Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167274, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38838411

RESUMO

This study aims to investigate the role of claudin-5 (Cldn5) in cardiac structural integrity. Proteomic analysis was performed to screen the protein profiles in enlarged left atrium from atrial fibrillation (AF) patients. Cldn5 shRNA adeno-associated virus (AAV) or siRNA was injected into the mouse left ventricle or added into HL1 cells respectively to knockdown Cldn5 in cardiomyocytes to observe whether the change of Cldn5 influences cardiac morphology and function, and affects those protein expressions stem from the proteomic analysis. Mitochondrial density and membrane potential were also measured by Mitotracker staining and JC-1 staining under the confocal microscope in HL1 cells. Cldn5 was reduced in cardiomyocytes from the left atrial appendage of AF patients compared to non-AF donors. Proteomic analysis showed 83 proteins were less abundant and 102 proteins were more abundant in AF patients. KEGG pathway analysis showed less abundant CACNA2D2, CACNB2, MYL2 and MAP6 were highly associated with dilated cardiomyopathy. Cldn5 shRNA AAV injection caused severe cardiac atrophy, dilation and myocardial dysfunction in mice. The decreases in mitochondrial numbers and mitochondrial membrane potentials in HL1 cells were observed after Cldn5 knockdown. We demonstrated for the first time the mechanism of Cldn5 downregulation-induced myocyte atrophy and myocardial dysfunction might be associated with the downregulation of CACNA2D2, CACNB2, MYL2 and MAP6, and mitochondrial dysfunction in cardiomyocytes.

2.
Adv Healthc Mater ; 13(3): e2302117, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37922499

RESUMO

Prostate-specific antigen (PSA) is the common serum-relevant biomarker for early prostate cancer (PCa) detection in clinical diagnosis. However, it is difficult to accurately diagnose PCa in the early stage due to the low specificity of PSA. Herein, a new solution-gated graphene field transistor (SGGT) biosensor with dual-gate for dual-biomarker detection is designed. The sensing mechanism is that the designed aptamers immobilized on the surface of the gate electrodes can capture PSA and sarcosine (SAR) biomolecules and induce the capacitance changes of the electric double layers of SGGT. The limit of detections of PSA and SAR biomarkers can reach 0.01 fg mL-1 , which is three-to-four orders of magnitude lower than previously reported assays. The detection time of PSA and SAR is ≈4.5 and ≈13 min, which is significantly faster than the detection time (1-2 h) of conventional methods. The clinical serum samples testing demonstrates that the biosensor can distinguish the PCa patients from the control group and the diagnosis accuracy can reach 100%. The SGGT biosensor can be integrated into the portable platform and the diagnostic results can directly display on the smartphone/Pad. Therefore, the integrated portable platform of the biosensor can distinguish cancer types through the dual-biomarker detection.


Assuntos
Técnicas Biossensoriais , Grafite , Neoplasias da Próstata , Masculino , Humanos , Antígeno Prostático Específico , Neoplasias da Próstata/diagnóstico , Eletrodos , Técnicas Biossensoriais/métodos
3.
Anal Chem ; 95(48): 17750-17758, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37971943

RESUMO

A new type of carbon dot (CD)-functionalized solution-gated graphene transistor (SGGT) sensor was designed and fabricated for the highly sensitive and highly selective detection of glutathione (GSH). The CDs were synthesized via a one-step hydrothermal method using DL-thioctic acid and triethylenetetramine (TETA) as sources of S, N, and C. The CDs have abundant amino and carboxyl groups and were used to modify the surface of the gate electrode of SGGT as probes for detecting GSH. Remarkably, the CDs-SGGT sensor exhibited excellent selectivity and ultrahigh sensitivity to GSH, with an ultralow limit of detection (LOD) of up to 10-19 M. To the best of our knowledge, the sensor outperforms previously reported systems. Moreover, the CDs-SGGT sensor shows rapid detection and good stability. More importantly, the detection of GSH in artificial serum samples was successfully demonstrated.


Assuntos
Grafite , Pontos Quânticos , Carbono , Limite de Detecção , Glutationa
4.
Adv Healthc Mater ; 12(25): e2300563, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37377126

RESUMO

The persistent infection of high-risk-human papillomavirus type 16 (HPV16) is considered an essential element for suffering cervical cancer. Despite polymerase chain reaction, loop-mediated amplification, and microfluidic chips are used to detect the HPV16, these methods still exist some drawbacks including time-consuming and false positive results. The CRISPR-Cas system is widely used in the region of biological detection due to its precise targeted recognition capability. In this contribution, the novel solution-gated graphene transistor sensor is designed to realize the unamplified and label-free detection of HPV16 DNA. Using the precise recognition of the CRISPR-Cas12a system and the gate functionalization, HPV16 DNA can be precisely identified without need the amplification and labeling. The limit of detection of the sensor can be up to 8.3 × 10-18  m and the detection can be within 20 min. Additionally, the heat-Inactivated clinical samples can be clearly distinguished by the sensor the diagnosis results have a high degree of agreement with q-PCR detection.


Assuntos
Sistemas CRISPR-Cas , Grafite , Humanos , Papillomavirus Humano 16/genética , DNA/genética , Técnicas de Amplificação de Ácido Nucleico
5.
ACS Appl Bio Mater ; 6(6): 2043-2088, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37200080

RESUMO

A variety of imaging techniques are available for detecting biological processes with sufficient penetration depth and temporal resolution. However, inflammation, cardiovascular, and cancer-related disorders might be difficult to diagnose with typical bioimaging methods because of the lack of resolution in the imaging of deep tissues. Therefore, nanomaterials are the most promising candidate to overcome this hurdle. This review is on the utilization of carbon-based nanomaterials (CNMs), ranging from zero-dimension (0D) to three-dimension (3D), in the development of fluorescence (FL) imaging, photoacoustic imaging (PAI), and biosensing for the early detection of cancer. Nanoengineered CNMs, such as graphene, carbon nanotubes (CNTs), and functional carbon quantum dots (QDs), are being further studied for multimodal biometrics and targeted therapy. CNMs have many advantages over conventional dyes in FL sensing and imaging, including clear emission spectra, long photostability, low cost, and high FL intensity. Nanoprobe production, mechanical illustrations, and diagnostic therapeutic applications are the key areas of focus. The bioimaging technique has facilitated a greater understanding of the biochemical events underlying multiple disease etiologies, consequently facilitating disease diagnosis, evaluation of therapeutic efficacy, and drug development. This review may lead to the development of interdisciplinary research in bioimaging and sensing as well as possible future concerns for researchers and medical physicians.


Assuntos
Nanoestruturas , Nanotubos de Carbono , Neoplasias , Pontos Quânticos , Humanos , Nanoestruturas/uso terapêutico , Imagem Óptica
6.
Waste Manag Res ; 41(11): 1613-1621, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37102334

RESUMO

With the continuous development of new energy vehicles, the number of decommissioned lithium iron phosphate (LiFePO4) batteries has been constantly increasing. Therefore, it is necessary to recover metal from spent LiFePO4 batteries due to the high potential for environmental protection and high resource value. In this study, sodium persulfate (Na2S2O8) was selected as the oxidant to regulate and control the oxidation state and proton activity of the leaching solution through its high oxidizing ability. Selective recovery of lithium from LiFePO4 batteries was achieved by oxidizing LiFePO4 to iron phosphate (FePO4) during the leaching process. This paper reports an extensive investigation of the effects of various factors, including the acid concentration, initial volume fraction of the oxidant, reaction temperature, solid-liquid ratio, and reaction time, on lithium leaching. Li+ reached a high leaching rate of 93.3% within 5 minutes even at a low concentration of sulphuric acid (H2SO4), and high-purity lithium carbonate (Li2CO3) was obtained through impurity removal and precipitation reactions. In addition, the leaching mechanism was analysed by both X-ray diffraction and X-ray photoelectron spectroscopy characterization. The results show that the obtained high lithium-ion (Li+) leaching efficiency and fast Li+ leaching time can be ascribed to the superior oxidizing properties of Na2S2O8 and the stability of the crystal structure of LiFePO4 during the oxidative leaching process. The adopted method has significant advantages in terms of safety, efficiency and environmental protection, which are conducive to the sustainable development of lithium batteries.


Assuntos
Lítio , Metais , Metais/química , Fontes de Energia Elétrica , Reciclagem/métodos , Oxidantes , Ferro , Fosfatos
7.
Adv Sci (Weinh) ; 10(4): e2205886, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36480308

RESUMO

The incidence of prostate cancer (PCa) in men globally increases as the standard of living improves. Blood serum biomarker prostate-specific antigen (PSA) detection is the gold standard assay that do not meet the requirements of early detection. Herein, a solution-gated graphene transistor (SGGT) biosensor for the ultrasensitive and rapid quantification detection of the early prostate cancer-relevant biomarker, miRNA-21 is reported. The designed single-stranded DNA (ssDNA) probes immobilized on the Au gate can hybridize effectively with the miRNA-21 molecules targets and induce the Dirac voltage shifts of SGGT transfer curves. The limit of detection (LOD) of the sensor can reach 10-20  M without amplification and any chemical or biological labeling. The detection linear range is from 10-20 to 10-12  M. The sensor can realize real-time detection of the miRNA-21 molecules in less than 5 min and can well distinguish one-mismatched miRNA-21 molecule. The blood serum samples from the patients without RNA extraction and amplification are measured. The results demonstrated that the biosensor can well distinguish the cancer patients from the control group and has higher sensitivity (100%) than PSA detection (58.3%). Contrastingly, it can be found that the PSA level is not directly related to PCa.


Assuntos
Grafite , MicroRNAs , Neoplasias da Próstata , Masculino , Humanos , Antígeno Prostático Específico/genética , Grafite/química , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Biomarcadores Tumorais/genética , DNA de Cadeia Simples , MicroRNAs/genética
8.
Can J Cardiol ; 37(10): 1593-1606, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33838228

RESUMO

BACKGROUND: Downregulation of claudin-5 in the heart is associated with the end-stage heart failure. However, the underlying mechanism ofclaudin-5 is unclear. Here we investigated the molecular actions of claudin-5 in perspective of mitochondria in cardiomyocytes to better understand the role of claudin-5 in cardioprotection during ischemia. METHODS: Myocardial ischemia/reperfusion (I/R; 30 min/24 h) and hypoxia/reoxygenation (H/R; 24 h/4 h) were used in this study. Confocal microscopy and transmission electron microscope (TEM) were used to observe mitochondrial morphology. RESULTS: Claudin-5 was detected in murine heart tissue and neonatal rat cardiomyocytes (NRCM). Its protein level was severely decreased after myocardial I/R or H/R. Confocal microscopy showedclaudin-5 presented in the mitochondria of NRCM. H/R-induced claudin-5 downregulation was accompanied by mitochondrial fragmentation. The mitofusin 2 (Mfn2) expressionwas dramatically decreased while the dynamin-related protein (Drp) 1 expression was significantly increased after H/R. The TEM indicatedH/R-induced mitochondrial swelling and fission. Adenoviral claudin-5 overexpression reversed these structural disintegration of mitochondria. The mitochondria-centered intrinsic pathway of apoptosis triggered by H/R and indicated by the cytochrome c and cleaved caspase 3 in the cytoplasm of NRCMs was also reduced by overexpressing claudin-5. Claudin-5 overexpression in mouse heart also significantly decreased cleaved caspase 3 and the infarct size in ischemic heart with improved systolic function. CONCLUSION: We demonstrated for the first time the presence of claudin-5 in the mitochondria in cardiomyocytes and provided the firm evidence for the cardioprotective role of claudin-5 in the preservation of mitochondrial dynamics and cell fate against hypoxia- or ischemia-induced stress.


Assuntos
Claudina-5/genética , Hipóxia/prevenção & controle , Mitocôndrias Cardíacas/genética , Dinâmica Mitocondrial/genética , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Células Cultivadas , Claudina-5/biossíntese , Dinaminas/biossíntese , Dinaminas/genética , GTP Fosfo-Hidrolases/biossíntese , GTP Fosfo-Hidrolases/genética , Hipóxia/genética , Hipóxia/patologia , Proteínas de Membrana , Microscopia Eletrônica de Transmissão , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/ultraestrutura , Ratos , Ratos Sprague-Dawley
9.
Chem Soc Rev ; 50(8): 5086-5125, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33634817

RESUMO

Some infectious or malignant diseases such as cancers are seriously threatening the health of human beings all over the world. The commonly used antibiotic therapy cannot effectively treat these diseases within a short time, and also bring about adverse effects such as drug resistance and immune system damage during long-term systemic treatment. Phototherapy is an emerging antibiotic-free strategy to treat these diseases. Upon light irradiation, phototherapeutic agents can generate cytotoxic reactive oxygen species (ROS) or induce a temperature increase, which leads to the death of targeted cells. These two kinds of killing strategies are referred to as photodynamic therapy (PDT) and photothermal therapy (PTT), respectively. So far, many photo-responsive agents have been developed. Among them, the metal-organic framework (MOF) is becoming one of the most promising photo-responsive materials because its structure and chemical compositions can be easily modulated to achieve specific functions. MOFs can have intrinsic photodynamic or photothermal ability under the rational design of MOF construction, or serve as the carrier of therapeutic agents, owing to its tunable porosity. MOFs also provide feasibility for various combined therapies and targeting methods, which improves the efficiency of phototherapy. In this review, we firstly investigated the principles of phototherapy, and comprehensively summarized recent advances of MOF in PDT, PTT and synergistic therapy, from construction to modification. We expect that our demonstration will shed light on the future development of this field, and bring it one step closer to clinical trials.


Assuntos
Antineoplásicos/farmacologia , Estruturas Metalorgânicas/farmacologia , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Animais , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Humanos , Estruturas Metalorgânicas/química , Neoplasias/metabolismo , Neoplasias/patologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/metabolismo
10.
Adv Mater ; 33(5): e2006047, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33349987

RESUMO

Sonodynamic therapy (SDT) is considered to be a potential treatment for various diseases including cancers and bacterial infections due to its deep penetration ability and biosafety, but its SDT efficiency is limited by the hypoxia environment of deep tissues. This study proposes creating a potential solution, sonothermal therapy, by developing the ultrasonic interfacial engineering of metal-red phosphorus (RP), which has an obviously improved sonothermal ability of more than 20 °C elevation under 25 min of continuous ultrasound (US) excitation as compared to metal alone. The underlying mechanism is that the mechanical energy of the US activates the motion of the interfacial electrons. US-induced electron motion in the RP can efficiently transfer the US energy into phonons in the forms of heat and lattice vibrations, resulting in a stronger US absorption of metal-RP. Unlike the nonspecific heating of the cavitation effect induced by US, titanium-RP can be heated in situ when the US penetrates through 2.5 cm of pork tissue. In addition, through a sonothermal treatment in vivo, bone infection induced by multidrug-resistant Staphylococcus aureus (MRSA) is successfully eliminated in under 20 min of US without tissue damage. This work provides a new strategy for combating MRSA by strong sonothermal therapy through US interfacial engineering.


Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Engenharia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Fósforo/química , Terapia por Ultrassom , Espécies Reativas de Oxigênio/metabolismo
11.
Adv Sci (Weinh) ; 7(17): 2000023, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32999817

RESUMO

A light-inspired hydroxyapatite (Hap)/nitrogen-doped carbon dots (NCDs) modified graphene oxide (GO) heterojunction film is developed, which shows a promoted separation of interfacial electrons and holes and an inhibited recombination efficiency via hole depletion. The metabolism of bacteria on this film is significantly inhibited under light irradiation, due to the enhanced photocatalytic and photothermal effects. In addition, the electron transfer from the plasmonic membrane to the GO/NCD/Hap film further inhibits the adenosine triphosphate process of bacteria, thus leading to the synergetic antibacterial efficacy. Meanwhile, the electron transfer between film and cell membrane induces the Ca2+ flow after irradiation, which can promote the migration and proliferation of cells and alkaline phosphatase enhancement, thus favoring the tissue reconstruction. An in vivo test discloses that the vascular injury repair is achieved through the Ca2+-activated PLCγ1/ERK pathway, identified by the enhanced CD31 expression. Moreover, the increased CD4+/CD8+ lymphocytes are ameliorative by activating the PI3K/P-AKT pathway. Consequently, the electron transfer boosts the synergic photodynamic and photothermal therapeutic effects for bacterial infection by Ca2+ flow for immunotherapy. This mild phototherapy approach with GO/NCDs/Hap, which can simultaneously repair injured vessels and relieve inflammation reactions, will increase the clinical application of noninvasive phototherapy in the near future.

12.
Nat Commun ; 11(1): 4446, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32895387

RESUMO

Owing to the poor penetration depth of light, phototherapy, including photothermal and photodynamic therapies, remains severely ineffective in treating deep tissue infections such as methicillin-resistant Staphylococcus aureus (MRSA)-infected osteomyelitis. Here, we report a microwave-excited antibacterial nanocapturer system for treating deep tissue infections that consists of microwave-responsive Fe3O4/CNT and the chemotherapy agent gentamicin (Gent). This system, Fe3O4/CNT/Gent, is proven to efficiently target and eradicate MRSA-infected rabbit tibia osteomyelitis. Its robust antibacterial effectiveness is attributed to the precise bacteria-capturing ability and magnetic targeting of the nanocapturer, as well as the subsequent synergistic effects of precise microwaveocaloric therapy from Fe3O4/CNT and chemotherapy from the effective release of antibiotics in infection sites. The advanced target-nanocapturer of microwave-excited microwaveocaloric-chemotherapy with effective targeting developed in this study makes a major step forward in microwave therapy for deep tissue infections.


Assuntos
Nanopartículas de Magnetita/uso terapêutico , Micro-Ondas/uso terapêutico , Osteomielite/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Animais , Antibacterianos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Tratamento Farmacológico/métodos , Óxido Ferroso-Férrico/uso terapêutico , Gentamicinas/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nanotubos de Carbono , Osteomielite/microbiologia , Coelhos
13.
Int J Mol Med ; 46(3): 925-935, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32705151

RESUMO

As regards acute myocardial infarction, great success has been achieved in therapies that reduce the effects of myocardial ischemic injury, while few interventions have achieved satisfactory outcomes for myocardial ischemia­reperfusion (IR) injury. Thus, new research is urgently required to achieve breakthroughs in promising treatments. Neuregulin­1 (NRG­1), which is an endothelium­derived protein and the ligand of ErbB receptors, exerts cardioprotective effects and is rapidly upregulated during IR. NRG­1/ErbB activates several downstream signaling pathways in response to myocardial IR injury. Previous studies have revealed the protective effects of NRG­1 during heart failure, and numerous experiments have explored the mechanisms underlying the NRG­1­induced cardioprotective effects against myocardial IR injury. In the present review, the progress made in the research of NRG­1 as a cardioprotective agent during IR and related conditionings is summarized. Furthermore, the potential benefits of NRG­1 against myocardial IR injury are listed with the prospective use of NRG­1 in clinical applications.


Assuntos
Traumatismo por Reperfusão Miocárdica/metabolismo , Neuregulina-1/metabolismo , Animais , Cardiotônicos/metabolismo , Cardiotônicos/uso terapêutico , Receptores ErbB/metabolismo , Humanos , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Neuregulina-1/uso terapêutico , Fatores de Proteção , Transdução de Sinais
14.
Adv Sci (Weinh) ; 7(9): 1902070, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32382474

RESUMO

Global multidrug-resistant (MDR) bacteria are spreading rapidly and causing a great threat to human health due to the abuse of antibiotics. Determining how to resensitize MDR bacteria to conventional inefficient antibiotics is of extreme urgency. Here, a low-temperature photothermal treatment (PTT, 45 °C) is utilized with red phosphorus nanoparticles to resensitize methicillin-resistant Staphylococcus aureus (MRSA) to conventional aminoglycoside antibiotics. The antibacterial mechanism is studied by the proteomic technique and molecular dynamics (MD) simulation, which proves that the aminoglycoside antibiotics against MRSA can be selectively potentiated by low-temperature PTT. The catalytic activity of 2-aminoglycoside phosphotransferase (APH (2″))-a modifying enzyme-is demonstrated to be obviously inhibited via detecting the consumption of adenosine triphosphate (ATP) in the catalytic reaction. It is also found that the active site of aspartic acid (ASP) residues in APH (2″) is thermally unstable from the results of molecular dynamics simulation. Its catalytic ability is inhibited by preventing the deprotonating procedure for the target -OH of gentamycin. The combined therapy also exhibits great biocompatibility and successfully treats MRSA infections in vivo. This low-temperature PTT strategy has the potential to be an exogenous-modifying enzyme inhibitor for the treatment of MDR bacterial infection.

15.
ACS Nano ; 14(2): 2077-2089, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31990179

RESUMO

Periprosthetic infection is considered the main cause of implant failure, which is expected to be solved by fabricating an antibacterial coating on the surface of the implant. Nevertheless, systemic antibiotic treatment still represents the mainstream method for preventing infection, and few antibacterial coatings are applied clinically. This is because the externally introduced traditional antibacterial coatings suffer from the risk of invalidation and tissue toxicity induced by the consumption of antibacterial agents, degradation, and shedding. In this work, we proposed a rapid photo-sonotherapy by creating an oxygen deficiency on a titanium (Ti) implant through sulfur (S)-doping (Ti-S-TiO2-x), which endowed the implants with great sonodynamic and photothermal ability. Without introducing an external antibacterial coating, it reached a high antibacterial efficiency of 99.995% against Staphylococcus aureus under 15 min near-infrared light and ultrasound treatments. Furthermore, bone infection was successfully treated after combination treatments, and improved osseointegration was observed. Importantly, the S-doped Ti implant immersed in water for 6 months showed an unchanged structure and properties, suggesting that the Ti implant with intrinsic modification showed stable antibacterial performance under exogenous stimuli with a high antibacterial performance in vivo. This photo-sonotherapy based on sulfur doping is also promising for cancer therapy with biosafety.


Assuntos
Antibacterianos/farmacologia , Hipóxia/tratamento farmacológico , Próteses e Implantes , Staphylococcus aureus/efeitos dos fármacos , Enxofre/farmacologia , Terapia por Ultrassom , Células 3T3-L1 , Animais , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Hipóxia/patologia , Masculino , Teste de Materiais , Camundongos , Tamanho da Partícula , Processos Fotoquímicos , Ratos , Ratos Wistar , Propriedades de Superfície , Titânio/farmacologia
16.
J Physiol Biochem ; 75(4): 607-618, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31786730

RESUMO

Previous studies have shown that stromal interaction molecule1 (STIM1)-mediated store-operated Ca2+ entry (SOCE) contributes to intracellular Ca2+ accumulation in H9C2 cells subjected to hypoxia/reoxygenation(H/R) injury. The aim of the present study was to investigate the effect of resveratrol on STIM1-mediated intracellular Ca2+ accumulation and subsequent cell death in the context of myocardial ischemia/reperfusion (I/R) injury. C57 BL/6 mice were fed with either saline or resveratrol (50 mg/kg daily for 2 weeks) and then subjected to myocardial I/R injury. TTC/Evans Blue staining and TUNEL assay were performed to quantify the infarct size and apoptosis index. The cardiac function was evaluated by echocardiography. Neonatal rat ventricular cardiomyocytes (NRVCs) underwent hypoxia/reoxygenation (H/R) to establish the in vitro model. To achieve over-expression, NRVCs were transfected with STIM1-adenovirus vector. Apoptosis was analyzed by TUNEL assay. Cell viability was measured using MTS assay and cell necrosis was determined by LDH release assay. Intracellular Ca2+ concentration was detected by laser scanning confocal microscopy using a Fluo-3AM probe. Resveratrol significantly reduced apoptosis, decreased infarct size, and improved cardiac function in mice subjected to myocardial I/R injury. In NRVCs, resveratrol also downregulated STIM1 expression accompanied by decreased intracellular Ca2+ accumulation elicited by H/R injury. In addition, resveratrol reduced cell apoptosis, upregulated the Bcl-2, decreased Bax, and cleaved caspase-3 expression. Furthermore, the effects of resveratrol on STIM1-mediated intracellular Ca2+ accumulation, apoptotic proteins, and H/R-induced cell injury were exacerbated by STIM1 over-expression and were partly abolished by SOCE inhibitor SKF96365 in NRVCs in vitro. Our findings demonstrate that resveratrol exerts anti-apoptotic activity and improves cardiac functional recovery following myocardial I/R by inhibiting STIM1-induced intracellular Ca2+ accumulation.


Assuntos
Hipóxia Celular/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Resveratrol/farmacologia , Animais , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/patologia , Ratos , Ratos Sprague-Dawley , Molécula 1 de Interação Estromal/toxicidade
17.
ACS Nano ; 13(11): 13581-13594, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31697055

RESUMO

Using noninvasive stimulation of cells to control cell fate and improve bone regeneration by optical stimulation can achieve the aim of precisely orchestrating biological activities. In this study, we create a fast and repeatable photoelectric-responsive microenvironment around an implant using a bismuth sulfide/hydroxyapatite (BS/HAp) film. The unexpected increase of photocurrent on the BS/HAp film under near-infrared (NIR) light is mainly due to the depletion of holes through PO43- from HAp and interfacial charge transfer by HAp compared with BS. The electrons activate the Na+ channel of mesenchymal stem cells (MSCs) and change the cell adhesion in the intermediate environment. The behavior of MSCs is tuned by changing the photoelectronic microenvironment. RNA sequencing reveals that when photoelectrons transfer to the cell membrane, sodium ions flux and the membrane potential depolarizes to change the cell shape. Meanwhile, calcium ions fluxed and FDE1 was upregulated. Furthermore, the TCF/LEF in the cell nucleus began transcription to regulate the downstream genes involved in osteogenic differentiation, which is performed through the Wnt/Ca2+ signaling pathway. This research has created a biological therapeutic strategy, which can achieve in vitro remotely, precisely, and noninvasively controlling cell differentiation behaviors by tuning the in vivo photoelectric microenvironment using NIR light.


Assuntos
Regeneração Óssea , Matriz Extracelular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Engenharia Tecidual , Bismuto/química , Diferenciação Celular , Durapatita/química , Elétrons , Humanos , Raios Infravermelhos , Células-Tronco Mesenquimais/citologia , Processos Fotoquímicos , Sulfetos/química
18.
Nat Commun ; 10(1): 4490, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31582736

RESUMO

The application of photothermal therapy to treat bacterial infections remains a challenge, as the high temperatures required for bacterial elimination can damage healthy tissues. Here, we develop an exogenous antibacterial agent consisting of zinc-doped Prussian blue (ZnPB) that kills methicillin-resistant Staphylococcus aureus in vitro and in a rat model of cutaneous wound infection. Local heat triggered by the photothermal effect accelerates the release and penetration of ions into the bacteria, resulting in alteration of intracellular metabolic pathways and bacterial killing without systemic toxicity. ZnPB treatment leads to the upregulation of genes involved in tissue remodeling, promotes collagen deposition and enhances wound repair. The efficient photothermal conversion of ZnPB allows the use of relatively few doses and low laser flux, making the platform a potential alternative to current antibiotic therapies against bacterial wound infections.


Assuntos
Antibacterianos/administração & dosagem , Terapia a Laser , Estruturas Metalorgânicas/administração & dosagem , Infecções Estafilocócicas/terapia , Infecção dos Ferimentos/terapia , Administração Cutânea , Animais , Antibacterianos/química , Terapia Combinada/métodos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ferrocianetos/administração & dosagem , Ferrocianetos/química , Humanos , Raios Infravermelhos/uso terapêutico , Masculino , Estruturas Metalorgânicas/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Células NIH 3T3 , Nanopartículas/administração & dosagem , Nanopartículas/química , Ratos , Infecções Estafilocócicas/microbiologia , Resultado do Tratamento , Cicatrização/efeitos dos fármacos , Cicatrização/efeitos da radiação , Infecção dos Ferimentos/microbiologia , Zinco/administração & dosagem , Zinco/química
19.
Adv Sci (Weinh) ; 6(17): 1900599, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31508278

RESUMO

Biofilms have been related to the persistence of infections on medical implants, and these cannot be eradicated because of the resistance of biofilm structures. Therefore, a biocompatible phototherapeutic system is developed composed of MoS2, IR780 photosensitizer, and arginine-glycine-aspartic acid-cysteine (RGDC) to safely eradicate biofilms on titanium implants within 20 min. The magnetron-sputtered MoS2 film possesses excellent photothermal properties, and IR780 can produce reactive oxygen species (ROS) with the irradiation of near-infrared (NIR, λ = 700-1100 nm) light. Consequently, the combination of photothermal therapy (PTT) and photodynamic therapy (PDT), assisted by glutathione oxidation accelerated by NIR light, can provide synergistic and rapid killing of bacteria, i.e., 98.99 ± 0.42% eradication ratio against a Staphylococcus aureus biofilm in vivo within 20 min, which is much greater than that of PTT or PDT alone. With the assistance of ROS, the permeability of damaged bacterial membranes increases, and the damaged bacterial membranes become more sensitive to heat, thus accelerating the leakage of proteins from the bacteria. In addition, RGDC can provide excellent biosafety and osteoconductivity, which is confirmed by in vivo animal experiments.

20.
ACS Nano ; 13(10): 11153-11167, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31425647

RESUMO

Patients often face the challenge of antibiotic-resistant bacterial infections and lengthy tissue reconstruction after surgery. Herein, human hair-melanosome derivatives (HHMs), comprising keratins and melanins, are developed using a simple "low-temperature alkali heat" method for potentially personalized therapy. The mulberry-shaped HHMs have an average width of ∼270 nm and an average length of ∼700 nm, and the negatively charged HHMs can absorb positively charged Lysozyme (Lyso) to form the HHMs-Lyso composites through electrostatic interaction. These naturally derived biodegradable nanostructures act as exogenous killers to eliminate methicillin-resistant Staphylococcus aureus (MRSA) infection with a high antibacterial efficacy (97.19 ± 2.39%) by synergistic action of photothermy and "Lyso-assisted anti-infection" in vivo. Additionally, HHMs also serve as endogenous regulators of collagen alpha chain proteins through the "protein digestion and absorption" signaling pathway to promote tissue reconstruction, which was confirmed by quantitative proteomic analysis in vivo. Notably, the 13 upregulated collagen alpha chain proteins in the extracellular matrix (ECM) after HHMs treatment demonstrated that keratin from HHMs in collagen-dependent regulatory processes serves as a notable contributor to augmented wound closure. The current paradigm of natural material-tissue interaction regulates the cell-ECM interaction by targeting cell signaling pathways to accelerate tissue repair. This work may provide insight into the protein-level pathways and the potential mechanisms involved in tissue repair.


Assuntos
Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Fototerapia , Proteômica , Infecções Estafilocócicas/tratamento farmacológico , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Linhagem Celular , Humanos , Melanossomas/efeitos dos fármacos , Meticilina/química , Meticilina/farmacologia , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos , Testes de Sensibilidade Microbiana , Muramidase/química , Muramidase/farmacologia , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Cicatrização/efeitos dos fármacos , Cicatrização/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA