Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38266610

RESUMO

23-hydroxybetulinic acid (23-HA), a main bioactive component isolated from Pulsatilla chinensis (Bunge) Regel, exhibits various pharmacological activities, such as antimelanoma, antileukemia, anti-colon cancer, and antihepatotoxicity. Although the main active ingredient anemoside B4 (AB4) from this plant has been well studied, research on its active metabolite 23-HA is limited. In the present study, a validated HPLC-QQQ-MS/MS method was established for the quantification of 23-HA in rat plasma. Pharmacokinetics analysis showed that the absorption and elimination of 23-HA in rats were rapid, with an oral bioavailability as 12.9 %. After oral administration with 50 mg/kg 23-HA for SD rats, the plasma, urine, feces, and bile samples were collected and analyzed by UPLC-Q Exactive Plus MS and HPLC-QQQ-MS/MS. Seventeen metabolites of 23-HA were identified, and its major metabolic pathways included oxidation, hydration, sulfation, and glucuronidation. This study highlights the first detailed investigation of 23-HA's pharmacokinetics in rats along with its metabolism in vivo, and will provide robust evidence for further research and clinical application of 23-HA.


Assuntos
Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas em Tandem , Triterpenos , Ratos , Animais , Ratos Sprague-Dawley , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Fezes/química , Administração Oral
2.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3781-3787, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-35850835

RESUMO

Since the current identification method for Paeoniae Radix Alba is complex in operation and long time-consuming with high requirements for technicians, the present study employed Heracles NEO ultra-fast gas phase electronic nose(E-nose) technology to identify raw and sulfur-fumigated Paeoniae Radix Alba decoction pieces in order to establish a rapid identification method for sulfur-fumigated Paeoniae Radix Alba. The odors of raw Paeoniae Radix Alba and its sulfur-fumigated products were analyzed by Heracles NEO ultra-fast gas phase E-nose to obtain the odor chromatographic information. The chemometric model was established, and the data were processed by principal component analysis(PCA), discriminant function analysis(DFA), soft independent modeling of class analogy(SIMCA), and partial least squares discriminant analysis(PLS-DA). The differential compounds of raw and sulfur-fumigated samples were qualitatively analyzed based on the Kovats retention index and Arochembase. As revealed by the comparison of gas chromatograms of raw and sulfur-fumigated Paeoniae Radix Alba, the heights of several peaks in the chromatograms before and after sulfur fumigation changed significantly. The peak(No.8) produced by ethylbenzene disappeared completely due to sulfonation reaction in the process of sulfur fumigation, indicating that ethylbenzene may be the key component in the identification of Paeoniae Radix Alba and its sulfur-fumigated products. In PCA, DFA, SIMCA, and PLS-DA models, the two types of samples were separated into two different regions, indicating that the established models can clearly distinguish between raw and sulfur-fumigated Paeoniae Radix Alba. The results showed that Heracles NEO ultra-fast gas phase E-nose technology could realize the rapid identification of raw and sulfur-fumigated Paeoniae Radix Alba, which provides a new method and idea for the rapid identification of sulfur-fumigated Chinese medicine.


Assuntos
Medicamentos de Ervas Chinesas , Paeonia , Medicamentos de Ervas Chinesas/química , Nariz Eletrônico , Fumigação/métodos , Paeonia/química , Extratos Vegetais , Enxofre/química
3.
J Am Chem Soc ; 143(46): 19425-19437, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34767710

RESUMO

Muraymycins are peptidyl nucleoside antibiotics that contain two Cß-modified amino acids, (2S,3S)-capreomycidine and (2S,3S)-ß-OH-Leu. The former is also a component of chymostatins, which are aldehyde-containing peptidic protease inhibitors that─like muraymycin─are derived from nonribosomal peptide synthetases (NRPSs). Using feeding experiments and in vitro characterization of 12 recombinant proteins, the biosynthetic mechanism for both nonproteinogenic amino acids is now defined. The formation of (2S,3S)-capreomycidine is shown to involve an FAD-dependent dehydrogenase:cyclase that requires an NRPS-bound pathway intermediate as a substrate. This cryptic dehydrogenation strategy is both temporally and mechanistically distinct in comparison to the biosynthesis of other capreomycidine diastereomers, which has previously been shown to proceed by Cß-hydroxylation of free l-Arg catalyzed by a member of the nonheme Fe2+- and α-ketoglutarate (αKG)-dependent dioxygenase family and (eventually) a dehydration-mediated cyclization process catalyzed by a distinct enzyme(s). Contrary to our initial expectation, the sole nonheme Fe2+- and αKG-dependent dioxygenase candidate Mur15 encoded within the muraymycin gene cluster is instead demonstrated to catalyze specific Cß hydroxylation of the Leu residue to generate (2S,3S)-ß-OH-Leu that is found in most muraymycin congeners. Importantly, and in contrast to known l-Arg-Cß-hydroxylases, the Mur15-catalyzed reaction occurs after the NRPS-mediated assembly of the peptide scaffold. This late-stage functionalization affords the opportunity to exploit Mur15 as a biocatalyst, proof of concept of which is provided.


Assuntos
Arginina/metabolismo , Produtos Biológicos/metabolismo , Leucina/metabolismo , Peptídeo Sintases/metabolismo , Peptídeos/metabolismo , Arginina/química , Produtos Biológicos/química , Leucina/química , Estrutura Molecular , Peptídeo Sintases/química , Peptídeos/química
4.
J Nat Prod ; 84(9): 2568-2574, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34496568

RESUMO

Twelve guaianolide-type sesquiterpene oligomers with diverse structures were isolated from the whole plants of Ainsliaea fragrans, including a novel trimer (1) and two new dimers (2, 3). The chemical structures of the new compounds were elucidated through spectroscopic data interpretation and computational calculations. Ainsfragolide (1) is an unusual guaianolide sesquiterpene trimer generated with a novel C-C linkage at C2'-C15″, which may be biosynthesized prospectively through a further Michael addition. Cytotoxicity results showed that ainsfragolide (1) was the most potent compound against five cancer cell lines with IC50 values in the range of 0.4-8.3 µM.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Asteraceae/química , Sesquiterpenos de Guaiano/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , China , Humanos , Estrutura Molecular , Sesquiterpenos de Guaiano/isolamento & purificação
5.
Artigo em Inglês | MEDLINE | ID: mdl-34492510

RESUMO

Iridin, one of the main bioactive components isolated from Belamcanda chinensis (L.) DC, exerts various pharmacological activities, such as anti-inflammation, antioxidant, and antitumor. However, the metabolism and pharmacokinetics of iridin are still unknown. After 100 mg/kg administration of iridin orally, the plasma, urine, and fecal bio-samples from Sprague-Dawley (SD) rats were collected and detected by ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The pharmacokinetics of the major metabolite irigenin (aglycon of iridin) and a total of thirteen metabolites of iridin were identified, including five metabolites in plasma, ten metabolites in urine, and six metabolites in feces. The most principal metabolic pathway of iridin was glucuronidation after demethylation and was mediated by UDP-glucuronosyltransferases (UGTs) 1A7, 1A8, 1A9 and 1A10. This study highlights the first-time investigation of the metabolism of iridin in vivo, and the pharmacokinetics of irigenin (the major metabolite of iridin) in rats. These results provide robust evidence for further research and clinical application of iridin.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Flavonoides , Isoflavonas , Espectrometria de Massas em Tandem/métodos , Animais , Fezes/química , Feminino , Flavonoides/análise , Flavonoides/química , Flavonoides/farmacocinética , Isoflavonas/análise , Isoflavonas/química , Isoflavonas/farmacocinética , Limite de Detecção , Modelos Lineares , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
6.
Front Chem ; 9: 807508, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35237566

RESUMO

Three new polyketide dimers named huoshanmycins A‒C (1-3) were isolated from a plant endophytic Streptomyces sp. HS-3-L-1 in the leaf of Dendrobium huoshanense, which was collected from the Cultivation base in Jiuxianzun Huoshanshihu Co., Ltd. The dimeric structures of huoshanmycins were composed of unusual polyketides SEK43, SEK15, or UWM4, with a unique methylene linkage. Their structures were elucidated through comprehensive 1D-/2D-NMR and HRESIMS spectroscopic data analysis. The cytotoxicity against MV4-11 human leukemia cell by the Cell Counting Kit-8 (CCK8) method was evaluated using isolated compounds with triptolide as positive control (IC50: 1.1 ± 0.4 µM). Huoshanmycins A and B (1, 2) displayed moderate cytotoxicity with IC50 values of 32.9 ± 7.2 and 33.2 ± 6.1 µM, respectively.

7.
Nat Chem Biol ; 16(8): 904-911, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32483377

RESUMO

Several nucleoside antibiotics are structurally characterized by a 5″-amino-5″-deoxyribose (ADR) appended via a glycosidic bond to a high-carbon sugar nucleoside (5'S,6'S)-5'-C-glycyluridine (GlyU). GlyU is further modified with an N-alkylamine linker, the biosynthetic origin of which has yet to be established. By using a combination of feeding experiments with isotopically labeled precursors and characterization of recombinant proteins from multiple pathways, the biosynthetic mechanism for N-alkylamine installation for ADR-GlyU-containing nucleoside antibiotics has been uncovered. The data reveal S-adenosyl-L-methionine (AdoMet) as the direct precursor of the N-alkylamine, but, unlike conventional AdoMet- or decarboxylated AdoMet-dependent alkyltransferases, the reaction is catalyzed by a pyridoxal-5'-phosphate-dependent aminobutyryltransferase (ABTase) using a stepwise γ-replacement mechanism that couples γ-elimination of AdoMet with aza-γ-addition onto the disaccharide alkyl acceptor. In addition to using a conceptually different strategy for AdoMet-dependent alkylation, the newly discovered ABTases require a phosphorylated disaccharide alkyl acceptor, revealing a cryptic intermediate in the biosynthetic pathway.


Assuntos
Antibacterianos/química , Fosfato de Piridoxal/química , Alquilação/fisiologia , Antibacterianos/farmacologia , Fenômenos Bioquímicos , Metionina/metabolismo , Nucleosídeos/química , Fosfatos , Fosforilação , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/química
8.
Ann Transl Med ; 8(7): 455, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32395499

RESUMO

BACKGROUND: Endophyte has now become a potential source for the discovery of novel natural products, as they participate in biochemical pathways of their hosts and produce analogous or novel bioactive compounds. As an epiphytic plant, Dendrobium officinale is one of precious Chinese medicines with various activities. It is well known for containing diverse endophytes, but so far not much is known about their secondary metabolites. METHODS: the plant tissues were cut and cultured on agar plates to isolate and purify the endophytic bacteria from Dendrobium officinale. Taxonomical identification of strains was performed by 16s rRNA. At the same time, the crude extracts of the strains were tested for antibacterial and cytotoxic activities to screen out one endophyte, Streptomyces sp. SH-1.2-R-15 for further study. After scale-up fermentation, isolation, purification and structure elucidation by using MS, 1D/2D-NMR spectroscopic method, secondary metabolites were identified and submitted for biological activity test. RESULTS: Fifty-eight endophytic strains representing 9 genera were obtained, with 50% of strains were Streptomyces. One of the most active strain, Streptomyces sp. 1.2-R-15, was selected for bioassay-guided isolation, which led to the discovery of two new peptide-type compounds 1 and 2, as well as a bioactive chartreusin, and four other known natural products. Their structures were determined by comprehensive spectroscopic techniques. Chartreusin showed potent cytotoxicity against Hep3B2.1-7 (IC50 =18.19 µM) and H1299 (IC50 =19.74 µM) cancer cell lines, and antibacterial activity against S. aureus (IC50 =23.25 µM). CONCLUSIONS: This study highlights the endophytic bacteria from medical plant D. officinale have potential bioactivity and natural product diversity, thus implicates them as a valuable source for new anticancer and antibiotics agents.

9.
J Nat Prod ; 82(12): 3469-3476, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31833370

RESUMO

We report the isolation and characterization of three new nybomycins (nybomycins B-D, 1-3) and six known compounds (nybomycin, 4; deoxynyboquinone, 5; α-rubromycin, 6; ß-rubromycin, 7; γ-rubromycin, 8; and [2α(1E,3E),4ß]-2-(1,3-pentadienyl)-4-piperidinol, 9) from the Rock Creek (McCreary County, KY) underground coal mine acid reclamation site isolate Streptomyces sp. AD-3-6. Nybomycin D (3) and deoxynyboquinone (5) displayed moderate (3) to potent (5) cancer cell line cytotoxicity and displayed weak to moderate anti-Gram-(+) bacterial activity, whereas rubromycins 6-8 displayed little to no cancer cell line cytotoxicity but moderate to potent anti-Gram-(+) bacterial and antifungal activity. Assessment of the impact of 3 or 5 cancer cell line treatment on 4E-BP1 phosphorylation, a predictive marker of ROS-mediated control of cap-dependent translation, also revealed deoxynyboquinone (5)-mediated downstream inhibition of 4E-BP1p. Evaluation of 1-9 in a recently established axolotl embryo tail regeneration assay also highlighted the prototypical telomerase inhibitor γ-rubromycin (8) as a new inhibitor of tail regeneration. Cumulatively, this work highlights an alternative nybomycin production strain, a small set of new nybomycin metabolites, and previously unknown functions of rubromycins (antifungal activity and inhibition of tail regeneration) and also provides a basis for revision of the previously proposed nybomycin biosynthetic pathway.


Assuntos
Streptomyces/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Estrutura Molecular , Quinolonas/química , Quinolonas/metabolismo , Quinolonas/farmacologia , Análise Espectral/métodos
10.
Cell Chem Biol ; 26(3): 366-377.e12, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30661989

RESUMO

Peroxiredoxin 1 (Prx1) and glutaredoxin 3 (Grx3) are two major antioxidant proteins that play a critical role in maintaining redox homeostasis for tumor progression. Here, we identify the prototypical pyranonaphthoquinone natural product frenolicin B (FB) as a selective inhibitor of Prx1 and Grx3 through covalent modification of active-site cysteines. FB-targeted inhibition of Prx1 and Grx3 results in a decrease in cellular glutathione levels, an increase of reactive oxygen species (ROS), and concomitant inhibition of cancer cell growth, largely by activating the peroxisome-bound tuberous sclerosis complex to inhibit mTORC1/4E-BP1 signaling axis. FB structure-activity relationship studies reveal a positive correlation between inhibition of 4E-BP1 phosphorylation, ROS-mediated cancer cell cytotoxicity, and suppression of tumor growth in vivo. These findings establish FB as the most potent Prx1/Grx3 inhibitor reported to date and also notably highlight 4E-BP1 phosphorylation status as a potential predictive marker in response to ROS-based therapies in cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/química , Proteínas de Ciclo Celular/metabolismo , Glutarredoxinas/metabolismo , Peroxirredoxinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glutarredoxinas/antagonistas & inibidores , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Nus , Naftoquinonas/química , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Peroxirredoxinas/antagonistas & inibidores , Fosforilação/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transplante Heterólogo
11.
J Nat Prod ; 81(11): 2560-2566, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30418763

RESUMO

The isolation and structure elucidation of four new naturally occurring amino-nucleoside [puromycins B-E (1-4)] metabolites from a Himalayan isolate ( Streptomyces sp. PU-14-G, isolated from the Bara Gali region of northern Pakistan) is reported. Consistent with prior reports, comparative antimicrobial assays revealed the need for the free 2″-amine for anti-Gram-positive bacteria and antimycobacterial activity. Similarly, comparative cancer cell line cytotoxicity assays highlighted the importance of the puromycin-free 2″-amine and the impact of 3'-nucleoside substitution. These studies extend the repertoire of known naturally occurring puromycins and their corresponding SAR. Notably, 1 represents the first reported naturally occurring bacterial puromycin-related metabolite with a 3'- N-amino acid substitution that differs from the 3'- N-tyrosinyl of classical puromycin-type natural products. This discovery suggests the biosynthesis of 1 in Streptomyces sp. PU-14G may invoke a uniquely permissive amino-nucleoside synthetase and/or multiple synthetases and sets the stage for further studies to elucidate, and potentially exploit, new biocatalysts for puromycin chemoenzymatic diversification.


Assuntos
Nucleosídeos/metabolismo , Puromicina/química , Puromicina/isolamento & purificação , Streptomyces/metabolismo , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium/efeitos dos fármacos , Paquistão , Puromicina/biossíntese , Puromicina/farmacologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-29735559

RESUMO

Muraymycins are antibacterial natural products from Streptomyces spp. that inhibit translocase I (MraY), which is involved in cell wall biosynthesis. Structurally, muraymycins consist of a 5'-C-glycyluridine (GlyU) appended to a 5″-amino-5″-deoxyribose (ADR), forming a disaccharide core that is found in several peptidyl nucleoside inhibitors of MraY. For muraymycins, the GlyU-ADR disaccharide is further modified with an aminopropyl-linked peptide to generate the simplest structures, annotated as the muraymycin D series. Two enzymes encoded in the muraymycin biosynthetic gene cluster, Mur29 and Mur28, were functionally assigned in vitro as a Mg·ATP-dependent nucleotidyltransferase and a Mg·ATP-dependent phosphotransferase, respectively, both modifying the 3″-OH of the disaccharide. Biochemical characterization revealed that both enzymes can utilize several nucleotide donors as cosubstrates and the acceptor substrate muraymycin also behaves as an inhibitor. Single-substrate kinetic analyses revealed that Mur28 preferentially phosphorylates a synthetic GlyU-ADR disaccharide, a hypothetical biosynthetic precursor of muraymycins, while Mur29 preferentially adenylates the D series of muraymycins. The adenylated or phosphorylated products have significantly reduced (170-fold and 51-fold, respectively) MraY inhibitory activities and reduced antibacterial activities, compared with the respective unmodified muraymycins. The results are consistent with Mur29-catalyzed adenylation and Mur28-catalyzed phosphorylation serving as complementary self-resistance mechanisms, with a distinct temporal order during muraymycin biosynthesis.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Nucleosídeos/biossíntese , Nucleosídeos/química , Nucleotidiltransferases/química , Peptídeos/química , Fosfotransferases/química , Streptomyces/metabolismo , Transferases/antagonistas & inibidores , Antibacterianos/biossíntese , Nucleotídeos/biossíntese , Nucleotidiltransferases/genética , Fosforilação , Fosfotransferases/genética , Transferases (Outros Grupos de Fosfato Substituídos)
13.
J Org Chem ; 83(13): 7239-7249, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29768920

RESUMO

Muraymycins belong to a family of nucleoside antibiotics that have a distinctive disaccharide core consisting of 5-amino-5-deoxyribofuranose (ADR) attached to 6'- N-alkyl-5'- C-glycyluridine (GlyU). Here, we functionally assign and characterize six enzymes from the muraymycin biosynthetic pathway involved in the core assembly that starts from uridine monophosphate (UMP). The biosynthesis is initiated by Mur16, a nonheme Fe(II)- and α-ketoglutarate-dependent dioxygenase, followed by four transferase enzymes: Mur17, a pyridoxal-5'-phosphate (PLP)-dependent transaldolase; Mur20, an aminotransferase; Mur26, a pyrimidine phosphorylase; and Mur18, a nucleotidylyltransferase. The pathway culminates in glycosidic bond formation in a reaction catalyzed by an additional transferase enzyme, Mur19, a ribosyltransferase. Analysis of the biochemical properties revealed several noteworthy discoveries including that (i) Mur16 and downstream enzymes can also process 2'-deoxy-UMP to generate a 2-deoxy-ADR, which is consistent with the structure of some muraymycin congeners; (ii) Mur20 prefers l-Tyr as the amino donor source; (iii) Mur18 activity absolutely depends on the amine functionality of the ADR precursor consistent with the nucleotidyltransfer reaction occurring after the Mur20-catalyzed aminotransfer reaction; and (iv) the bona fide sugar acceptor for Mur19 is (5' S,6' S)-GlyU, suggesting that ribosyltransfer occurs prior to N-alkylation of GlyU. Finally, a one-pot, six-enzyme reaction was utilized to generate the ADR-GlyU disaccharide core starting from UMP.


Assuntos
Antibacterianos/metabolismo , Glicina/metabolismo , Peptídeos/metabolismo , Ribose/metabolismo , Uridina/metabolismo , Especificidade por Substrato
14.
ChemMedChem ; 13(8): 779-784, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29438582

RESUMO

Muraymycins are a subclass of antimicrobially active uridine-derived natural products. Biological data on several muraymycin analogues have been reported, including some inhibitory in vitro activities toward their target protein, the bacterial membrane enzyme MraY. However, a structure-activity relationship (SAR) study on naturally occurring muraymycins based on such in vitro data has been missing so far. In this work, we report a detailed SAR investigation on representatives of the four muraymycin subgroups A-D using a fluorescence-based in vitro MraY assay. For some muraymycins, inhibition of MraY with IC50 values in the low-picomolar range was observed. These inhibitory potencies were compared with antibacterial activities and were correlated to modelling data derived from a previously reported X-ray crystal structure of MraY in complex with a muraymycin inhibitor. Overall, these results will pave the way for the development of muraymycin analogues with optimized properties as antibacterial drug candidates.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Nucleosídeos/farmacologia , Peptídeos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Escherichia coli/crescimento & desenvolvimento , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Humanos , Simulação de Acoplamento Molecular , Nucleosídeos/química , Nucleotídeos/química , Nucleotídeos/farmacologia , Peptídeos/química , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Relação Estrutura-Atividade , Transferases/antagonistas & inibidores , Transferases/química , Transferases/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos) , Ureia/química , Ureia/farmacologia
15.
Eur J Med Chem ; 145: 622-633, 2018 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-29339255

RESUMO

A series of LX2343 derivatives were designed, synthesized and evaluated as neuroprotective agents for Alzheimer's disease (AD) in vitro. Most of the compounds displayed potent neuroprotective activities. Especially for compound A6, exhibited a remarkable EC50 value of 0.22 µM. Further investigation demonstrated that compound A6 can significantly reduce Aß production and increase Aß clearance, and alleviate Tau hyperphosphorylation. Most importantly, compound A6 could ameliorate learning and memory impairments in APP/PS1 transgenic mice. The present study evidently showed that compound A6 is a potent neuroprotective agent and might serve as a promising lead candidate for the treatment of Alzheimer's disease.


Assuntos
Acetamidas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Desenho de Fármacos , Fármacos Neuroprotetores/farmacologia , Sulfonamidas/farmacologia , Acetamidas/síntese química , Acetamidas/química , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Animais , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Camundongos , Camundongos Transgênicos , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Células Tumorais Cultivadas
16.
Angew Chem Int Ed Engl ; 56(11): 2994-2998, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28140487

RESUMO

Four cyclopentenone-containing ansamycin polyketides (mccrearamycins A-D), and six new geldanamycins (Gdms B-G, including new linear and mycothiol conjugates), were characterized as metabolites of Streptomyces sp. AD-23-14 isolated from the Rock Creek underground coal mine acid drainage site. Biomimetic chemical conversion studies using both simple synthetic models and Gdm D confirmed that the mccrearamycin cyclopentenone derives from benzilic acid rearrangement of 19-hydroxy Gdm, and thereby provides a new synthetic derivatization strategy and implicates a potential unique biocatalyst in mccrearamycin cyclopentenone formation. In addition to standard Hsp90α binding and cell line cytotoxicity assays, this study also highlights the first assessment of Hsp90α modulators in a new axolotl embryo tail regeneration (ETR) assay as a potential new whole animal assay for Hsp90 modulator discovery.


Assuntos
Carvão Mineral/microbiologia , Ciclopentanos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Lactamas Macrocíclicas/farmacologia , Streptomyces/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ciclopentanos/química , Ciclopentanos/isolamento & purificação , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Kentucky , Lactamas Macrocíclicas/química , Lactamas Macrocíclicas/isolamento & purificação , Conformação Molecular , Estereoisomerismo , Streptomyces/metabolismo
17.
J Nat Prod ; 80(1): 2-11, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-28029795

RESUMO

The isolation and structure elucidation of six new bacterial metabolites [spoxazomicin D (2), oxachelins B and C (4, 5), and carboxamides 6-8] and 11 previously reported bacterial metabolites (1, 3, 9-12a, and 14-18) from Streptomyces sp. RM-14-6 is reported. Structures were elucidated on the basis of comprehensive 1D and 2D NMR and mass spectrometry data analysis, along with direct comparison to synthetic standards for 2, 11, and 12a,b. Complete 2D NMR assignments for the known metabolites lenoremycin (9) and lenoremycin sodium salt (10) were also provided for the first time. Comparative analysis also provided the basis for structural revision of several previously reported putative aziridine-containing compounds [exemplified by madurastatins A1, B1, C1 (also known as MBJ-0034), and MBJ-0035] as phenol-dihydrooxazoles. Bioactivity analysis [including antibacterial, antifungal, cancer cell line cytotoxicity, unfolded protein response (UPR) modulation, and EtOH damage neuroprotection] revealed 2 and 5 as potent neuroprotectives and lenoremycin (9) and its sodium salt (10) as potent UPR modulators, highlighting new functions for phenol-oxazolines/salicylates and polyether pharmacophores.


Assuntos
Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Éteres/química , Éteres/farmacologia , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Oligopeptídeos/isolamento & purificação , Oligopeptídeos/farmacologia , Oxazóis/isolamento & purificação , Oxazóis/farmacologia , Peptídeos/farmacologia , Fenóis/química , Fenóis/farmacologia , Streptomyces/química , Antibacterianos/química , Antifúngicos/química , Região dos Apalaches , Carvão Mineral , Éteres/isolamento & purificação , Humanos , Estrutura Molecular , Fármacos Neuroprotetores/química , Ressonância Magnética Nuclear Biomolecular , Oligopeptídeos/química , Oxazóis/química , Peptídeos/química , Fenóis/isolamento & purificação
18.
Angew Chem Int Ed Engl ; 54(38): 11219-22, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26230189

RESUMO

The first enantioselective total synthesis of griseusin A, griseusin C, 4'-deacetyl-griseusin A, and two non-native counterparts in 11-14 steps is reported. This strategy highlights a key hydroxy-directed CH olefination of 1-methylene isochroman with an α,ß-unsaturated ketone followed by subsequent stereoselective epoxidation and regioselective cyclization to afford the signature tetrahydro-spiropyran ring. Colorectal cancer cell cytotoxicities of the final products highlight the impact of the griseusin tetrahydro-spiropyran ring on bioactivity. As the first divergent enantioselective synthesis, the strategy put forth sets the stage for further griseusin mechanism-of-action and SAR studies.


Assuntos
Linhagem Celular Tumoral , Humanos , Espectroscopia de Ressonância Magnética , Naftoquinonas/síntese química , Naftoquinonas/química , Estereoisomerismo
19.
J Nat Prod ; 78(7): 1723-9, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-26091285

RESUMO

Actinomadura melliaura ATCC 39691, a strain isolated from a soil sample collected in Bristol Cove, California, is a known producer of the disaccharide-substituted AT2433 indolocarbazoles (6-9). Reinvestigation of this strain using new media conditions led to >40-fold improvement in the production of previously reported AT2433 metabolites and the isolation and structure elucidation of the four new analogues, AT2433-A3, A4, A5, and B3 (1-4). The availability of this broader set of compounds enabled a subsequent small antibacterial/fungal/cancer SAR study that revealed disaccharyl substitution, N-6 methylation, and C-11 chlorination as key modulators of bioactivity. The slightly improved anticancer potency of the newly reported N-6-desmethyl 1 (compared to 6) contrasts extensive SAR of monoglycosylated rebeccamycin-type topoisomerase I inhibitors where N-6 alkylation has contributed to improved potency and ADME. Complete 2D NMR assignments for the known metabolite BMY-41219 (5) and (13)C NMR spectroscopic data for the known analogue AT2433-B1 (7) are also provided for the first time.


Assuntos
Actinomycetales/química , Antibióticos Antineoplásicos/isolamento & purificação , Carbazóis/isolamento & purificação , Carbazóis/farmacologia , Alcaloides Indólicos/isolamento & purificação , Alcaloides Indólicos/farmacologia , Inibidores da Topoisomerase I/isolamento & purificação , Inibidores da Topoisomerase I/farmacologia , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , California , Carbazóis/química , Humanos , Alcaloides Indólicos/química , Testes de Sensibilidade Microbiana , Micrococcus luteus/efeitos dos fármacos , Estrutura Molecular , Mycobacterium smegmatis/efeitos dos fármacos , Ressonância Magnética Nuclear Biomolecular , Saccharomyces cerevisiae/efeitos dos fármacos , Microbiologia do Solo , Staphylococcus aureus/efeitos dos fármacos , Inibidores da Topoisomerase I/química
20.
Org Lett ; 16(2): 456-9, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24341358

RESUMO

The isolation and structural elucidation of a new tetracyclic polyketide (ruthmycin) from Streptomyces sp. RM-4-15, a bacteria isolated near thermal vents from the Ruth Mullins underground coal mine fire in eastern Kentucky, is reported. In comparison to the well-established frenolicin core scaffold, ruthmycin possesses an unprecedented signature C3 bridge and a corresponding fused six member ring. Preliminary in vitro antibacterial, anticancer, and antifungal assays revealed ruthmycin to display moderate antifungal activity.


Assuntos
Antifúngicos/química , Antifúngicos/isolamento & purificação , Policetídeos/química , Policetídeos/isolamento & purificação , Streptomyces/química , Antifúngicos/farmacologia , Kentucky , Testes de Sensibilidade Microbiana , Estrutura Molecular , Naftoquinonas/química , Ressonância Magnética Nuclear Biomolecular , Policetídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA