Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1356907, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863832

RESUMO

Introduction: Microbial community composition is closely associated with host disease onset and progression, underscoring the importance of understanding host-microbiota dynamics in various health contexts. Methods: In this study, we utilized full-length 16S rRNA gene sequencing to conduct species-level identification of the microorganisms in the oral cavity of a giant panda (Ailuropoda melanoleuca) with oral malignant fibroma. Results: We observed a significant difference between the microbial community of the tumor side and non-tumor side of the oral cavity of the giant panda, with the latter exhibiting higher microbial diversity. The tumor side was dominated by specific microorganisms, such as Fusobacterium simiae, Porphyromonas sp. feline oral taxon 110, Campylobacter sp. feline oral taxon 100, and Neisseria sp. feline oral taxon 078, that have been reported to be associated with tumorigenic processes and periodontal diseases in other organisms. According to the linear discriminant analysis effect size analysis, more than 9 distinct biomarkers were obtained between the tumor side and non-tumor side samples. Furthermore, the Kyoto Encyclopedia of Genes and Genomes analysis revealed that the oral microbiota of the giant panda was significantly associated with genetic information processing and metabolism, particularly cofactor and vitamin, amino acid, and carbohydrate metabolism. Furthermore, a significant bacterial invasion of epithelial cells was predicted in the tumor side. Discussion: This study provides crucial insights into the association between oral microbiota and oral tumors in giant pandas and offers potential biomarkers that may guide future health assessments and preventive strategies for captive and aging giant pandas.


Assuntos
Campylobacter , Fusobacterium , Microbiota , Boca , Porphyromonas , RNA Ribossômico 16S , Ursidae , Ursidae/microbiologia , Animais , RNA Ribossômico 16S/genética , Porphyromonas/genética , Porphyromonas/isolamento & purificação , Porphyromonas/classificação , Campylobacter/genética , Campylobacter/isolamento & purificação , Campylobacter/classificação , Boca/microbiologia , Fusobacterium/genética , Fusobacterium/isolamento & purificação , Fibroma/microbiologia , Fibroma/veterinária , Neisseria/isolamento & purificação , Neisseria/genética , Neisseria/classificação , Neoplasias Bucais/microbiologia , Neoplasias Bucais/veterinária , Neoplasias Bucais/patologia , Filogenia , Análise de Sequência de DNA
2.
J Oral Microbiol ; 16(1): 2344272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698893

RESUMO

Objective: To explore the manifestations of bacteriophages in different oral disease ecologies, including periodontal diseases, dental caries, endodontic infections, and oral cancer, as well as to propel phage therapy for safer and more effective clinical application in the field of dentistry. Methods: In this literature review, we outlined interactions between bacteriophages, bacteria and even oral cells in the oral ecosystem, especially in disease states. We also analyzed the current status and future prospects of phage therapy in the perspective of different oral diseases. Results: Various oral bacteriophages targeting at periodontal pathogens as Porphyromonas gingivalis, Fusobacterium nucleatum, Treponema denticola and Aggregatibacter actinomycetemcomitans, cariogenic pathogen Streptococcus mutans, endodontic pathogen Enterococcus faecalis were predicted or isolated, providing promising options for phage therapy. In the realm of oral cancer, aside from displaying tumor antigens or participating in tumor-targeted therapies, phage-like particle vaccines demonstrated the potential to prevent oral infections caused by human papillomaviruses (HPVs) associated with head-and-neck cancers. Conclusion: Due to their intricate interactions with bacteria and oral cells, bacteriophages are closely linked to the progression and regression of diverse oral diseases. And there is an urgent need for research to explore additional possibilities of bacteriophages in the management of oral diseases.

3.
Int J Biol Macromol ; 253(Pt 6): 127314, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37827397

RESUMO

A thinner endometrium has been linked to implantation failure, and various therapeutic strategies have been attempted to improve endometrial regeneration, including the use of mesenchymal stem cells (MSCs). However, low survival and retention rates of transplanted stem cells are main obstacles to efficient stem cell therapy in thin endometrium. Collagen type III is a key component of the extracellular matrix, plays a crucial role in promoting cell proliferation and differentiation, and has been identified as the major collagen expressed at the implantation site. Herein, composite alginate hydrogel containing recombinant type III collagen (rCo III) and umbilical cord mesenchymal stem cells are developed. rCo III serves as favorable bioactive molecule, displaying that rCo III administration promotes MSCs proliferation, stemness maintenance and migration. Moreover, rCo III administration enhances cell viability and migration of mouse endometrial stromal cells (ESCs). In a mouse model of thin endometrium, the Alg-rCo III hydrogel loaded with MSCs (MSC/Alg-rCo III) significantly induces endometrial regeneration and fertility enhancement in vivo. Further studies demonstrate that the MSC/Alg-rCo III hydrogel promoted endometrial function recovery partly by regulating mesenchymal-epithelial transition of ESCs. Taken together, the combination of Alg-rCo III hydrogel and MSCs has shown promising results in promoting endometrium regeneration and fertility restoration, and may provide new therapeutic options for endometrial disease.


Assuntos
Colágeno Tipo III , Células-Tronco Mesenquimais , Feminino , Camundongos , Animais , Colágeno Tipo III/metabolismo , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Alginatos/farmacologia , Alginatos/metabolismo , Endométrio , Fertilidade/fisiologia
4.
Int J Rheum Dis ; 26(10): 2024-2030, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37593912

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a common disease with joint cartilage destruction. BUB1 Mitotic Checkpoint Serine/Threonine Kinase (BUB1) is abnormally expressed in synovial tissues of RA patients, but its effect on RA remains unclear. In this study, we explored the role of BUB1 in RA. METHODS: An RA cell model was constructed by treating MH7A cells with tumor necrosis factor-α (TNF-α). The levels of BUB1, GAPDH, phosphorylated phosphatidylinositol 3 kinase (p-PI3K)/PI3K, and phosphorylated serine/threonine kinase (p-Akt)/Akt in MH7A cells were examined by Western blot. The MH7A cell proliferation was examined by colony formation assay. Wound healing assay and transwell assay were carried out to detect MH7A cell migration and invasion. The mRNA levels of proinflammatory cytokines were assessed by quantitative reverse transcription polymerase chain reaction. RESULTS: The results showed that knockdown BUB1 inhibited TNF-α-induced MH7A cell proliferation, migration, and invasion. Silencing BUB1 repressed the PI3K/Akt pathway in TNF-α-induced MH7A cells. We also found that the TNF-α-induced MH7A cell proliferation, migration, and invasion were repressed by si-BUB1 transfection, whereas these effects were attenuated by 740Y-P (an activator of the PI3K pathway) co-treatment. Knockdown of BUB1 reduced the expression of the proinflammatory cytokines. CONCLUSION: Knockdown BUB1 repressed TNF-α-induced MH7A cell proliferation, migration and invasion through the PI3K/Akt pathway.


Assuntos
Artrite Reumatoide , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Transdução de Sinais , Artrite Reumatoide/metabolismo , Citocinas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/farmacologia , Proliferação de Células , Fibroblastos/metabolismo , Serina/metabolismo , Serina/farmacologia
5.
Zhongguo Zhong Yao Za Zhi ; 48(8): 2176-2183, 2023 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-37282905

RESUMO

To investigate the protective effect and the potential mechanism of leonurine(Leo) against erastin-induced ferroptosis in human renal tubular epithelial cells(HK-2 cells), an in vitro erastin-induced ferroptosis model was constructed to detect the cell viability as well as the expressions of ferroptosis-related indexes and signaling pathway-related proteins. HK-2 cells were cultured in vitro, and the effects of Leo on the viability of HK-2 cells at 10, 20, 40, 60, 80 and 100 µmol·L~(-1) were examined by CCK-8 assay to determine the safe dose range of Leo administration. A ferroptosis cell model was induced by erastin, a common ferroptosis inducer, and the appropriate concentrations were screened. CCK-8 assay was used to detect the effects of Leo(20, 40, 80 µmol·L~(-1)) and positive drug ferrostatin-1(Fer-1, 1, 2 µmol·L~(-1)) on the viability of ferroptosis model cells, and the changes of cell morphology were observed by phase contrast microscopy. Then, the optimal concentration of Leo was obtained by Western blot for nuclear factor erythroid 2-related factor 2(Nrf2) activation, and transmission electron microscope was further used to detect the characteristic microscopic morphological changes during ferroptosis. Flow cytometry was performed to detect reactive oxygen species(ROS), and the level of glutathione(GSH) was measured using a GSH assay kit. The expressions of glutathione peroxidase 4(GPX4), p62, and heme oxygenase 1(HO-1) in each group were quantified by Western blot. RESULTS:: showed that Leo had no side effects on the viability of normal HK-2 cells in the concentration range of 10-100 µmol·L~(-1). The viability of HK-2 cells decreased as the concentration of erastin increased, and 5 µmol·L~(-1) erastin significantly induced ferroptosis in the cells. Compared with the model group, Leo dose-dependently increased cell via-bility and improved cell morphology, and 80 µmol·L~(-1) Leo promoted the translocation of Nrf2 from the cytoplasm to the nucleus. Further studies revealed that Leo remarkably alleviated the characteristic microstructural damage of ferroptosis cells caused by erastin, inhibited the release of intracellular ROS, elevated GSH and GPX4, promoted the nuclear translocation of Nrf2, and significantly upregulated the expression of p62 and HO-1 proteins. In conclusion, Leo exerted a protective effect on erastin-induced ferroptosis in HK-2 cells, which might be associated with its anti-oxidative stress by activating p62/Nrf2/HO-1 signaling pathway.


Assuntos
Ferroptose , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Células Epiteliais/metabolismo , Glutationa
6.
Front Microbiol ; 14: 1151552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125198

RESUMO

The gastrointestinal (GI) tract is the largest reservoir of microbiota in the human body; however, it is still challenging to estimate the distribution and life patterns of microbes. Biofilm, as the predominant form in the microbial ecosystem, serves ideally to connect intestinal flora, molecules, and host mucosa cells. It gives bacteria the capacity to inhabit ecological niches, communicate with host cells, and withstand environmental stresses. This study intends to evaluate the connection between GI tract biofilms and chronic mucosa diseases such as chronic gastritis, inflammatory bowel disease, and colorectal cancer. In each disease, we summarize the representative biofilm makers including Helicobacter pylori, adherent-invasive Escherichia coli, Bacteroides fragilis, and Fusobacterium nucleatum. We address biofilm's role in causing inflammation and the pro-carcinogenic stage in addition to discussing the typical resistance, persistence, and recurrence mechanisms seen in vitro. Biofilms may serve as a new biomarker for endoscopic and pathologic detection of gastrointestinal disease and suppression, which may be a useful addition to the present therapy strategy.

7.
Ren Fail ; 45(1): 2182617, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36876728

RESUMO

OBJECTIVE: The purpose of this study was to determine the effect of tripterygium glycosides (TGs) on regulating abnormal lipid deposition in nephrotic syndrome (NS) rats. METHODS: Sprague-Dawley (SD) rats were injected with 6 mg/kg doxorubicin to construct nephrotic syndrome models (n = 6 per group), and then administered with TGs (10 mg/kg·d-1), prednisone (6.3 mg/kg·d-1), or pure water for 5 weeks. Biomedical indexes, such as urine protein/creatinine ratio (PCR), blood urea nitrogen (BUN), serum creatinine (Scr), serum albumin (SA), triglycerides (TG), total cholesterol (TC)were investigated to evaluate the renal injury of rats. H&E staining experiment was used to assess the pathological alterations. Oil Red O staining was used to assess the level of renal lipid deposition. Malondialdehyde (MDA) and glutathione (GSH) were measured to assess the extent of oxidative damage to the kidney. TUNEL staining was used to assess the status of apoptosis in the kidney. Western blot analysis was performed to examine the levels of relevant intracellular signaling molecules. RESULTS: After treatment with TGs, those tested biomedical indexes were significantly improved, and the extent of kidney tissue pathological changes and lipid deposition in the kidney was diminished. Treatment with TGs decreased renal oxidative damage and apoptosis. Regarding the molecular mechanism, TGs significantly increased the protein expression levels of Bcl-2 but decreased the levels of CD36, ADFP, Bax, and Cleaved caspase-3. CONCLUSION: TGs alleviates renal injury and lipid deposition induced by doxorubicin, suggesting that it may be a new strategy for reducing renal lipotoxicity in NS.


Assuntos
Síndrome Nefrótica , Ratos , Animais , Tripterygium , Ratos Sprague-Dawley , Doxorrubicina , Glutationa , Glicosídeos , Lipídeos
8.
J Alzheimers Dis ; 92(2): 591-604, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776072

RESUMO

BACKGROUND: Mitochondria can trigger Alzheimer's disease (AD)-associated molecular phenomena, but how mitochondria impact apolipoprotein E (APOE; apoE) is not well known. OBJECTIVE: Consider whether and how mitochondrial biology influences APOE and apoE biology. METHODS: We measured APOE expression in human SH-SY5Y neuronal cells with different forms of mitochondrial dysfunction including total, chronic mitochondrial DNA (mtDNA) depletion (ρ0 cells); acute, partial mtDNA depletion; and toxin-induced mitochondrial dysfunction. We further assessed intracellular and secreted apoE protein levels in the ρ0 cells and interrogated the impact of transcription factors and stress signaling pathways known to influence APOE expression. RESULTS: SH-SY5Y ρ0 cells exhibited a 65-fold increase in APOE mRNA, an 8-fold increase in secreted apoE protein, and increased intracellular apoE protein. Other models of primary mitochondrial dysfunction including partial mtDNA-depletion, toxin-induced respiratory chain inhibition, and chemical-induced manipulations of the mitochondrial membrane potential similarly increased SH-SY5Y cell APOE mRNA. We explored potential mediators and found in the ρ0 cells knock-down of the C/EBPα and NFE2L2 (Nrf2) transcription factors reduced APOE mRNA. The activity of two mitogen-activated protein kinases, JNK and ERK, also strongly influenced ρ0 cell APOE mRNA levels. CONCLUSION: Primary mitochondrial dysfunction either directly or indirectly activates APOE expression in a neuronal cell model by altering transcription factors and stress signaling pathways. These studies demonstrate mitochondrial biology can influence the biology of the APOE gene and apoE protein, which are implicated in AD.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Neuroblastoma/metabolismo , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Fatores de Transcrição/metabolismo , Doença de Alzheimer/metabolismo , RNA Mensageiro/metabolismo , Biologia , Linhagem Celular Tumoral
9.
Mitochondrion ; 68: 125-137, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36516926

RESUMO

While ketone bodies support overall brain energy metabolism, it is increasingly clear specific brain cell types respond differently to ketone body availability. Here, we characterized how SH-SY5Y neuroblastoma cell, primary neuron, and primary astrocyte bioenergetics and nutrient sensing pathways respond to ß-hydroxybutyrate (ßOHB). SH-SY5Y cells and primary neurons, but not astrocytes, exposed to ßOHB increased respiration and decreased PI3K-Akt-mTOR signaling. Despite increased carbon availability and respiration, SH-SY5Y cells treated with ßOHB reduced their overall metabolic activity and cell cycling rate. Levels of the quiescence-regulating Yamanaka factors increased to a broader extent in SH-SY5Y cells and primary neurons. We propose a ßOHB-induced increase in neuron respiration, accompanied by activation of quiescence associated pathways, could alleviate bioenergetic stress and limit cell senescence. This in turn could potentially benefit conditions, including brain aging and neurodegenerative diseases, that feature bioenergetic decline and cell senescence.


Assuntos
Neuroblastoma , Fosfatidilinositol 3-Quinases , Humanos , Ácido 3-Hidroxibutírico/farmacologia , Ácido 3-Hidroxibutírico/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neuroblastoma/metabolismo , Corpos Cetônicos/metabolismo , Neurônios/metabolismo , Linhagem Celular Tumoral
10.
Artigo em Inglês | MEDLINE | ID: mdl-35880107

RESUMO

Oxidative stress and impaired autophagy are the hallmarks of cardiac aging. However, there are no specific drugs available to prevent cardiac aging. Curcumin is a natural polyphenolic drug with antioxidant, antiaging, and autophagy-promoting effects. Here, we describe the preventive role of Curcumin in cardiac aging through the induction of autophagy and the restoration of autophagy via the SIRT1/AMPK/mTOR pathway. The number of cells positive for senescence-associated ß-galactosidase, P53, P16, and intracellular ROS increased significantly in senescent cardiomyocytes, stimulated using D-galactose. Curcumin reversed this effect in a dose-dependent manner. Curcumin-induced autophagy increased the expression of SIRT1and phosphorylated AMPK and decreased phosphorylated mTOR in a dose-dependent manner. SIRT1-siRNA-mediated knockdown inhibited the antioxidation, antiaging, the promotion of autophagy, and the SIRT1/AMPK/mTOR pathway activation effect of curcumin. Therefore, curcumin could be an effective anticardiac aging drug.

11.
J Enzyme Inhib Med Chem ; 37(1): 1537-1555, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35670075

RESUMO

The DNA methyltransferases (DNMTs) were found in mammals to maintain DNA methylation. Among them, DNMT1 was the first identified, and it is an attractive target for tumour chemotherapy. DC_05 and DC_517 have been reported in our previous work, which is non-nucleoside DNMT1 inhibitor with low micromolar IC50 values and significant selectivity towards other S-adenosyl-L-methionine (SAM)-dependent protein methyltransferases. In this study, through a process of similarity-based analog searching, a series of DNMT1 inhibitors were designed, synthesized, and evaluated as anticancer agents. SAR studies were conducted based on enzymatic assays. And most of the compounds showed strong inhibitory activity on human DNMT1, especially WK-23 displayed a good inhibitory effect on human DNMT1 with an IC50 value of 5.0 µM. Importantly, the pharmacokinetic (PK) profile of WK-23 was obtained with quite satisfying oral bioavailability and elimination half-life. Taken together, WK-23 is worth developing as DNMT1-selective therapy for the treatment of malignant tumour.


Assuntos
Antineoplásicos , Neoplasias , Animais , Antineoplásicos/farmacologia , Carbazóis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Metilases de Modificação do DNA/metabolismo , Humanos , Mamíferos/metabolismo
12.
Bioengineered ; 13(3): 7134-7146, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35274595

RESUMO

Sepsis-induced myocardial dysfunction (SIMD) is associated with high morbidity and mortality rates; however, it lacks targeted therapies. Modulating cardiomyocyte autophagy maintains intracellular homeostasis during SIMD. Clemastine, a histamine receptor inhibitor, promotes autophagy and other effective biological functions. Nevertheless, the effect of clemastine on SIMD remains unclear. This study aimed to explore the underlying mechanism of clemastine in cardiomyocyte injury in cecum ligation and perforation (CLP)-induced rats and lipopolysaccharide (LPS)-stimulated H9c2 cells. Clemastine (10 mg/kg, 30 mg/kg, and 50 mg/kg) was intraperitoneally injected after 30 min of CLP surgery. Serum cTnI levels and the 7-day survival rate were evaluated. Echocardiograms and H&E staining were used to evaluate cardiac function and structure. TEM was used to detect the mitochondrial ultrastructure and autophagosomes. Clemastine significantly improved the survival rate and reduced cTnI production in serum. Clemastine ameliorated cellular apoptosis, improved mitochondrial ultrastructure both in vivo and in vitro, increased ATP content, decreased dynamin-related protein 1 (DRP1) expression, and decreased mitochondrial ROS levels. Additionally, clemastine treatment increased autophagosome concentration, LC3II/LC3I rate, and Beclin 1 expression. However, 3-methyladenine (3-MA), an autophagy inhibitor, could abolish the effect of clemastine on alleviating myocardial apoptosis. In conclusion, clemastine protected against cardiac structure destruction and function dysfunction, mitochondrial damage, apoptosis, and autophagy in vivo and in vitro. Moreover, clemastine attenuated myocardial apoptosis by promoting autophagy. This study provides a novel favorable perspective for SIMD therapy.


Assuntos
Cardiomiopatias , Sepse , Animais , Apoptose , Autofagia , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/etiologia , Clemastina/metabolismo , Clemastina/farmacologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Ratos , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo
13.
Sci Rep ; 11(1): 13122, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162944

RESUMO

Colorectal cancer (CRC) is one of the most common and fatal gastrointestinal cancers worldwide. Considering their diversity, the establishment of new continuous CRC cell lines with clear genetic backgrounds will provide useful tools for exploring molecular mechanisms, screening and evaluating antitumor drugs in CRC studies. Our de novo CRC cell line, PUMC-CRC1 (Peking Union Medical College Colorectal Cancer 1) was derived from a 47-year-old Chinese female patient diagnosed with moderately to poorly differentiated colon adenocarcinoma. Multiple experiments were used for full characterization. The new cell line was epithelial-like and was passaged for more than 40 times, with a population doubling time of 44 h in vitro, detected by cell counts. The cells exhibited complicated chromosomal abnormalities. The tumor formation rate in SCID mice was 100%. The xenograft tumor was adenocarcinoma with poor to moderate differentiation by Haematoxylin and Eosin staining (H&E) sections. Immunohistochemistry (IHC) analysis and next-generation sequencing (NGS) revealed microsatellite stable (MSS), APC (p.T1493fs) inactivation, KRAS (p.G12V) activation, and SMAD4 (p.V506A) mutation. Quality control of the cell line proved mycoplasma negative and identical STR profile with that of the original tissue, and no interspecific or intraspecific cross contamination was detected. In conclusion, PUMC-CRC1 was a newly established and well characterized human colon cancer cell line, which might be a good model for both in vitro and in vivo studies of the mechanism of colon cancer progression and the treatment strategies for MSS CRC.


Assuntos
Adenocarcinoma/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Aberrações Cromossômicas , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Feminino , Humanos , Cariotipagem , Masculino , Camundongos SCID , Pessoa de Meia-Idade , Transplante de Neoplasias
14.
J Cereb Blood Flow Metab ; 41(8): 2116-2131, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33563078

RESUMO

Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the NAD+ salvage pathway. Our previous study demonstrated that deletion of NAMPT gene in projection neurons using Thy1-NAMPT-/- conditional knockout (cKO) mice causes neuronal degeneration, muscle atrophy, neuromuscular junction abnormalities, paralysis and eventually death. Here we conducted a combined metabolomic and transcriptional profiling study in vivo in an attempt to further investigate the mechanism of neuronal degeneration at metabolite and mRNA levels after NAMPT deletion. Here using steady-state metabolomics, we demonstrate that deletion of NAMPT causes a significant decrease of NAD+ metabolome and bioenergetics, a buildup of metabolic intermediates upstream of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in glycolysis, and an increase of oxidative stress. RNA-seq shows that NAMPT deletion leads to the increase of mRNA levels of enzymes in NAD metabolism, in particular PARP family of NAD+ consumption enzymes, as well as glycolytic genes Glut1, Hk2 and PFBFK3 before GAPDH. GO, KEGG and GSEA analyses show the activations of apoptosis, inflammation and immune responsive pathways and the inhibition of neuronal/synaptic function in the cKO mice. The current study suggests that increased oxidative stress, apoptosis and neuroinflammation contribute to neurodegeneration and mouse death as a direct consequence of bioenergetic stress after NAMPT deletion.


Assuntos
Morte Celular/genética , Citocinas/genética , Metabolismo Energético/genética , Neurônios/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Estresse Oxidativo/genética , Trifosfato de Adenosina/metabolismo , Animais , Citocinas/deficiência , Regulação para Baixo , Feminino , Glicólise , Masculino , Metabolômica , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/deficiência , Análise de Componente Principal , Regulação para Cima
15.
Front Immunol ; 12: 795626, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111160

RESUMO

Metabolic intervention is a novel anti-rheumatic approach. The glycolytic regulator NAMPT has been identified as a therapeutic target of rheumatoid arthritis (RA), while other metabolic regulators coordinating NAMPT to perpetuate inflammation are yet to be investigated. We continuously monitored and validated expression changes of Nampt and inflammatory indicators in peripheral while blood cells from rats with collagen-induced arthritis (CIA). Gene transcriptional profiles of Nampt+ and Nampt++ samples from identical CIA rats were compared by RNA-sequencing. Observed gene expression changes were validated in another batch of CIA rats, and typical metabolic regulators with persistent changes during inflammatory courses were further investigated in human subjects. According to expression differences of identified genes, RA patients were assigned into different subsets. Clinical manifestation and cytokine profiles among them were compared afterwards. Nampt overexpression typically occurred in CIA rats during early stages, when iNos and Il-1ß started to be up-regulated. Among differentially expressed genes between Nampt+ and Nampt++ CIA rat samples, changes of Tpi1, the only glycolytic enzyme identified were sustained in the aftermath of acute inflammation. Similar to NAMPT, TPI1 expression in RA patients was higher than general population, which was synchronized with increase in RFn as well as inflammatory monocytes-related cytokines like Eotaxin. Meanwhile, RANTES levels were relatively low when NAMPT and TPI1 were overexpressed. Reciprocal interactions between TPI1 and HIF-1α were observed. HIF-1α promoted TPI1 expression, while TPI1 co-localized with HIF-1α in nucleus of inflammatory monocytes. In short, although NAMPT and TPI1 dominate different stages of CIA, they similarly provoke monocyte-mediated inflammation.


Assuntos
Artrite Reumatoide/etiologia , Artrite Reumatoide/metabolismo , Biomarcadores , Mediadores da Inflamação/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Triose-Fosfato Isomerase/metabolismo , Animais , Artrite Experimental , Artrite Reumatoide/diagnóstico , Biologia Computacional/métodos , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Prognóstico , Ratos , Triose-Fosfato Isomerase/genética
16.
Front Neurosci ; 14: 608862, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33328877

RESUMO

BACKGROUND: Individuals with Alzheimer's Disease (AD) are often characterized by systemic markers of insulin resistance; however, the broader effects of AD on other relevant metabolic hormones, such as incretins that affect insulin secretion and food intake, remains less clear. METHODS: Here, we leveraged a physiologically relevant meal tolerance test to assess diagnostic differences in these metabolic responses in cognitively healthy older adults (CH; n = 32) and AD (n = 23) participants. All individuals also underwent a comprehensive clinical examination, cognitive evaluation, and structural magnetic resonance imaging. RESULTS: The meal-stimulated response of glucose, insulin, and peptide tyrosine tyrosine (PYY) was significantly greater in individuals with AD as compared to CH. Voxel-based morphometry revealed negative relationships between brain volume and the meal-stimulated response of insulin, C-Peptide, and glucose-dependent insulinotropic polypeptide (GIP) in primarily parietal brain regions. CONCLUSION: Our findings are consistent with prior work that shows differences in metabolic regulation in AD and relationships with cognition and brain structure.

17.
J Alzheimers Dis ; 77(1): 149-163, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32804126

RESUMO

BACKGROUND: Mitochondrial dysfunction and tau aggregation occur in Alzheimer's disease (AD), and exposing cells or rodents to mitochondrial toxins alters their tau. OBJECTIVE: To further explore how mitochondria influence tau, we measured tau oligomer levels in human neuronal SH-SY5Y cells with different mitochondrial DNA (mtDNA) manipulations. METHODS: Specifically, we analyzed cells undergoing ethidium bromide-induced acute mtDNA depletion, ρ0 cells with chronic mtDNA depletion, and cytoplasmic hybrid (cybrid) cell lines containing mtDNA from AD subjects. RESULTS: We found cytochrome oxidase activity was particularly sensitive to acute mtDNA depletion, evidence of metabolic re-programming in the ρ0 cells, and a relatively reduced mtDNA content in cybrids generated through AD subject mitochondrial transfer. In each case tau oligomer levels increased, and acutely depleted and AD cybrid cells also showed a monomer to oligomer shift. CONCLUSION: We conclude a cell's mtDNA affects tau oligomerization. Overlapping tau changes across three mtDNA-manipulated models establishes the reproducibility of the phenomenon, and its presence in AD cybrids supports its AD-relevance.


Assuntos
DNA Mitocondrial/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas tau/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Estudos de Coortes , DNA Mitocondrial/genética , Etídio/toxicidade , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas tau/genética
18.
Int J Chron Obstruct Pulmon Dis ; 15: 1071-1083, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523337

RESUMO

Objective: Hospital-outreach pulmonary rehabilitation (PR) can improve health status and reduce health-care utilization by patients with chronic obstructive pulmonary disease (COPD). However, its long-term effects and costs versus benefits are still not clear. This study was conducted to develop, deliver, and evaluate the effects and monetary savings of a hospital-outreach PR program for patients with COPD. Methods: A randomized controlled trial was conducted. Patients with COPD (n=208) were randomly assigned to the hospital-outreach PR program (treatment) or treatment as usual (control). The treatment group received a 3-month intensive intervention, including supervised physical exercise, smoking cessation, self-management education, and psychosocial support, followed by long-term access to a nurse through telephone follow-up and home visits up to 24 months. The control group received routine care, including discharge education and a self-management education brochure. Main outcomes were collected at 3, 6, 12, and 24 -months postrandomization. Primary outcomes included health-care utilization (ie, readmission rates, times, and days, and emergency department visits) and medical costs. Secondary outcomes included lung function (ie, FEV1, FEV1% predicted, FVC), dyspnea (mMCR), exercise capacity (6MWD), impact on quality of life (CAT), and self-management (CSMS). Results: At the end of 24 months, 85 (81.7%) in the treatment group and 89 (85.6%) in the control group had completed the whole program. Compared with the control group, patients in the treatment group had lower readmission rates, times, and days at 6 and 12 months and during 12-24 months. Regarding costs during the 2 years, the program achieved CN¥3,655.94 medical  savings per patient per year, and every ¥1 spent on the program led to ¥3.29 insavings. Patients in the treatment group achieved improvements in FEV1, FEV1% predicted, exercise capacity, and self-management. It also achieved relief of dyspnea symptoms and improvement in COPD's impact on quality of life. Conclusion: The hospital-outreach PR program for patients with COPD achieved reductions in health-care utilization, monetary savings, and improvements in patient health outcomes. The effects of the program were sustained for at least 2 years. Trial Registration: This trial was registered at the Chinese Clinical Trial Registry (ChiCTR-TRC-14005108).


Assuntos
Doença Pulmonar Obstrutiva Crônica , Análise Custo-Benefício , Hospitais , Humanos , Pulmão , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Qualidade de Vida
19.
J Ethnopharmacol ; 257: 112789, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32234597

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tripterygium wilfordii Hook F. (TwHF), a traditional Chinese herb medicine, has been widely used for clinical treatment of various rheumatic immune diseases. Tripterygium glycosides (TG) extracted from TwHF has been verified to process multiple bioactivities, including immunosuppressive, anti-inflammatory and anti-cancer effects. However, the clinical application of TG is limited due to its severe toxicity and narrow therapeutic window. For the clinical safety of TG usage, attenuation of toxicity is the key issue to be solved. PURPOSE: Tripterygium glycoside fraction n2 (TG-n2) is a detoxified mixture obtained from TG using a new preparation method. In our previous study, we have demonstrated that TG-n2 has a lower toxicity than TG. The aim of the present study was to screen the renal protective effect of TG-n2 in nephrotic syndrome (NS) induced by adriamycin (ADR) in rats and its effect on apoptosis, as well as the effective difference between TG-n2 and TG. MATERIALS AND METHODS: The ADR-induced NS rat model was established. Rats were intravenously injected with ADR (6 mg/kg), then treated with either TG-n2 (10 mg/kg/day) or TG (10 mg/kg/day) by oral gavage for 4 weeks. Clinical indexes in each group were determined. HE staining and electron microscopic analysis were used to evaluate renal histopathological damage. Caspase-3 activity reagent and TUNEL staining were used to estimate renal apoptosis. Protein levels of caspase-3, caspase-9, caspase-8, caspase-12, Bax, Bcl-2, p53, TNF-R1, FLIP and podocin were measured by Western Blot. RESULTS: TG-n2 and TG intervention ameliorated renal function as assessed by the levels of 24-h proteinuria, Cr, BUN, TC, TG, ALB and LDL-c. TG-n2 and TG alleviated the decrease of podocin protein expression and morphological injury of podocyte as screened by Western Blot and electron microscopic analysis. Besides, renal tubular injury was reduced as inspected by light microscopic analysis. TG-n2 and TG could significantly inhibit the apoptosis and activity of caspase-3 in kidney tissues as examined by fluorescence microscopic analysis and reagent. After intervention of TG-n2 and TG, protein levels of cleaved caspase-3, cleaved caspase-8, cleaved caspase-9, Bax, p53 and TNF-R1 in renal issues were significantly decreased compared with ADR group. In contrast, protein level of Bcl-2 was elevated remarkedly. CONCLUSIONS: Our data suggested that attenuated TG-n2 may have a similar protective effect with TG in ADR-induced NS in rats by inhibiting activation of apoptosis.


Assuntos
Doxorrubicina/farmacologia , Glicosídeos/farmacologia , Síndrome Nefrótica/tratamento farmacológico , Tripterygium , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 3/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Rim/patologia , Lipídeos/sangue , Masculino , Medicina Tradicional Chinesa , Proteínas de Membrana/metabolismo , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/patologia , Podócitos/patologia , Proteinúria/tratamento farmacológico , Ratos , Ratos Sprague-Dawley
20.
World J Gastrointest Oncol ; 12(3): 267-275, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32206177

RESUMO

BACKGROUND: The extracellular matrix is the main component of the tumor microenvironment. Extracellular matrix remodels with the oncogenesis and development of tumors. Previous studies usually focused on the changes of proteins in normal colorectal tissues and colorectal cancers. Little is known about the changes in the extracellular matrix in different stages of colorectal cancer and the effects of these changes on the development of this cancer. AIM: To test the changes of type I collagen, type IV collagen, matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinase-3 (TIMP-3) in different stages of colorectal cancer and the effects of these changes on the proliferation of cancer cells. METHODS: The extracellular matrix from various stages of colorectal cancer and normal colon tissue was obtained by using acellular technology. We used proteomics to detect the differential expression of proteins between normal colon tissues and colorectal cancer tissues, and then we used Western blot to observe their expression in each stage of colorectal cancer and in normal colon tissue. By co-culturing the extracellular matrix and HT29 colon cancer cells in vivo and in vitro, we tested the cancer cell proliferation rate in vitro by methyl thiazolyl tetrazolium (MTT) assay and in vivo by measuring the tumor volume. RESULTS: The expression of type I collagen and MMP-2 increased with increased tumor stage. The expression of MMP-9 was higher in colorectal cancer tissues and was highest in stage III cancer. The expression of type IV collagen and TIMP-3 decreased with increased tumor stage. The proliferation rate of cancer cells in the extracellular matrix of colorectal cancer was higher than that in the extracellular matrix of the normal colon. CONCLUSION: These data suggest that the extracellular matrix structure and composition become disorganized during the development of tumors, which is more conducive for the growth of cancer cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA