Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
BMC Womens Health ; 24(1): 484, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227947

RESUMO

BACKGROUND: Yolk sac tumor (YST) is a highly malignant germ cell tumor, a majority of which originate from the gonads and are extremely rare from endometrium. CASE PRESENTATION: Here we present a case of a 42-year-old woman suffered from primary pure yolk sac tumor of the endometrium complicated with situs inversus totalis. The patient presented at our hospital with irregular vaginal bleeding. Imageological examination showed a space-occupying lesion in the cervix and the serum Alpha-fetoprotein (AFP) level was significantly high (more than 1210ng/ml). Then she underwent total hysterectomy, bilateral salpingo-oophorectomy and pelvic lymph node dissection. The subsequent postoperative pathological diagnosis was yolk sac tumor arising from the endometrium. Next, the patient was treated with 6 cycles of chemotherapy with Pingyangmycin, etoposide and cisplatin regimen and was alive without evidence of recurrence or distant metastases for 13 months. CONCLUSIONS: This rare disease needs to be differentiated from endometrial epithelial neoplasia and the significant increase in AFP is helpful for diagnosis. Combined with previous literature reports, comprehensive staging laparotomy or maximum cytoreductive surgery complemented by standard chemotherapy can usually achieve a good efficacy.


Assuntos
Tumor do Seio Endodérmico , Neoplasias do Endométrio , Situs Inversus , Humanos , Feminino , Tumor do Seio Endodérmico/complicações , Tumor do Seio Endodérmico/diagnóstico , Tumor do Seio Endodérmico/patologia , Adulto , Situs Inversus/complicações , Situs Inversus/diagnóstico , Neoplasias do Endométrio/complicações , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/patologia , alfa-Fetoproteínas/análise , Histerectomia/métodos
2.
Sci Total Environ ; 948: 174452, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-38964396

RESUMO

Airborne trace elements (TEs) present in atmospheric fine particulate matter (PM2.5) exert notable threats to human health and ecosystems. To explore the impact of meteorological conditions on shaping the pollution characteristics of TEs and the associated health risks, we quantified the variations in pollution characteristics and health risks of TEs due to meteorological impacts using weather normalization and health risk assessment models, and analyzed the source-specific contributions and potential sources of primary TEs affecting health risks using source apportionment approaches at four sites in Shandong Province from September to December 2021. Our results indicated that TEs experience dual effects from meteorological conditions, with a tendency towards higher TE concentrations and related health risks during polluted period, while the opposite occurred during clean period. The total non-carcinogenic and carcinogenic risks of TEs during polluted period increased approximately by factors of 0.53-1.74 and 0.44-1.92, respectively. Selenium (Se), manganese (Mn), and lead (Pb) were found to be the most meteorologically influenced TEs, while chromium (Cr) and manganese (Mn) were identified as the dominant TEs posing health risks. Enhanced emissions of multiple sources for Cr and Mn were found during polluted period. Depending on specific wind speeds, industrialized and urbanized centers, as well as nearby road dusts, could be key sources for TEs. This study suggested that attentions should be paid to not only the TEs from primary emissions but also the meteorology impact on TEs especially during pollution episodes to reduce health risks in the future.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , Aprendizado de Máquina , Material Particulado , Oligoelementos , Poluentes Atmosféricos/análise , Material Particulado/análise , Poluição do Ar/estatística & dados numéricos , Oligoelementos/análise , China , Medição de Risco
3.
Cancer Cell ; 42(6): 1106-1125.e8, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38788718

RESUMO

Neuroendocrine carcinomas (NECs) are extremely lethal malignancies that can arise at almost any anatomic site. Characterization of NECs is hindered by their rarity and significant inter- and intra-tissue heterogeneity. Herein, through an integrative analysis of over 1,000 NECs originating from 31 various tissues, we reveal their tissue-independent convergence and further unveil molecular divergence driven by distinct transcriptional regulators. Pan-tissue NECs are therefore categorized into five intrinsic subtypes defined by ASCL1, NEUROD1, HNF4A, POU2F3, and YAP1. A comprehensive portrait of these subtypes is depicted, highlighting subtype-specific transcriptional programs, genomic alterations, evolution trajectories, therapeutic vulnerabilities, and clinicopathological presentations. Notably, the newly discovered HNF4A-dominated subtype-H exhibits a gastrointestinal-like signature, wild-type RB1, unique neuroendocrine differentiation, poor chemotherapeutic response, and prevalent large-cell morphology. The proposal of uniform classification paradigm illuminates transcriptional basis of NEC heterogeneity and bridges the gap across different lineages and cytomorphological variants, in which context-dependent prevalence of subtypes underlies their phenotypic disparities.


Assuntos
Carcinoma Neuroendócrino , Regulação Neoplásica da Expressão Gênica , Humanos , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/patologia , Carcinoma Neuroendócrino/classificação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Sinalização YAP , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
4.
Front Pharmacol ; 15: 1359832, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650628

RESUMO

Background: Acute myeloid leukemia (AML) is the most common form of leukemia among adults and is characterized by uncontrolled proliferation and clonal expansion of hematopoietic cells. There has been a significant improvement in the treatment of younger patients, however, prognosis in the elderly AML patients remains poor. Methods: We used computational methods and machine learning (ML) techniques to identify and explore the differential high-risk genes (DHRGs) in AML. The DHRGs were explored through multiple in silico approaches including genomic and functional analysis, survival analysis, immune infiltration, miRNA co-expression and stemness features analyses to reveal their prognostic importance in AML. Furthermore, using different ML algorithms, prognostic models were constructed and validated using the DHRGs. At the end molecular docking studies were performed to identify potential drug candidates targeting the selected DHRGs. Results: We identified a total of 80 DHRGs by comparing the differentially expressed genes derived between AML patients and normal controls and high-risk AML genes identified by Cox regression. Genetic and epigenetic alteration analyses of the DHRGs revealed a significant association of their copy number variations and methylation status with overall survival (OS) of AML patients. Out of the 137 models constructed using different ML algorithms, the combination of Ridge and plsRcox maintained the highest mean C-index and was used to build the final model. When AML patients were classified into low- and high-risk groups based on DHRGs, the low-risk group had significantly longer OS in the AML training and validation cohorts. Furthermore, immune infiltration, miRNA coexpression, stemness feature and hallmark pathway analyses revealed significant differences in the prognosis of the low- and high-risk AML groups. Drug sensitivity and molecular docking studies revealed top 5 drugs, including carboplatin and austocystin-D that may significantly affect the DHRGs in AML. Conclusion: The findings from the current study identified a set of high-risk genes that may be used as prognostic and therapeutic markers for AML patients. In addition, significant use of the ML algorithms in constructing and validating the prognostic models in AML was demonstrated. Although our study used extensive bioinformatics and machine learning methods to identify the hub genes in AML, their experimental validations using knock-out/-in methods would strengthen our findings.

5.
Front Oncol ; 14: 1338634, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333684

RESUMO

Background: Lung cancer is the leading cause of cancer deaths globally, with lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) being major subtypes. Immunotherapy has emerged as a promising approach for the treatment of lung cancer, but understanding the underlying mechanisms of immune dysregulation is crucial for the development of effective therapies. This study aimed to investigate the distinctive cellular features of LUAD and LUSC and identify potential biomarkers associated with the pathogenesis and clinical outcomes of each subtype. Methods: We used digital cytometry techniques to analyze the RNA-Seq data of 1128 lung cancer patients from The Cancer Genome Atlas (TCGA) database. The abundance of cell subtypes and ecotypes in LUAD and LUSC patients was quantified. Univariate survival analysis was used to investigate their associations with patient overall survival (OS). Differential gene expression analysis and gene co-expression network construction were carried out to explore the gene expression patterns of LUSC patients with distinct survival outcomes. Scratch wound-healing assay, colony formation assay, and transwell assay were used to validate the candidate drugs for LUSC treatment. Results: We found differential expression of cell subtypes between LUAD and LUSC, with certain cell subtypes being prognostic for survival in both subtypes. We also identified differential gene expression and gene co-expression modules associated with macrophages.3/PCs.2 ratio in LUSC patients with distinct survival outcomes. Furthermore, ecotype ratios were found to be prognostic in both subtypes and machine learning models showed that certain cell subtypes, such as epithelial.cells.1, epithelial.cells.5, and endothelial.cells.2 are important for predicting LUSC. Ginkgolide B and triamterene can inhibit the proliferation, invasion, and migration of LUSC cell lines. Conclusion: We provide insight into the distinctive cellular features of LUAD and LUSC, and identify potential biomarkers associated with the pathogenesis and clinical outcomes of each subtype. Ginkgolide B and triamterene could be promising drugs for LUSC treatment.

6.
J Ethnopharmacol ; 326: 117865, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38369066

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: 2,3,5,4'-tetrahydroxystilbene-2-O-ß-D-glucopyranoside (TSG) as the primary constituent of Polygonum multiflorum Thumb. (PM) possesses anti-oxidative, antihypercholesterolemic, anti-tumor and many more biological activities. The root of PM has been used as a tonic medicine for thousands of years. However, cases of PM-induced liver injury are occasionally reported, and considered to be related to the host immune status. AIM OF THE STUDY: The primary toxic elements and specific mechanisms PM causing liver damage are still not thoroughly clear. Our study aimed to investigate the influences of TSG on the immune response in idiosyncratic hepatotoxicity of PM. MATERIALS AND METHODS: The male C57BL/6 mice were treated with different doses of TSG and the alterations in liver histology, serum liver enzyme levels, proportions of T cells and cytokines secretion were evaluated by hematoxylin and eosin (HE), RNA sequencing, quantitative real time polymerase chain reaction (qRT-PCR), Flow cytometry (FCM), and enzyme-linked immunosorbent assay (ELISA), respectively. Then, primary spleen cells from drug-naive mice were isolated and cultured with TSG in vitro. T cell subsets proliferation and cytokines secretion after treated with TSG were assessed by CCK8, FCM and ELISA. In addition, mice were pre-treated with anti-CD25 for depleting regulatory T cells (Tregs), and then administered with TSG. Liver functions and immunological alterations were analyzed to evaluate liver injury. RESULTS: Data showed that TSG induced liver damage, and immune cells infiltration in the liver tissues. FCM results showed that TSG could activate CD4+T and CD8+T in the liver. Results further confirmed that TSG notably up-regulated the levels of inflammatory cytokines including TNF-α, IFN-γ, IL-18, perforin and granzyme B in the liver tissues. Furthermore, based on transcriptomics profiles, some immune system-related pathways including leukocyte activation involved in inflammatory response, leukocyte cell-cell adhesion, regulation of interleukin-1 beta production, mononuclear cell migration, antigen processing and presentation were altered in TSG treated mice. CD8+T/CD4+T cells were also stimulated by TSG in vitro. Interestingly, increased proportion of Tregs was observed after TSG treatment in vitro and in vivo. Foxp3 and TGF-ß1 mRNA expressions were up-regulated in the liver tissues. Depletion of Tregs moderately enhanced TSG induced the secretion of inflammatory cytokines in serum. CONCLUSIONS: Our findings showed that TSG could trigger CD4+T and CD8+T cells proliferation, promote cytokines secretion, which revealed that adaptive immune response associated with the mild liver injury cause by TSG administration. Regulatory T cells (Tregs) mainly sustain immunological tolerance, and in this study, the progression of TSG induced liver injury was limited by Tregs. The results of our investigations allow us to preliminarily understand the mechanisms of PM related idiosyncratic hepatotoxicity.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Fallopia multiflora , Polygonum , Estilbenos , Camundongos , Masculino , Animais , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Camundongos Endogâmicos C57BL , Citocinas/genética , Imunidade , Estilbenos/toxicidade , Estilbenos/uso terapêutico
7.
Aging (Albany NY) ; 16(3): 2340-2361, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38277218

RESUMO

Acute myeloid leukemia (AML) is a highly heterogeneous malignant disease of the blood cell. The current therapies for AML are unsatisfactory and the molecular mechanisms underlying AML are unclear. 5-methylcytosine (m5C) is an important posttranscriptional modification of mRNA, and is involved in the regulation of mRNA stability, translation, and other aspects of RNA metabolism. However, based on our knowledge of published literature, the role of the m5C regulators has not been explored in AML till date. In this study, we clarified the expression and gene variants of m5C regulators in AML and found that most m5C regulators were differentially expressed and correlated with disease prognosis. We also found that the methylation status of certain m5C regulators (e.g., DNMT3A, DNMT3B) affects the survival of AML patients. Two m5C modification subtypes, and high- and low-risk subgroups identified based on the expression of m5C regulators showed significant differences in the prognosis as well as immune cell infiltration. In addition, most of the m5C regulators were found to be correlated with miRNA expression in AML, as well as IC50 values of many drugs. The miRNA and GSVA analysis were used to identify the different miRNAs and KEGG or hallmark pathways between high- and low-risk subgroups. We also built a prognostic model based on m5C regulators, which was validated by two GSE databases. To verify the reliability of our analysis and conclusions, qPCR was used to identify the expressions of m5C regulators between normal and AML. In summary, we comprehensively explored the molecular characteristics of m5C regulators and built a prognostic model in AML. We proposed new mechanistic insights into the role of m5C in multiple databases and clinical data, which may pave novel ways for the development of therapeutic strategies.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Humanos , RNA , 5-Metilcitosina , Reprodutibilidade dos Testes , Leucemia Mieloide Aguda/genética , RNA Mensageiro , Microambiente Tumoral/genética
8.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(4): 647-654, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37654145

RESUMO

Ferroptosis is a new type of programmed cell death different from other cell death pathways such as apoptosis,autophagy,necrosis,and pyroptosis in terms of initiation,mechanisms,and molecular characteristics.As the accumulation of phospholipid hydroperoxides is the hallmark of ferroptosis,the balance between oxidative damage and antioxidant defense is critical to the regulatory mechanism of ferroptosis.In cancer,the upregulation of antioxidant defense pathways can inhibit ferroptosis,thereby promoting cancer cells to survive the oxidative stress and develop drug resistance.This review systematically introduces the main features and regulatory mechanisms of ferroptosis.In addition,we summarize the role of ferroptosis in the progression and drug resistance of malignant tumors,providing novel implications for further research on the pathogenesis of malignant tumors and discovery of new targets for anti-cancer therapy.


Assuntos
Ferroptose , Neoplasias , Humanos , Antioxidantes , Apoptose , Autofagia
9.
Mol Ecol ; 32(18): 4999-5012, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37525516

RESUMO

Genomic structural variations (SVs) are widespread in plant and animal genomes and play important roles in phenotypic novelty and species adaptation. Frequent whole genome duplications followed by (re)diploidizations have resulted in high diversity of genome architecture among extant species. In this study, we identified abundant genomic SVs in the Panax genus that are hypothesized to have occurred through during the repeated polyploidizations/(re)diploidizations. Our genome-wide comparisons demonstrated that although these polyploidization-derived SVs have evolved at distinct evolutionary stages, a large number of SV-intersecting genes showed enrichment in functionally important pathways related to secondary metabolites, photosynthesis and basic cellular activities. In line with these observations, our metabolic analyses of these Panax species revealed high diversity of primary and secondary metabolites both at the tissue and interspecific levels. In particular, genomic SVs identified at ginsenoside biosynthesis genes, including copy number variation and large fragment deletion, appear to have played important roles in the evolution and diversification of ginsenosides. A further herbivore deterrence experiment demonstrated that, as major triterpenoidal saponins found exclusively in Panax, ginsenosides provide protection against insect herbivores. Our study provides new insights on how polyploidization-derived SVs have contributed to phenotypic novelty and plant adaptation.


Assuntos
Ginsenosídeos , Panax , Saponinas , Ginsenosídeos/análise , Ginsenosídeos/química , Ginsenosídeos/metabolismo , Panax/genética , Panax/química , Panax/metabolismo , Variações do Número de Cópias de DNA , Saponinas/química , Saponinas/genética , Saponinas/metabolismo , Adaptação Fisiológica
10.
Hematology ; 28(1): 2186044, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36897012

RESUMO

OBJECTIVES: POEMS syndrome is a rare disorder which has been increasingly recognized. The clonal origin is controversial. Some people argue that POEMS syndrome originates from abnormal plasma cell clones. So, treatment frequently targets the plasma cell clone. Nevertheless, others believe that both plasma cells and B cells can be the potential culprit in POEMS syndrome. METHODS: A 65-year-old male came to the emergency department of our hospital with the complaints of bilateral soles numbness and weight loss for half a year, abdominal distension for half a month, and chest tightness and shortness of breath for one day. He was then diagnosed as POEMS syndrome complicated with monoclonal B-cell lymphocytosis (non-CLL type). A standard bendamustine plus rituximab (BR) regimen combined with low dose of lenalidomide was administered. RESULTS: After four cycles of treatment, the ascites of the patient was absent and the neurological symptom disappeared. The renal function, the IgA level, and the VEGF level all returned to normal. DISCUSSION: POEMS syndrome, a multi-system disorder, is easily misdiagnosed. The clonal origin of POEMS syndrome is controversial and needs further study. For now, there are no approved treatment regimens. Treatments mainly target the plasma cell clone. This case suggested that other therapy besides anti-plasma cell treatment may also be effective in POEMS syndrome. CONCLUSION: We report a patient with POEMS syndrome who achieved complete response after treatment with the combination of a standard BR regimen and low dose of lenalidomide. POEMS syndrome's pathological mechanisms and therapies warrant further studies.


Assuntos
Síndrome POEMS , Idoso , Humanos , Masculino , Lenalidomida/uso terapêutico , Síndrome POEMS/terapia , Síndrome POEMS/tratamento farmacológico , Indução de Remissão , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Linfócitos B
11.
Front Genet ; 14: 1009462, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923792

RESUMO

Introduction: Acute myeloid leukemia (AML) is the most common type of leukemia in adults. However, there is a gap in understanding the molecular basis of the disease, partly because key genes associated with AML have not been extensively explored. In the current study, we aimed to identify genes that have strong association with AML based on a cross-species integrative approach. Methods: We used Weighted Gene Co-Expression Network Analysis (WGCNA) to identify co-expressed gene modules significantly correlated with human AML, and further selected the genes exhibiting a significant difference in expression between AML and healthy mouse. Protein-protein interactions, transcription factors, gene function, genetic regulation, and coding sequence variants were integrated to identify key hub genes in AML. Results: The cross-species approach identified a total of 412 genes associated with both human and mouse AML. Enrichment analysis confirmed an association of these genes with hematopoietic and immune-related functions, phenotypes, processes, and pathways. Further, the integrated analysis approach identified a set of important module genes including Nfe2, Trim27, Mef2c, Ets1, Tal1, Foxo1, and Gata1 in AML. Six of these genes (except ETS1) showed significant differential expression between human AML and healthy samples in an independent microarray dataset. All of these genes are known to be involved in immune/hematopoietic functions, and in transcriptional regulation. In addition, Nfe2, Trim27, Mef2c, and Ets1 harbor coding sequence variants, whereas Nfe2 and Trim27 are cis-regulated, making them attractive candidates for validation. Furthermore, subtype-specific analysis of the hub genes in human AML indicated high expression of NFE2 across all the subtypes (M0 through M7) and enriched expression of ETS1, LEF1, GATA1, and TAL1 in M6 and M7 subtypes. A significant correlation between methylation status and expression level was observed for most of these genes in AML patients. Conclusion: Findings from the current study highlight the importance of our cross-species approach in the identification of multiple key candidate genes in AML, which can be further studied to explore their detailed role in leukemia/AML.

12.
J Oncol ; 2023: 5135445, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816365

RESUMO

Background: The emergence of dexamethasone (Dex) resistance limits its efficacy. Side population (SP) cells in MM have strong tumorigenicity. Nevertheless, the detailed effect by which SP cells regulate Dex resistance in MP cells has not been completely verified and needs to be further investigated. Methods: SP and MP cells were sorted from RPMI-8226. mRNA expression and cell viability were analyzed using quantitative real-time PCR (qRT-PCR) and MTS assays, respectively. The presence of exosomal lncRNA SNHG16 was verified by transmission electron microscopy, differential ultracentrifugation, and qRT-PCR. Protein expression levels were measured using western blotting. Gain or loss function analyses were performed to demonstrate the role of SNHG16 in the Dex resistance of MP cells. Results: Dex resistance of SP cells was remarkably stronger than that of MP cells. Compared with MP cells, the survival rate and Dex resistance of MP cells cotreated with SP cell-derived exosomes were increased. SNHG16 expression was significantly enhanced in SP cell-derived exosomes compared to MP cell-derived exosomes. SNHG16 expression was remarkably increased in MP cells transfected with OE-SNHG16 vectors, and Dex resistance of MP cells was enhanced. When SNHG16 was silenced in SP cells, the SNHG16 expression was downregulated in both SP cells and SP cell-derived exosomes. SNHG16 expression and Dex resistance were both remarkably downregulated in MP cells treated with SP-si-SNHG16-exosomes compared to MP cells treated with SP-si-NC-exosomes. Conclusion: MM SP cells promote Dex resistance in MP cells through exosome metastasis of SNHG16.

14.
Curr Med Sci ; 43(1): 48-57, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36680686

RESUMO

OBJECTIVE: Cardiac fibroblasts (CFs) proliferation and extracellular matrix deposition are important features of cardiac fibrosis. Various studies have indicated that vitamin D displays an anti-fibrotic property in chronic heart diseases. This study explored the role of vitamin D in the growth of CFs via an integrin signaling pathway. METHODS: MTT and 5-ethynyl-2'-deoxyuridine assays were performed to determine cell viability. Western blotting was performed to detect the expression of proliferating cell nuclear antigen (PCNA) and integrin signaling pathway. The fibronectin was observed by ELISA. Immunohistochemical staining was employed to evaluate the expression of integrin ß3. RESULTS: The PCNA expression in the CFs was enhanced after isoproterenol (ISO) stimulation accompanied by an elevated expression of integrin beta-3 (ß3). The blockade of the integrin ß3 with a specific integrin ß3 antibody reduced the PCNA expression induced by the ISO. Decreasing the integrin ß3 by siRNA reduced the ISO-triggered phosphorylation of FAK and Akt. Both the FAK inhibitor and Akt inhibitor suppressed the PCNA expression induced by the ISO in the CFs. Calcitriol (CAL), an active form of vitamin D, attenuated the ISO-induced CFs proliferation by downregulating the integrin ß3 expression, and phosphorylation of FAK and Akt. Moreover, CAL reduced the increased levels of fibronectin and hydroxyproline in the CFs culture medium triggered by the ISO. The administration of calcitriol decreased the integrin ß3 expression in the ISO-induced myocardial injury model. CONCLUSION: These findings revealed a novel role for CAL in suppressing the CFs growth by the downregulation of the integrin ß3/FAK/Akt pathway.


Assuntos
Calcitriol , Humanos , Calcitriol/metabolismo , Calcitriol/farmacologia , Fibronectinas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Isoproterenol , Antígeno Nuclear de Célula em Proliferação/metabolismo , Integrina beta3/genética , Integrina beta3/metabolismo , Vitaminas , Proliferação de Células , Fibroblastos/metabolismo
15.
Ann Transl Med ; 10(13): 734, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35957714

RESUMO

Background: Octreotide long-acting release (LAR) is a common drug used for acromegaly that aims to normalize serum growth hormone (GH) and insulin-like growth factor-1 (IGF-1). However, only a few studies have evaluated its efficacy and safety in Chinese patients. This retrospective study aimed to assess its efficacy and safety in a cohort of Chinese patients with acromegaly. Methods: A total of 163 patients with acromegaly, who received continuous and regular octreotide LAR treatment at least three times at Peking Union Medical College Hospital between 2010 and 2020, were enrolled. Clinical characteristics, acromegaly activity, and other laboratory tests before and after treatment were collected for analysis. Results: The study enrolled 163 patients, including 71 men (43.6%) with a mean age of 40.94±13.00 years. After octreotide LAR treatment, 34.4% of the patients achieved GH control (<2.5 ng/mL), while IGF-1 levels were normalized in 23.3% of the patients. Also, fasting GH levels were downregulated from 4.95 ng/mL [interquartile range (IQR) 2.225, 10.325 ng/mL] at baseline to 3.2 ng/mL (IQR 1.5, 6.6 ng/mL) (P<0.001), and IGF-1/upper limit of the normal (ULN) declined from 1.89 (IQR 1.22, 2.40) to 1.41 (IQR 0.97, 1.89) (P<0.001). In addition, 65 patients experienced moderate adverse events. During the follow-up, none of the patients discontinued octreotide LAR. Further logistic regression showed that comorbidity [odds ratio (OR), 3.19; 95% confidence interval (CI): 1.20-9.27; P=0.025] and previous surgery only (OR, 0.21; 95% CI: 0.08-0.58; P=0.003) were two risk factors for the development of adverse events. Conclusions: Our findings revealed that octreotide LAR treatment is effective in normalizing GH and IGF-1 levels in Chinese patients with acromegaly. In addition, adverse events related to octreotide LAR use were moderate and well tolerated by the patients.

16.
Cancer Commun (Lond) ; 42(9): 828-847, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35811500

RESUMO

BACKGROUND: Although immune checkpoint inhibitors (ICIs) against programmed cell death protein 1 (PD-1) and its ligand PD-L1 have demonstrated potency towards treating patients with non-small cell lung carcinoma (NSCLC), the potential association between Kirsten rat sarcoma viral oncogene homolog (KRAS) oncogene substitutions and the efficacy of ICIs remains unclear. In this study, we aimed to find point mutations in the KRAS gene resistant to ICIs and elucidate resistance mechanism. METHODS: The association between KRAS variant status and the efficacy of ICIs was explored with a clinical cohort (n = 74), and confirmed with a mouse model. In addition, the tumor immune microenvironment (TIME) of KRAS-mutant NSCLC, such as CD8+ tumor-infiltrating lymphocytes (TILs) and PD-L1 level, was investigated. Cell lines expressing classic KRAS substitutions were used to explore signaling pathway activation involved in the formation of TIME. Furthermore, interventions that improved TIME were developed to increase responsiveness to ICIs. RESULTS: We observed the inferior efficacy of ICIs in KRAS-G12D-mutant NSCLC. Based upon transcriptome data and immunostaining results from KRAS-mutant NSCLC, KRAS-G12D point mutation negatively correlated with PD-L1 level and secretion of chemokines CXCL10/CXCL11 that led to a decrease in CD8+ TILs, which in turn yielded an immunosuppressive TIME. The analysis of cell lines overexpressing classic KRAS substitutions further revealed that KRAS-G12D mutation suppressed PD-L1 level via the P70S6K/PI3K/AKT axis and reduced CXCL10/CXCL11 levels by down-regulating high mobility group protein A2 (HMGA2) level. Notably, paclitaxel, a chemotherapeutic agent, upregulated HMGA2 level, and in turn, stimulated the secretion of CXCL10/CXCL11. Moreover, PD-L1 blockade combined with paclitaxel significantly suppressed tumor growth compared with PD-L1 inhibitor monotherapy in a mouse model with KRAS-G12D-mutant lung adenocarcinoma. Further analyses revealed that the combined treatment significantly enhanced the recruitment of CD8+ TILs via the up-regulation of CXCL10/CXCL11 levels. Results of clinical study also revealed the superior efficacy of chemo-immunotherapy in patients with KRAS-G12D-mutant NSCLC compared with ICI monotherapy. CONCLUSIONS: Our study elucidated the molecular mechanism by which KRAS-G12D mutation drives immunosuppression and enhances resistance of ICIs in NSCLC. Importantly, our findings demonstrate that ICIs in combination with chemotherapy may be more effective in patients with KRAS-G12D-mutant NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Terapia de Imunossupressão , Imunoterapia/métodos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Mutação , Paclitaxel , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Microambiente Tumoral/genética
17.
Am J Transl Res ; 14(6): 3783-3795, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836870

RESUMO

OBJECTIVE: This study aimed to reveal the role and mechanism of X-ray repair cross complementing 2 (XRCC2) and bevacizumab combined with radiotherapy in the treatment of non-small cell lung cancer (NSCLC). METHODS: Gene Expression Profiling Interactive Analysis (GEPIA) database and Starbase database were used to predict the expression level of XRCC2 in NSCLC tissues and the survival time of patients diagnosed with NSCLC, respectively. Besides, qRT-PCR (quantitative real time polymerase chain reaction) and immunoblotting were conducted to confirm the expression of XRCC2 NSCLC tissues and cells. Moreover, cell viability and colony formation were measured by CCK-8 (cell counting kit-8) assay. Cell migration and invasion capabilities were determined by transwell assay. Flow cytometry analysis was employed to detect cell cycle. RESULTS: XRCC2 was highly expressed in NSCLC tissues and cells. Additionally, bevacizumab combined with radiotherapy significantly inhibited NSCLC cell proliferation, migration and invasion. Knockdown of XRCC2 further aggravated the role of bevacizumab and radiotherapy in NSCLC, while XRCC2 overexpression reversed these effects efficiently. Furthermore, XRCC2 silence exacerbated the arrest of cell cycle induced by bevacizumab combined with radiotherapy in NSCLC cells, whereas overexpression of XRCC2 alleviated the arrest remarkably. CONCLUSION: Collectively, our research revealed that XRCC2 inhibited the sensitivity of NSCLC to bevacizumab combined with radiotherapy by decreasing cell cycle arrest.

19.
Nat Commun ; 13(1): 1902, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393424

RESUMO

All extant core-eudicot plants share a common ancestral genome that has experienced cyclic polyploidizations and (re)diploidizations. Reshuffling of the ancestral core-eudicot genome generates abundant genomic diversity, but the role of this diversity in shaping the hierarchical genome architecture, such as chromatin topology and gene expression, remains poorly understood. Here, we assemble chromosome-level genomes of one diploid and three tetraploid Panax species and conduct in-depth comparative genomic and epigenomic analyses. We show that chromosomal interactions within each duplicated ancestral chromosome largely maintain in extant Panax species, albeit experiencing ca. 100-150 million years of evolution from a shared ancestor. Biased genetic fractionation and epigenetic regulation divergence during polyploidization/(re)diploidization processes generate remarkable biochemical diversity of secondary metabolites in the Panax genus. Our study provides a paleo-polyploidization perspective of how reshuffling of the ancestral core-eudicot genome leads to a highly dynamic genome and to the metabolic diversification of extant eudicot plants.


Assuntos
Genoma de Planta , Panax , Cromatina/genética , Cromossomos , Epigênese Genética , Evolução Molecular , Genoma de Planta/genética , Panax/genética , Filogenia , Poliploidia
20.
J Inflamm Res ; 15: 1757-1769, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35300216

RESUMO

Introduction: Primary testicular diffuse large B-cell lymphoma (PT-DLBCL) is a rare and aggressive form of mature B-cell lymphoma commonly found in elder males, but its genetic features are poorly understood. In this study, we had performed target-sequencing of 360 lymphoma-related genes on 76 PT-DLBCL patients with a median age of 65 (33-89). Our data provide a comprehensive understanding of the landscape of mutations in a small subset of PT-DLBCL. Methods: A total of 76 PT-DLBCL patients were sequenced, and their clinical data and follow-up data were collected. The relationship between mutated genes, clinical data and prognosis and survival of PT-DLBCL patients was retrospectively analyzed by statistical software. Results: We observed a median of 15 protein-altering variants per patient in our data and was identified recurrent oncogenic mutations of 360 lymphoma-related genes involved in PT-DLBCL, including PIM1 (74%), MYD88 (50%), KMT2D (38%), KMT2C (34%), BTG2 (34%), TBL1XR1 (34%) and ETV6 (24%). Compared with classic DLBCL, PT-DLBCL showed an increased mutation frequency of PIM1, MYD88, BTG2, while NOTCH1 appeared exclusive mutated with PIM1, MSH3 and ETV6. Cox risk model regression analysis showed that age ≥60 years, IPI 3-5 points, BTG2 gene mutation and extranodal organ invasion suggested poor prognosis. Finally, we constructed an OS predict model of PT-DLBCL patients using above factors with a high accuracy. Conclusion: In conclusion, our results revealed genomic characterization of PT-DLBCL, and the mutation of BTG2 was an independent factor predicting a poor prognosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA