Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 14(7): 3269-3278, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36916513

RESUMO

Increasing low-density lipoprotein receptor (LDLR) protein levels represents a key strategy for the prevention and treatment. Berberine can reportedly alleviate non-alcoholic fatty liver disease (NAFLD) by increasing the LDLR expression in an ERK1/2 signaling-dependent manner of NAFLD. Studies have shown that caffeine can inhibit fat deposition in the livers of mice; however, caffeine has not been reported to alleviate NAFLD by augmenting the LDLR expression via targeting EGFR. Here, an MTT assay, western blotting, RT-qPCR, immunohistochemistry, and surface plasmon resonance (SPR) analysis were used to investigate the role of caffeine in low-density lipoprotein cholesterol (LDL-C) clearance both in vitro and in vivo. In vitro, we found that caffeine could activate the EGFR-ERK1/2 signaling pathway in HepG2 cells, leading to increased LDLR mRNA and protein expression, and this effect could be inhibited by cetuximab. The SPR assay results have indicated that caffeine may increase the LDLR expression by directly binding to the EGFR extracellular domain and activating the EGFR-ERK1/2 signaling pathway. In vivo, caffeine markedly improved fatty liver and related blood indices in ApoE KO mice with high-fat-diet-induced NAFLD. Consistent with our in vitro results, we found that caffeine could also activate EGFR-ERK1/2 signaling and promote the LDLR expression in ApoE KO mice. In summary, caffeine can enhance the LDLR expression by directly binding to EGFR and activating the EGFR-ERK1/2 signaling pathway. EGFR signaling may represent a novel target for the prevention and treatment of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Cafeína/farmacologia , Cafeína/metabolismo , Fígado/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , LDL-Colesterol/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Apolipoproteínas E/genética , Camundongos Endogâmicos C57BL
2.
Chem Biol Interact ; 365: 110084, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35970427

RESUMO

Non-small cell lung cancer (NSCLC) is one of the most general malignant tumors. The overexpression of epidermal growth factor receptor (EGFR) is a common marker in NSCLC, and it plays an important role in the proliferation, invasion, and metastasis of cancer cells. At present, drugs developed with EGFR as a target suffer from drug resistance, so it is necessary to study new compounds for the treatment of NSCLC. The active substance in green tea is EGCG, which has anti-cancer effects. In this study, we synthesized dimeric-(-)-epigallocatechin-3-gallate (prodelphinidin B-4-3,3‴-di-O-gallate, PBOG), and explored the effect of PBOG on lung cancer cells. PBOG can inhibit the proliferation and migration of NCI-H1975 cells, promote cell apoptosis, and inhibit cell cycle progression. In addition, PBOG can bind to the EGFR ectodomain protein and change the secondary structure of the protein. At the same time, PBOG decreases the expression of EGFR and downstream protein phosphorylation. Animal experiments confirmed that PBOG can inhibit tumor growth by inhibiting EGFR phosphorylation. Collectively, our study results show that PBOG may induce a decrease in intracellular phosphorylated EGFR expression by binding to the EGFR ectodomain protein, thereby inducing apoptosis and inhibiting cell cycle progression, thus providing a new strategy to treat lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Apoptose , Carcinoma Pulmonar de Células não Pequenas/patologia , Catequina/análogos & derivados , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB/metabolismo , Neoplasias Pulmonares/patologia , Transdução de Sinais
3.
Food Funct ; 13(13): 7020-7028, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35723202

RESUMO

Chinese medicinal and edible plants such as Panax notoginseng and ginseng are widely used for the treatment of atherosclerosis (AS). AS is the main pathological basis of cardiac-cerebral vascular disease, which seriously threatens human health and quality of life. Low-density lipoprotein (LDL) is the main pathogenic factor of AS. The LDL receptor (LDLR) is an important protein that functions to mediate the uptake and degradation of plasma LDL. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) can mediate the internalization and degradation of LDLR. So, increasing the LDLR level by inhibiting PCSK9 is an important means of prevention and treatment of AS. In this study, by combining interaction technology (surface plasmon resonance, SPR) of small molecule compounds with membrane receptor proteins, cell experiments, and in vivo experiments, it is proved for the first time that 20(S)-protopanaxadiol (PPD), as a hydrolytic product of Panax notoginseng saponins in the intestinal tract, can bind to the extracellular domain of LDLR and inhibit the role of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) in mediating LDLR degradation. The results showed that PPD significantly reduced aortic plaques and hepatic steatosis in HFD-fed ApoE KO mice. LDLR protein levels were elevated in the liver tissues isolated from PPD-treated HFD-fed ApoE KO mice and PPD-treated HepG2 cells. Our findings demonstrated that PPD significantly increased LDLR levels and reduced AS in the HFD-fed ApoE KO mice on account of LDLR degradation being inhibited by PPD inhibiting the interaction between PCSK9 and LDLR.


Assuntos
Aterosclerose , Pró-Proteína Convertase 9 , Animais , Apolipoproteínas E/genética , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Células Hep G2 , Humanos , Camundongos , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Sapogeninas , Subtilisinas
4.
Int J Biol Macromol ; 213: 328-338, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35594938

RESUMO

To explore the active polysaccharides from Dendrobium devonianum, a novel O-acetylmannan (DDP-1) with molecular weight of 117 kDa was isolated from D. devonianum. The chemical and instrumental analysis indicated that the DDP-1 was a homopolysaccharide containing a backbone chain composed of →4)-ß-d-Manp-(1 â†’ (71.4%) residue with internal →4)-2-O-acetyl-ß-d-Manp-(1 â†’ (14.2%), →4)-3-O-acetyl-ß-d-Manp-(1 â†’ (7.1%), and non-reducing end ß-d-Manp-(1 â†’ (7.3%) residues. Anticancer assay in vitro revealed that DDP-1 had anticancer activity against the growth of HepG2 and MCF-7 cancer cells. Moreover, cytokine secretion assays also presented that DDP-1 can promote cytokine production of TNF-α and IL-6 in THP-1 macrophage stimulated by PMA. Finally, the effects of isolation and purification on the microstructure of DDP-1 was studied by scanning electron microscope. The morphological features of DDP-1 indicated that DDP-1 hold high potential application in hydrophilic polymer materials.


Assuntos
Dendrobium , Citocinas , Dendrobium/química , Mananas/farmacologia , Polímeros , Polissacarídeos/química
5.
Bioorg Chem ; 121: 105585, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35183859

RESUMO

Overexpression of human epidermal growth factor receptor (EGFR) plays an important role in several signaling pathways inside and outside the cell, especially in the processes of cell proliferation, differentiation, and death in various cancers. Due to the complexity of the structure and function of EGFR, research on the fluorescence visualization of EGFR protein visualization has proved challenging. One possible strategy for designing a receptor-targeting fluorescent probe with a switching mechanism is to introduce an environment-sensitive fluorophore into the drug ligand. Based on this strategic molecular design, we introduced two environment-sensitive small molecular fluorophores, dansyl chloride (DNS) and nitrobenzoxadiazole (NBD), to replace the morpholine group of gefitinib, achieving a series of fluorescent molecular probes bearing a switching mechanism. The GN probes exhibited prominent environment sensitivity, suggesting good performance as turn-on EGFR-targeting fluorescent ligands. The representative probe GN3 specifically responded to tumor cells overexpressing EGFR, which was validated with live-cell fluorescence imaging and in vivo xenograft tumor imaging. Ligand-induced EGFR phosphorylation in A431 cells was considerably inhibited by probe GN3, demonstrating that this probe still functions as an EGFR inhibitor. Owing to the turn-on response of GN3 to EGFR in tumor cells, and the competitive replacement behavior to the EGFR inhibitor gefitinib, these probes have the potential to be used for fluorescence imaging of cells overexpressing EGFR.


Assuntos
Receptores ErbB , Corantes Fluorescentes , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Gefitinibe/farmacologia , Humanos , Ligantes , Inibidores de Proteínas Quinases/farmacologia
6.
Nat Prod Res ; 36(15): 3951-3956, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33749420

RESUMO

Dendrocandins are characteristic chemical structures of D. officinale and have strong physiological bioactivities. In this study, a dendrocandin analogue (1) has been prepared by total synthesis (9 steps, 12.6% overall yield) in which coupling reaction and Wittig reaction as the key steps. Compound 1 was also evaluated for its anticancer activity in vitro against six human cancer cells (MCF-7, A549, A431, SW480, HepG-2 and HL-60) using MTT assays. Compound 1 showed potent cytotoxicity, with the IC50 value 16.27 ± 0.26 µM. The expression levels of apoptotic proteins indicated that compound 1 can up-regulate the expression of apoptotic proteins, leading to apoptosis. This compound suggested that it's potential as anticancer agent for further development.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/química , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
7.
Molecules ; 26(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299635

RESUMO

Lung cancer is one of the most commonly occurring cancer mortality worldwide. The epidermal growth factor receptor (EGFR) plays an important role in cellular functions and has become the new promising target. Natural products and their derivatives with various structures, unique biological activities, and specific selectivity have served as lead compounds for EGFR. D-glucose and EGCG were used as starting materials. A series of glucoside derivatives of EGCG (7-12) were synthesized and evaluated for their in vitro anticancer activity against five human cancer cell lines, including HL-60, SMMC-7721, A-549, MCF-7, and SW480. In addition, we investigated the structure-activity relationship and physicochemical property-activity relationship of EGCG derivatives. Compounds 11 and 12 showed better growth inhibition than others in four cancer cell lines (HL-60, SMMC-7721, A-549, and MCF), with IC50 values in the range of 22.90-37.87 µM. Compounds 11 and 12 decreased phosphorylation of EGFR and downstream signaling protein, which also have more hydrophobic interactions than EGCG by docking study. The most active compounds 11 and 12, both having perbutyrylated glucose residue, we found that perbutyrylation of the glucose residue leads to increased cytotoxic activity and suggested that their potential as anticancer agents for further development.


Assuntos
Antineoplásicos , Catequina/análogos & derivados , Proliferação de Células/efeitos dos fármacos , Citotoxinas , Glucose , Simulação de Acoplamento Molecular , Proteínas de Neoplasias , Neoplasias , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Catequina/síntese química , Catequina/química , Catequina/farmacologia , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Receptores ErbB/biossíntese , Receptores ErbB/química , Glucose/análogos & derivados , Glucose/síntese química , Glucose/química , Glucose/farmacologia , Células HL-60 , Humanos , Células MCF-7 , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/química , Neoplasias/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fosforilação/efeitos dos fármacos
8.
Arch Microbiol ; 203(4): 1375-1382, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33386866

RESUMO

An aerobic, Gram-staining-positive, rod-shaped, endospore-forming and motile bacterial strain, designated SJY2T, was isolated from the rhizosphere soil of tea plants (Camellia sinensis var. assamica) collected in the organic tea garden of the Jingmai Pu-erh tea district in Pu'er city, Yunnan, southwest China. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate belonged to the genus Paenibacillus. The closest phylogenetic relative was Paenibacillus filicis DSM 23916T (98.1% similarity). The major fatty acids (> 10% of the total fatty acids) were anteiso-C15:0 and isoC16:0. The major respiratory quinone was MK-7 and the major polar lipid was diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylmonomethylethanolamine. The peptidoglycan contained glutamic acid, serine, alanine and meso-diaminopimelic acid. Genome sequencing revealed a genome size of 6.71 Mbp and a G + C content of 53.1%. Pairwise determined whole genome average nucleotide identity (gANI) values and digital DNA-DNA hybridization (dDDH) values suggested that strain SJY2T represents a new species, for which we propose the name Paenibacillus puerhi sp. nov. with the type strain SJY2T (= CGMCC 1.17156T = KCTC 43242T).


Assuntos
Camellia sinensis/microbiologia , Paenibacillus/classificação , Rizosfera , Microbiologia do Solo , Benzoquinonas/análise , China , DNA Bacteriano/genética , Ácidos Graxos/análise , Genoma Bacteriano/genética , Paenibacillus/química , Paenibacillus/genética , Paenibacillus/fisiologia , Peptidoglicano/análise , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
9.
Arch Microbiol ; 203(4): 1509-1518, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33398399

RESUMO

A Gram-staining positive aerobic bacterium, designated TLY-12T, was isolated from the Pu-erh tea pile-fermentation process in Pu'er city, Yunnan, China. Strain TLY-12T grew at 15-37 °C (optimum, 30 °C), pH 6.0-11.0 (optimum, pH 9.0) and 0-9.0% (w/v) NaCl (optimum, 3.0%). The major cellular fatty acids were anteiso-C15:0, C16:0 and iso-C16:0. The respiratory quinone were menaquinones MK-9 (H2) and MK-9 (H4). The polar lipids were phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), phosphatidylinositol (PI), phosphoglycolipid (PGL), glycolipid (GL) and an unidentified phospholipid (PL). The peptidoglycan contained glutamic acid, aspartic acid, alanine and lysine, with the last named being the diagnostic diamino acid. Whole-cell sugars of the isolate were ribose, galactose and glucose. Phylogenetic analyses of 16S rRNA gene showed that this strain belonged to the family Promicromonosporaceae, and was most closely related to Isoptericola cucumis DSM 101603 T, which gave sequence similarity of 97.9%. Genome sequencing revealed a genome size of 3.91 Mbp and a G + C content of 75.0%. Average nucleotide identity and digital DNA-DNA hybridization values were all below the species threshold of described Promicromonosporaceae species. Genome phylogenetic analysis showed that strain TLY-12T formed a separate evolutionary branch, and was parallel to other related genera of Promicromonosporaceae. Based on the phylogenetic, phenotypic, chemotaxonomic and genome pairwise data, strain TLY-12T is considered to represent a novel species in a new genus in the family Promicromonosporaceae, for which the name Puerhibacterium puerhi gen. nov, sp. nov. is proposed. The type strain is TLY-12T (= CGMCC 1.17157T = KCTC 49467T).


Assuntos
Actinomycetales , Filogenia , Actinobacteria/classificação , Actinobacteria/genética , Actinomycetales/classificação , Actinomycetales/genética , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/análise , Fermentação , Glicolipídeos/análise , Peptidoglicano/análise , Fosfolipídeos/análise , RNA Ribossômico 16S/genética , Especificidade da Espécie
10.
J Asian Nat Prod Res ; 23(8): 772-780, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32619100

RESUMO

Two new (-)-epigallocatechin-3-gallate-4ß-triazolopodophyllotoxin conjugates (7 and 8) were synthesized and evaluated for biological activity. Compound 8 showed highly potent anticancer activity against A-549 cell line with IC50 of 2.16 ± 1.02 µM, which displayed the highest selectivity index value (SI = 14.5) in A-549 cells. Molecular docking indicated that compound 8 could bind with the active site of Top-II. Therefore, compound 8 might be a promising candidate for further development.


Assuntos
Antineoplásicos , Catequina , Antineoplásicos/farmacologia , Catequina/análogos & derivados , Simulação de Acoplamento Molecular , Estrutura Molecular
11.
RSC Adv ; 10(3): 1679-1684, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35494663

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy, and commonly associated with activating mutations in the Notch1 pathway. (-)-Epigallocatechin-3-gallate (EGCG) is the most abundant and active catechin and has been shown to regulate Notch signaling. Taking into account the highly oxidizable and unstable of EGCG, we proposed that EGCG oxides may have greater potential to regulate Notch signaling than EGCG. In this study, we isolated and identified EGCG oxides (compound 2-4), using a chemical oxidation strategy, and evaluated for cytotoxicity against T-cell acute lymphoblastic leukemia cell line (HPB-ALL) by using the MTS assay. We found compound 3 significantly induced cell proliferation inhibition (38.3858 ± 1.67106 µM), cell apoptosis and cell cycle arrest in a dose-dependent manner. Remarkably, compound 3 inhibited expression of Notch1 compared with EGCG in HPB-ALL cells. Meanwhile, we found that compound 3 significantly inhibited c-Myc and Hes1, which are downstream target genes of Notch1. The findings demonstrate for the first time that an oxidation product of EGCG (compound 3) inhibits T-cell acute lymphoblastic leukemia cell line (HPB-ALL) and is a promising agent for cancer therapy deserving further research.

12.
FASEB J ; 33(1): 953-964, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30070931

RESUMO

Delayed wound healing is one of the most prominent clinical manifestations of diabetes and lacks satisfactory treatment options. Persistent inflammation occurs in the late phase of wound healing and impairs the healing process in mice with diabetes mellitus (DM). In this study, we observed that the late wound healing in streptozotocin (STZ)-induced DM mice could be improved by (-)-epigallocatechin gallate (EGCG). The macrophage accumulation, inflammation response, and Notch signaling can be inhibited by EGCG in the skin wounds of DM mice. Furthermore, we found that the LPS-induced inflammation response including overactivated Notch signaling, was inhibited by EGCG in mouse macrophages. Moreover, we confirmed that EGCG could directly bind with mouse Notch-1. In addition, our studies indicated that diabetic wound healing was improved by EGCG treatment before or after the inflammation phase by targeting the Notch signaling pathway, which suggests that the pre-existing diabetic wound healing can be improved by EGCG. To summarize, wound healing can be improved by EGCG through targeting Notch in STZ-induced DM mice. Our findings provide insight into the therapeutic strategy for diabetic wounds and offer EGCG as a novel potential medicine to treat chronic wounds.-Huang, Y.-W., Zhu, Q.-Q., Yang, X.-Y., Xu, H.-H., Sun, B., Wang, X.-J., Sheng, J. Wound healing can be improved by (-)-epigallocatechin gallate through targeting Notch in streptozotocin-induced diabetic mice.


Assuntos
Catequina/análogos & derivados , Diabetes Mellitus Experimental/metabolismo , Receptores Notch/metabolismo , Cicatrização/efeitos dos fármacos , Animais , Catequina/farmacologia , Diabetes Mellitus Experimental/fisiopatologia , Feminino , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Células RAW 264.7 , Transdução de Sinais , Pele/metabolismo , Estreptozocina , Cicatrização/fisiologia
13.
Molecules ; 23(10)2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332800

RESUMO

2,3-O-acetylated-1,4-ß-d-glucomannan (DOP-1-1) is a polysaccharide isolated from the stem of Dendrobium officinale. DOP-1-1 has been demonstrated to have remarkable immunomodulatory properties, but little is known about the influence of its structural diversity on bioactivity (and even less about the exact mechanism underlying its immune responses). First, DOP-1-1 was stabilized at different temperatures and pH conditions based on differential scanning calorimetry and size exclusion-chromatography⁻high-performance liquid chromatography. Then, a detailed study on the effects of DOP-1-1 on a human leukemia monocytic cell line (THP-1) under normal conditions was undertaken. DOP-1-1 promoted the translocation of nuclear factor-kappa B (NF-κB) and degradation of IκB proteins. The expression of genes and proteins closely associated with the immune, survival and apoptotic functions of NF-κB were analyzed by quantitative real-time RT-PCR. Furthermore, CCL4 and IP10 were confirmed to be the novel targets of the immune response stimulated by DOP-1-1. The phosphorylation of NF-кB was inhibited by treatment with a toll-like receptor 4 (TLR4) antagonist (TAK-242) and myeloid differentiation factor 88 (MyD88) inhibitor (ST2825). These data suggested: (i) the O-acetylated glucomannan DOP-1-1 is present in the steady state in low-pH solutions; (ii) DOP-1-1 can induce an immune response through NF-кB mediated by a TLR4 signaling pathway; and (iii) CCL4 and IP10 could be the novel targets of the immune response stimulated by O-acetylated glucomannan.


Assuntos
Dendrobium/química , Imunidade/efeitos dos fármacos , Mananas/farmacologia , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Acetilação , Varredura Diferencial de Calorimetria , Quimiocina CCL4/genética , Quimiocina CCL4/metabolismo , Cromatografia em Gel , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mananas/química , Estrutura Molecular , Fosforilação/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Transporte Proteico/efeitos dos fármacos , Células THP-1
14.
Food Nutr Res ; 622018.
Artigo em Inglês | MEDLINE | ID: mdl-30349445

RESUMO

BACKGROUND: Green tea (Camelliasinensis [L.] Kuntze) belongs to the plant family Theaceae and is mainly distributed in East Asia, the Indian subcontinent and Southeast Asia. This plant has been proven to be beneficial to human health, and green tea is the second most consumed beverage in the world after water. However, until now, the effect of green tea aqueous extract (GTE) upon postmenopausal osteoporosis has remained unclear. In this study, we investigated the therapeutic effects of GTE on estrogen deficiency-induced osteoporosis and explored the possible mechanisms in vivo and in vitro. MATERIALS AND METHODS: Ovariectomized (OVX) female rats were orally administered with GTE at doses of 60, 120, and 370 mg kg-1 for 13 consecutive weeks. The biochemical parameters, bone gla protein, alkaline phosphatase, acid phosphatase, estrogen, interleukin-1ß, and interleukin-6 in blood samples were detected, and histological change in bones was analyzed by hematoxylin and eosin staining. Meanwhile, the mechanisms of GTE on osteoclast formation were explored in RAW 264.7 cells induced by receptor activation of the nuclear factor kappa B ligand (RANKL). RESULTS: The results showed that GTE could increase bone mass and inhibit trabecular bone loss in OVX rats. Furthermore, real-time quantitative reverse transcription polymerase chain reaction analysis from in vitro experiments also showed that GTE reduced the mRNA expression of osteoclast-associated genes such as cathepsin K (cath-K), c-Fos, matrix metalloproteinase 9, nuclear factor of activated T cells cytoplasmic 1 (NFATc1) and tartrate-resistant acid phosphatase. In addition, GTE caused a reduction in the protein levels of NFATc1, c-Fos, c-src and cath-K. CONCLUSION: Evidence from both animal models and in vitro experiments suggested that GTE might effectively ameliorate the symptoms of osteoporosis in OVX rats and inhibit RANKL-induced osteoclast-specific gene and protein expression.

15.
Life Sci ; 200: 31-41, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29544757

RESUMO

AIMS: Dendrobium candidum (DC) and black tea, are traditional chinese drinks, which contain multiple active ingredients. However, whether or not the combination of these two ingredients can improve osteoporosis remains unknown. This study therefore aimed to examine the effects of the combination of DC and black tea extract (BTE) on osteoporosis. MAIN METHODS: Ovariectomy (OVX)-induced osteoporosis in vivo as well as receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis in vitro was selected. KEY FINDINGS: Results showed that OVX rats that were treated orally with a DC and BTE combination for 12 weeks maintained their calcium (Ca) and phosphorus (P) homeostasis and exhibited significantly enhanced estradiol (E2) and OPG levels. This combination treatment also simultaneously reduced levels of interleukin (IL)-1ß, IL-6 and improved the organ coefficients of the uterus and femur as well as BMD and BMC in OVX rats. In addition, this DC and BTE combination suppressed osteoclast differentiation in the RANKL-stimulated osteoclastogenesis of RAW 264.7 cells and effectively inhibited the expression of osteoclast-associated genes and proteins. The results of this study further highlight the fact that a combination of DC and BTE improved ovariectomy-induced osteoporosis in rats and suppressed RANKL-stimulated osteoclastogenesis in RAW 264.7 cells. SIGNIFICANCE: This combination also significantly alleviated osteoporosis when compared to the alternative sole treatments above, due to synergistic effects among components. One partial mechanism of this combination might be the inhibition of osteoclast proliferation and the regulation of NFATC1/c-Fos expression.


Assuntos
Camellia sinensis/química , Dendrobium/química , Estrogênios/deficiência , Osteoclastos/metabolismo , Osteoporose/prevenção & controle , Ovariectomia , Extratos Vegetais/farmacologia , Animais , Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Camundongos , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/patologia , Osteoporose/metabolismo , Osteoporose/patologia , Fósforo/metabolismo , Extratos Vegetais/química , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ligante RANK/farmacologia , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/metabolismo
16.
Molecules ; 21(5)2016 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-27187321

RESUMO

Epigallocatechin gallate (EGCG) is the most abundant component of green tea catechins and has strong physiological activities. In this study, two novel EGCG glycosides (EGCG-G1 and EGCG-G2) were chemoselectively synthesized by a chemical modification strategy. Each of these EGCG glycosides underwent structure identification, and the structures were assigned as follows: epigallocatechin gallate-4''-O-ß-d-glucopyranoside (EGCG-G1, 2) and epigallocatechin gallate-4',4''-O-ß-d-gluco-pyranoside (EGCG-G2, 3). The EGCG glycosides were evaluated for their anticancer activity in vitro against two human breast cell lines (MCF-7 and MDA-MB-231) using MTT assays. The inhibition rate of EGCG glycosides (EGCG-G1 and EGCG-G2) is not obvious. The EGCG glycosides are more stable than EGCG in aqueous solutions, but exhibited decreasing antioxidant activity in the DPPH radical-scavenging assay (EGCG > EGCG-G2 > EGCG-G1). Additionally, the EGCG glycosides exhibited increased water solubility: EGCG-G2 and EGCG-G1 were 15 and 31 times as soluble EGCG, respectively. The EGCG glycosides appear to be useful, and further studies regarding their biological activity are in progress.


Assuntos
Catequina/análogos & derivados , Glucose/metabolismo , Antioxidantes/farmacologia , Catequina/síntese química , Catequina/química , Catequina/farmacologia , Linhagem Celular Tumoral , Humanos
17.
Int J Biol Macromol ; 83: 34-41, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26592697

RESUMO

A neutral heteropolysaccharide (DOP-1-1) consisted by mannose and glucose (5.9:1) with an average molecular weight at about 1.78×10(5) Da was purified from Dendrobium officinale. Based on Fourier transform infrared spectrum (FT-IR) and nuclear magnetic resonance (NMR) spectra, it suggested that partial structure of DOP-1-1 is an O-acetylated glucomannan with ß-d configuration in pyranose sugar forms. The immunomodulatory activity of DOP-1-1 was evaluated by secretion level of cytokine (interleukin (IL)-1ß and IL-10) and tumor necrosis factor (TNF)-α in vitro. Our results suggested that DOP-1-1 could stimulate cytokine production (TNF-α, IL-1ß) in cells. These findings demonstrated that the purified polysaccharide from D. officinale presented significant immune-modulating activities. Furthermore, by Western-blot we can found that the signaling pathways of DOP-1-1 induced immune activities involving ERK1/2 and NF-кB. As to antioxidant activity, DOP-1-1 hadn't showed remarkable scavenging capacity of 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) in contrast with other studies of polysaccharides from D. officinale.


Assuntos
Dendrobium/química , Imunomodulação/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polissacarídeos/química , Polissacarídeos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Compostos de Bifenilo/farmacologia , Células Cultivadas , Humanos , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Manose/metabolismo , Picratos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Fator de Necrose Tumoral alfa/metabolismo
18.
Chin J Nat Med ; 12(9): 654-62, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25263976

RESUMO

AIM: (-)-Epigallocatechin-3-gallate (EGCG), a major compound of tea polyphenols, exhibited antitumor activity in previous studies. In these studies, EGCG usually inhibits EGFR, and impairs the ERK1/2 phosphorylation in tumor cells. The aim was to clarify the mechanism of ERK1/2 activation induced by EGCG. METHOD: Jurkat and 293T cells were treated with EGCG in different culture conditions. Western Blotting (WB) was employed to analyze ERK1/2 and MEK phosphorylation. Cetuximab and FR180204 were used to inhibit cell signaling. The stability of EGCG was assessed by HPLC. The concentration of hydrogen peroxide generated by the auto-oxidation of EGCG was determined by photocolorimetric analysis. RESULTS: Activation of ERK1/2 was observed to be both time-and dose-dependent. Stimulation of cell signaling was dependent on MEK activity, but independent of EGFR activity. Unexpectedly, EGCG was depleted within one hour of incubation under traditional culture conditions. Auto-oxidation of EGCG generated a high level of hydrogen peroxide in the medium. Addition of catalase and SOD to the acidic medium inhibited the oxidation of EGCG. However, this particular condition also prevented the phosphorylation of ERK1/2. The generation of ROS by hydrogen peroxide may also induce ERK1/2 activation in Jurkat cells. CONCLUSION: ERK1/2 phosphorylation was caused by auto-oxidation of EGCG. Traditional culture conditions were determined to be inappropriate for EGCG research.


Assuntos
Camellia sinensis/química , Catequina/análogos & derivados , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 6 Ativada por Mitógeno/metabolismo , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Catalase/metabolismo , Catequina/farmacologia , Humanos , Peróxido de Hidrogênio/metabolismo , Células Jurkat , Oxirredução , Fosforilação , Superóxido Dismutase/metabolismo
19.
Food Funct ; 5(7): 1520-8, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24836454

RESUMO

Caffeine is present in a number of dietary sources consumed worldwide. Although its pharmacokinetics has been intensively explored, little is known about complexed caffeine (C-CAF) in aqueous extraction of fermented Pu-er tea. The major components of C-CAF are oxidative tea polyphenols (OTP) and caffeine. Furthermore, the C-CAF can be precipitated in low pH solution. After administering the same amount of total caffeine and comparing the peak level of plasma caffeine with the coffee (contains 0.11 ± 0.01% C-CAF) group, the results showed that the caffeine/OTP (contains 66.67 ± 0.02% C-CAF) group and the instant Pu-er tea (contains 23.18 ± 0.02% C-CAF) group were 33.39% and 25.86% lower, respectively. The concentration of the metabolites of caffeine supports the idea that the absorption of the C-CAF was inhibited in mice. Congruent with this result, the amount of caffeine detected in mice excrement showed that more caffeine was eliminated in the caffeine/OTP group and the Pu-er tea group. The locomotor activity tests of mice demonstrated that the stimulating effect of caffeine in caffeine/OTP and Pu-er tea was weaker than in coffee. Our findings demonstrate that caffeine can be combined with OTP and the absorption of C-CAF is inhibited in mice, thus decreasing the irritation effect of caffeine. This may also be developed as a slow release formulation of caffeine.


Assuntos
Cafeína/farmacocinética , Chá/química , Animais , Cafeína/administração & dosagem , Cafeína/sangue , Café/química , Feminino , Fermentação , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Polifenóis/administração & dosagem , Polifenóis/sangue , Polifenóis/farmacocinética
20.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 23(2): 113-6, 2007 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-17286901

RESUMO

AIM: To study the expression of predicted B cell epitope peptide in S2 subunit of SARS coronavirus spike protein in E.coli and its mimic antigenicity to S2 protein. METHODS: B cell epitopes in S2 subunit of SARS coronavirus spike protein was predicted using DNAStar software. The cDNA sequence encoding the B cell epitope peptide was constructed artificially by PCR and then cloned into the downstream of chaperone 10 gene in vector pET28a(+) to construct pET28-chap10-S2epi plasmid. The fusion protein, chap10-S2epi, was expressed in E.coli BL21(DE3) and identified by SDS-PAGE and Western blot. The rabbit was immunized by purified Chap10-S2epi for the preparation of antiserum, which was used to identify the mimic antigenicity of Chap10-S2epi to S2 protein by ELISA. RESULTS: Chap10-S2epi fusion protein was successfully constructed and expressed in E.coli. The antiserum from the animal immunized by Chap10-S2epi recognized full length of SARS coronavirus S2 spike protein. CONCLUSION: The predicted B cell epitope peptide of SARS coronavirus S2 spike protein can induce the antigenicity of S2 protein, which provides some fundamental data for developing engineering vaccine against SARS coronavirus infection.


Assuntos
Epitopos de Linfócito B/imunologia , Glicoproteínas de Membrana/imunologia , Proteínas Recombinantes de Fusão/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Western Blotting , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Epitopos de Linfócito B/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Plasmídeos , Reação em Cadeia da Polimerase , Coelhos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA