RESUMO
BACKGROUND AIMS: Self-expandable metallic stents (SEMSs) have been recommended for patients with unresectable malignant biliary obstruction while radiation-emitting metallic stents (REMSs) loaded with 125I seeds have recently been approved to provide longer patency and overall survival in malignant biliary tract obstruction. This trial is to evaluate the efficacy and safety of REMS plus hepatic arterial infusion chemotherapy (REMS-HAIC) versus SEMS plus HAIC (SEMS-HAIC) for unresectable perihilar cholangiocarcinoma (pCCA). METHODS: This multicenter randomized controlled trial recruited patients with unresectable Bismuth type III or IV pCCA between March 2021 and January 2023. Patients were randomly assigned (1:1 ratio) to receive either REMS-HAIC or SEMS-HAIC using permuted block randomization, with a block size of six. The primary endpoint was overall survival (OS). The secondary endpoints were time to symptomatic progression (TTSP), stent patency, relief of jaundice, quality of life, and safety. RESULTS: A total of 126 patients were included in the intent-to-treat population, with 63 in each group. The median OS was 10.2 months versus 6.7 months (P=0.002). The median TTSP was 8.6 months versus 5.4 months (P=0.003). The median stent patency was longer in the REMS-HAIC group than in the SEMS-HAIC group (P=0.001). The REMS-HAIC group showed better improvement in physical functioning scale (P<0.05) and fatigue symptoms (P<0.05) when compared to the SEMS-HAIC group. No significant differences were observed in relief of jaundice (85.7% vs. 84.1%; P=0.803) or the incidence of grade 3 or 4 adverse events (9.8% vs. 11.9%; P=0.721). CONCLUSION: REMS plus HAIC showed better OS, TTSP, and stent patency compared with SEMS plus HAIC in patients with unresectable Bismuth type III or IV pCCA with an acceptable safety profile.
RESUMO
[This retracts the article on p. 1531 in vol. 15, PMID: 37746647.].
RESUMO
Background: Epidermal growth factor-like repeats and discoidin I-like domains 3 (EDIL3) is a secreted extracellular matrix protein implicated in diverse physiological and pathological processes including embryonic development, angiogenesis, and anti-inflammatory responses. Recent reports have indicated that EDIL3 play critical roles in carcinogenesis and progression of many cancers. Herein, we performed a pan-cancer investigation to study the potential functions of EDIL3 in various cancers and experimentally validate its function in gastric cancer (GC). Methods: We analysed EDIL3 expression profiles in different tumours using The Cancer Genome Atlas database. The Kaplan-Meier Plotter was used to investigate the prognostic value of EDIL3, while receiver operating characteristic curve was performed to analyze its diagnostic efficacy. Several bioinformatics tools were used to study the association between EDIL3 and promoter methylation, gene enrichment analysis, immune infiltration, immune-related genes, and drug sensitivity. Molecular biology experiments were conducted to validate the tumorigenic effects of EDIL3. Results: EDIL3 is variably expressed in different cancers and is closely associated with clinical outcomes. An inverse correlation between EDIL3 and DNA methylation has been observed in 13 cancers. Enrichment analysis indicated that EDIL3 is correlated with many cellular pathways such as extracellular matrix receptor interactions and focal adhesion. EDIL3 was tightly associated with immune infiltration and immune checkpoints. EDIL3 knockdown can promote GC calls apoptosis while preventing proliferation, migration, and invasion in vitro. Conclusion: EDIL3 is a promising prognostic, diagnostic, and immunological biomarker in various cancers, which could be applied as a new target for cancer therapy.
RESUMO
BACKGROUND: Extensive evidence has illustrated the promotive role of integrin binding sialoprotein (IBSP) in the progression of multiple cancers. However, little is known about the functions of IBSP in gastric cancer (GC) progression. AIM: To investigate the mechanism underlying the regulatory effects of IBSP in GC progression, and the relationship between IBSP and cleavage and polyadenylation factor 6 (CPSF6) in this process. METHODS: The mRNA and protein expression of relevant genes were assessed through real-time quantitative polymerase chain reaction and Western blot, respectively. Cell viability was evaluated by Cell Counting Kit-8 assay. Cell invasion and migration were evaluated by Transwell assay. Pyroptosis was measured by flow cytometry. The binding between CPSF6 and IBSP was confirmed by luciferase reporter and RNA immunoprecipitation (RIP) assays. RESULTS: IBSP exhibited higher expression in GC tissues and cell lines than in normal tissues and cell lines. IBSP knockdown suppressed cell proliferation, migration, and invasion but facilitated pyroptosis. In the exploration of the regulatory mechanism of IBSP, potential RNA binding proteins for IBSP were screened with catRAPID omics v2.0. The RNA-binding protein CPSF6 was selected due to its higher expression in stomach adenocarcinoma. Luciferase reporter and RIP assays revealed that CPSF6 binds to the 3'-untranslated region of IBSP and regulates its expression. Knockdown of CPSF6 inhibited cell proliferation, migration, and invasion but boosted pyroptosis. Through rescue assays, it was uncovered that the retarded GC progression mediated by CPSF6 knockdown was reversed by IBSP overexpression. CONCLUSION: Our study highlighted the vital role of the CPSF6/IBSP axis in GC, suggesting that IBSP might be an effective bio-target for GC treatment.
RESUMO
In the present study, we introduced the H 2O 2-sensitive thiazolidinone moiety at the 4th amino group of gemcitabine (GEM) to synthesize a new target compound named GEM-ZZQ, and then we confirmed its chemical structure by nuclear magnetic resonance spectroscopy. We further confirmed that GEM-ZZQ had a good chemical stability in different pH solutions in vitro and that it could be activated by H 2O 2 to release GEM. Pharmacodynamic studies revealed that the growth inhibition of human normal epithelial cells was weaker by GEM-ZZQ than by GEM treatment and that the inhibition of various lung cancer cell lines by GEM-ZZQ was similar to that of GEM. For the lung cancer cell lines that are resistant to the epidermal growth factor receptor (EGFR)-targeting inhibitor osimertinib, GEM-ZZQ showed less growth inhibition than GEM; however, GEM-ZZQ in combination with cisplatin showed better synergistic effects than GEM in the low-dose groups. In summary, we provided a new anti-cancer compound GEM-ZZQ for treating lung cancer by modifying the GEM structure.
RESUMO
Background: EDIL3, which contains epidermal growth factor-like repeats and discoidin I-like domains, is a secretory protein that plays an important role in embryonic development and various illnesses. However, the biological function of EDIL3 in gastric cancer (GC) is still unclear. The objective of this research was to explore the role and potential mechanism of EDIL3 in GC. Methods: In this study, we used the GEPIA, HPA, MethSurv, SMART, STRING, GeneMANIA, LinkedOmics TIMER, TIMER2.0, TISIDB, and RNAactDrug databases to comprehensively analyze the roles of EDIL3 in GC. To validate the in silico findings, EDIL3 expression was measured in our collected GC tissues. Meanwhile, several in vitro experiments were performed to test the function of EDIL3 in GC. Results: We found that EDIL3 was highly expressed in GC and associated with adverse clinical features. In vitro assays revealed that EDIL3 promoted the proliferation, migration, and invasion of GC cells. The functions of EDIL3 and co-expression genes were significantly associated with extracellular structure organization and matrix receptor interaction. EDIL3 expression was positively associated with numerous tumor-infiltrating immune cells and their biomarkers. Conclusion: This study determined that EDIL3 may function as an oncogene and is associated with immune infiltration in GC. EDIL3 could be used as a potential therapeutic target for GC.
Assuntos
Proteínas de Ligação ao Cálcio , Neoplasias Gástricas , Humanos , Proteínas de Ligação ao Cálcio/metabolismo , Neoplasias Gástricas/genética , Prognóstico , Moléculas de Adesão Celular/metabolismoRESUMO
MMP-2 has been reported as the most validated target for cancer progression and deserves further investigation. However, due to the lack of methods for obtaining large amounts of highly purified and bioactive MMP-2, identifying specific substrates and developing specific inhibitors of MMP-2 remains extremely difficult. In this study, the DNA fragment coding for pro-MMP-2 was inserted into plasmid pET28a in an oriented manner, and the resulting recombinant protein was effectively expressed and led to accumulation as inclusion bodies in E. coli. This protein was easy to purify to near homogeneity by the combination of common inclusion bodies purification procedure and cold ethanol fractionation. Then, our results of gelatin zymography and fluorometric assay revealed that pro-MMP-2 at least partially restored its natural structure and enzymatic activity after renaturation. We obtained approximately 11 mg refolded pro-MMP-2 protein from 1 L LB broth, which was higher than other strategies previously reported. In conclusion, a simple and cost-effective procedure for obtaining high amounts of functional MMP-2 was developed, which would contribute to the progress of studies on the gamut of biological action of this important proteinase. Furthermore, our protocol should be appropriate for the expression, purification, and refolding of other bacterial toxic proteins.
Assuntos
Escherichia coli , Metaloproteinase 2 da Matriz , Escherichia coli/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/química , Proteínas Recombinantes/química , Proteínas de Bactérias/metabolismo , Corpos de Inclusão/química , Dobramento de Proteína , Redobramento de ProteínaRESUMO
Oxidative stress is an important pathogenic factor in ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC), further impairing the entire colon. Intestinal epithelial cells (IECs) are crucial components of innate immunity and play an important role in maintaining intestinal barrier function. Recent studies have indicated that microRNA-222-3p (miR-222-3p) is increased in colon of UC and colorectal cancer (CRC) patients, and miR-222-3p is a crucial regulator of oxidative stress. However, whether miR-222-3p influences IEC oxidative stress in UC and CAC remains unknown. This study investigated the effect of miR-222-3p on the regulation of IEC oxidative stress in UC and CAC. An in vitro inflammation model was established in NCM460 colonic cells, mouse UC and CAC models were established in vivo, and IECs were isolated. The biological role and mechanism of miR-222-3p-mediated oxidative stress in UC and CAC were determined. We demonstrated that miR-222-3p expression was notably increased in dextran sulfate sodium (DSS)-induced NCM460 cells and IECs from UC and CAC mice. In vitro, these results showed that the downregulation of miR-222-3p reduced oxidative stress, caspase-3 activity, IL-1ß and TNF-α in DSS-induced NCM460 cells. We further identified BRG1 as the target gene of miR-222-3p, and downregulating miR-222-3p alleviated DSS-induced oxidative injury via promoting BRG1-mediated activation Nrf2/HO-1 signaling in NCM460 cells. The in vivo results demonstrated that inhibiting miR-222-3p in IECs significantly relieved oxidative stress and inflammation in the damaged colons of UC and CAC mice, as evidenced by decreases in ROS, MDA, IL-1ß and TNF-α levels and increases in GSH-Px levels. Our study further demonstrated that inhibiting miR-222-3p in IECs attenuated oxidative damage by targeting BRG1 to activate the Nrf2/HO-1 signaling. In summary, inhibiting miR-222-3p in IECs attenuates oxidative stress by targeting BRG1 to activate the Nrf2/HO-1 signaling, thereby reducing colonic inflammation and tumorigenesis.
Assuntos
Colite Ulcerativa , Neoplasias Associadas a Colite , MicroRNAs , Animais , Camundongos , Colite Ulcerativa/complicações , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Inflamação , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismoRESUMO
AIMS: Exosomes are a subpopulation of extracellular vesicles (EV) derived from multivesicular body (MVB) that transmit various cellular molecular constituents, including long noncoding RNAs (lncRNAs), to promote intercellular communication. Our aim was to investigate the function and mechanism of exosomal LINC00355 in gastric cancer cells. MAIN METHODS: Exosomal levels of LINC00355 in GC patients and healthy controls were measured by RT-qPCR. The effects of exosomal LINC00355 on GC cell viability, proliferation, migration and invasion were evaluated by CCK8, colony formation, Transwell and wound healing assays. The expression levels of Ki67 in xenograft tumor tissues were confirmed by immunohistochemistry assay, and apoptosis was analyzed by TUNEL apoptosis assay. Western blotting was used to monitor protein expression. RNA immunoprecipitation and RNA pulldown were performed to detect the interaction between LINC00355 and HDAC3. Chromatin immunoprecipitation was used to assess the interaction of HDAC3 with the TP53INP1 promoter. KEY FINDINGS: Exosomal LINC00355 levels were higher in plasma from gastric cancer patients than in plasma from healthy volunteers. Exosomal LINC00355 promoted the proliferation, migration and invasion of gastric cancer cell lines. RNA sequence analysis demonstrated that LINC00355 knockdown downregulated histone deacetylase HDAC3 and upregulated TP53INP1. Mechanistic investigation indicated that exosomal LINC00355 interacted with HDAC3 to suppress TP53INP1 transcription, which promoted epithelial-mesenchymal transition (EMT). SIGNIFICANCE: Exosomal LINC00355 plays a pivotal role in regulating EMT to induce the malignant progression of GC. Exosomal LINC00355 could be a promising biomarker in the early diagnosis and prognosis of GC.
Assuntos
Exossomos , MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Humanos , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , MicroRNAs/genética , RNA/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/patologiaRESUMO
The FGF/FGFR signaling axis deregulation of the fibroblast growth factor receptor (FGFR) family is closely related to tumorigenesis, tumor progression and drug resistance to anticancer therapy. And fibroblast growth factor receptor 3 (FGFR3) is one member of this family. In this study, we aimed to investigate the effect of siRNA-induced knockdown of FGFR3 on the biological behaviors of intrahepatic cholangiocarcinoma (ICC). The expression levels of FGFR3 were determined in three intrahepatic cholangiocarcinoma cell lines RBE, HUCCT1 and HCCC9810 cell lines by Western blot. FGFR3 expression in RBE cell line was knocked down by siRNA. Our study found that knockdown of FGFR3 inhibited the migration, invasion and proliferation of ICC cells using Wound healing assay, Transwell migration and invasion assays and Cell proliferation assay. And significantly down-regulated the protein expression levels of MMP2, cyclinD1, and NCadherin, but had no significant effect on MMP9, cyclinD3, vimentin, E-cadherin protein. In addition, we found that ERK/c-Myc presumably is its signaling pathway by bioinformatics analysis and Western blot verification. To sum up, knockdown of FGFR3 inhibited the migration, invasion and proliferation of ICC cells. It demonstrated that FGFR3 probably becomes a therapeutic target for ICC and increases the proportion of potentially curable intrahepatic cholangiocarcinoma patients treated with FGFR inhibitors.
Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/farmacologia , Proliferação de Células/genética , Movimento Celular/genética , Colangiocarcinoma/patologia , RNA Interferente Pequeno/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão GênicaRESUMO
The severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) survivors are more likely to produce a potent immune response to SARS-CoV-2 after booster vaccination. We assessed humoral and T cell responses against SARS-CoV-2 in previously vaccinated SARS-CoV-1 survivors and naïve healthy individuals (NHIs) after a booster Ad5-nCoV dose. Boosted SARS-CoV-1 survivors had a high neutralization of SARS-CoV-2 Wuhan-Hu-1 (WA1), Beta, and Delta but is limited to Omicron subvariants (BA.1, BA.2, BA.2.12.1, and BA.4/BA.5). Most boosted SARS-CoV-1 survivors had robust SARS-CoV-2-specific CD4+ and CD8+ T cell responses. While booster vaccination in NHIs elicited less or ineffective neutralization of WA1, Beta, and Delta, and none of them induced neutralizing antibodies against Omicron subvariants. However, they developed comparable SARS-CoV-2-specific T cell responses compared to boosted SARS-CoV-1 survivors. These findings suggest that boosted Ad5-nCoV would not elicit effective neutralizing antibodies against Omicron subvariants in SARS-CoV-1 survivors and NHIs but induced comparable robust T cell responses. Achieving a high antibody titer in SARS-CoV-1 survivors and NHIs is desirable to generate broad neutralization.
Assuntos
Vacinas contra a AIDS , COVID-19 , Vacinas contra Influenza , Vacinas contra Papillomavirus , Vacinas contra Vírus Sincicial Respiratório , Vacinas contra a SAIDS , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BCG , Vacinas contra COVID-19 , Vacina contra Difteria, Tétano e Coqueluche , Humanos , Vacina contra Sarampo-Caxumba-Rubéola , SARS-CoV-2 , SobreviventesRESUMO
PURPOSE: Intrahepatic cholangiocarcinoma (ICC) can invade and metastasize. EIF5A2 is involved in the invasive metastatic process of several digestive malignancies. However, its role in ICC is yet to be elucidated. METHODS: Immunohistochemistry (IHC) and Western blot (WB) were used to detect the level of EIF5A2 in the tumor specimens of ICC patients and evaluate the correlation between its expression and clinicopathological characteristics. The significance of EIF5A2 in the prognosis of ICC patients was further evaluated by Kaplan-Meier and Cox regression analysis. In addition, CCK-8, EdU, Transwell invasion, and scratch assays were utilized to detect tumor cell proliferation, invasion, and metastasis. Furthermore, the role of EIF5A2 in ICC cells was evaluated after modification of EIF5A2 expression. RESULTS: The level of EIF5A2 protein was significantly higher in ICC than in adjacent tissues. This high expression in the tumor samples was significantly associated with malignant phenotypes, such as lymph node metastasis (LNM), microvascular or bile duct invasion, and poor differentiation. ICC patients with high expression of EIF5A2 had short overall survival and a high cumulative recurrence rate. The multifactorial analysis showed that EIF5A2 is an independent prognostic marker. Furthermore, high levels of EIF5A2 may activate the PI3K/AKT/mTOR signaling pathway and upregulate Cyclin D1, Cyclin D3, MMP2, and MMP9 to promote ICC cell proliferation, migration, and invasion. CONCLUSION: The current study found that EIF5A2 promotes ICC progression and is a prognostic biomarker and candidate therapeutic target for ICC patients.
Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Ductos Biliares Intra-Hepáticos/patologia , Proliferação de Células/fisiologia , Humanos , Fatores de Iniciação de Peptídeos , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Proteínas de Ligação a RNA , Fator de Iniciação de Tradução Eucariótico 5ARESUMO
Self-assembling peptides (SAPs) have enormous potential in medical and biological applications, particularly noninvasive tumor therapy. SAPs self-assembly is governed by multiple non-covalent interactions and results in the formation of a variety of morphological features. SAPs can be assembled in a variety of ways, including chemical conjugation and physical encapsulation, to incorporate multiple bioactive motifs. Peptide-based nanomaterials are used for chemotherapy, delivery vehicles, immunotherapy, and noninvasive tumor therapies (e.g. photodynamic therapy) by employing the self-assembling properties of peptides. The recent increase of SAPs is almost entirely due to their excellent biocompatibility, responsiveness toward tumor microenvironment, multivalency, and structural versatility. Synergistic therapy is a more effective and powerful approach to treat the tumor. Notably, SAPs can be used to subtly combine various treatments. Importantly, SAPs are capable of subtly making the combination of various treatments. This review describes mechanisms of peptides self-assemble into various structures and their biomedical applications with a focus on possible treatments.
Assuntos
Nanoestruturas , Neoplasias , Humanos , Hidrogéis/química , Fatores Imunológicos , Imunoterapia , Nanoestruturas/química , Neoplasias/tratamento farmacológico , Peptídeos/química , Microambiente TumoralRESUMO
Gastric cancer (GC) is the fourth most common cancer and the second leading cause of cancer death globally. Although the mortality rate in some parts of the world, such as East Asia, is still high, new treatments and lifestyle changes have effectively reduced deaths from this type of cancer. One of the main challenges of this type of cancer is its late diagnosis and poor prognosis. GC patients are usually diagnosed in the advanced stages of the disease, which is often associated with peritoneal metastasis (PM) and significantly reduces survival. This type of metastasis in patients with GC poses a serious challenge due to limitations in common therapies such as surgery and tumor resection, as well as failure to respond to systemic chemotherapy. To solve this problem, researchers have used virotherapy such as reovirus-based anticancer therapy in patients with GC along with PM who are resistant to current chemotherapies because this therapeutic approach is able to overcome immune suppression by activating dendritic cells (DCs) and eventually lead to the intrinsic activity of antitumor effector T cells. This review summarizes the immunopathogenesis of peritoneal metastasis of gastric cancer (PMGC) and the details for using virotherapy as an effective anticancer treatment approach, as well as its challenges and opportunities.
RESUMO
Crohn's disease is a chronic inflammatory bowel disease and the NLRP3 inflammasome plays an important role in Crohn's disease. Previous studies have shown that Herb-partitioned moxibustion treating (at Qihai (CV 6) and Tianshu (ST 25)) prevented the excessive activation of the NLRP3 inflammasome and repaired damaged colonic mucosa in Crohn's disease. However, the mechanism by which Herb-partitioned moxibustion (at CV 6 and ST 25) regulates NLRP3 remains unclear. In this study, we treated Crohn's disease rats with herb-partitioned moxibustion (at CV 6 and ST 25) to investigate the mechanism by which Herb-partitioned moxibustion regulates the colonic NLRP3 inflammasome by observing colon length, the colon macroscopic damage indexes, and the expression of ATP, P2X7R, Pannexin-1, NF-κBp65, NLRP3, ASC, caspase-1, IL-1ß and IL-18 in the colon in Crohn's disease. Here, this study shows that herb-partitioned moxibustion (at CV 6 and ST 25) can reduce colon macroscopic damage indexes and colon histopathological scores, alleviate colon shortening and block the abnormal activation of the NLRP3 inflammasome by inhibiting the ATP content and the expression of P2X7R, Pannexin-1 and NF-κBp65, thereby reducing the release of the downstream inflammatory cytokine IL-1ß and ultimately suppressing colonic inflammation in Crohn's disease rats. This study for the first time identifies the mechanism by which herb-partitioned moxibustion (at CV 6 and ST 25) may inhibit the abnormal activation of the NLRP3 inflammasome by inhibiting the P2X7R-Pannexin-1 signaling pathway in Crohn's disease rats.
Assuntos
Conexinas/metabolismo , Doença de Crohn/terapia , Moxibustão/métodos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Ratos , Ratos Sprague-DawleyRESUMO
BACKGROUND: Breast cancer (BC) is a common malignancy with highly female incidence. So far the function of notoginsenoside R1 (NGR1), the extract from Panax notoginseng, has not been clearly elucidated in BC. METHODS: Optimal culture concentration and time of NGR1 were investigated by cell counting kit-8 assay. Cell proliferation ability was measured by colony formation assays. Transwell assay was used to detect the effect of NGR1 on cell migration and invasion. The apoptosis rate of cells between each group was measured by TUNEL assay. RESULTS: NGR1 treatment has an inhibitory effect on proliferation, migration, invasion, and angiogenesis and a stimulating effect on cell cycle arrest and apoptosis of Michigan Cancer Foundation-7 (MCF-7) cells. The 50% growth inhibitory concentration for MCF-7 cells at 24 h was 148.9 mmol/L. The proportions of MCF-7 cells arrested in the G0/G1 phase were 36.94±6.78%, 45.06±5.60%, and 59.46±5.60% in the control group, 75, and 150 mmol/L groups, respectively. Furthermore, we revealed that NGR1 treatment attenuates BC progression by targeted downregulating CCND2 and YBX3 genes. Additionally, YBX3 activates phosphatidylinositol 3-phosphate kinase (PI3K)/protein kinase B (Akt) signaling pathway by activating kirsten rat sarcoma viral oncogene, which is an activator of the PI3K/Akt signaling pathway. CONCLUSION: These results suggest that NGR1 can act as an efficacious drug candidate that targets the YBX3/PI3K/Akt axis in patients with BC.
Assuntos
Neoplasias da Mama , Ginsenosídeos , Animais , Apoptose , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Ciclina D2 , Feminino , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Humanos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , RatosRESUMO
Plant homeodomain finger protein 8 (PHF8) has been reported to participate in cancer development and metastasis of various types of tumors. However, little is known about the functional mechanism of PHF8 in gastric cancer (GC). This study aimed to explore the PHF8 expression pattern and function, and the role of the MYC/miRNA/PHF8 axis in GC. PHF8 expression was upregulated in GC tissues and cells as measured using quantitative reverse transcription polymerase chain reaction and western blotting. PHF8 knockdown suppressed the proliferation, migration, and invasion of GC cells, as determined using the CCK-8 assay and Transwell assay. MicroRNA-22-3p targeted PHF8, as verified by a dual-luciferase reporter assay. MYC upregulated the protein expression of PHF8 but had no effect on PHF8 mRNA expression. MYC regulates PHF8 by affecting the stability of miR-22-3p. We identified a novel MYC/miR-22-3p/PHF8 regulatory axis in GC. Therefore, PHF8 may provide a new therapeutic target for patients with GC.
Assuntos
Histona Desmetilases/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-myc/genética , Neoplasias Gástricas/genética , Fatores de Transcrição/genética , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Humanos , Masculino , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Neoplasias Gástricas/patologiaRESUMO
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of a rapidly spreading illness, coronavirus disease 2019 (COVID-19), affecting more than seventeen million people around the world. Diagnosis and treatment guidelines for clinicians caring for patients are needed. In the early stage, we have issued "A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version)"; now there are many direct evidences emerged and may change some of previous recommendations and it is ripe for develop an evidence-based guideline. We formed a working group of clinical experts and methodologists. The steering group members proposed 29 questions that are relevant to the management of COVID-19 covering the following areas: chemoprophylaxis, diagnosis, treatments, and discharge management. We searched the literature for direct evidence on the management of COVID-19, and assessed its certainty generated recommendations using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach. Recommendations were either strong or weak, or in the form of ungraded consensus-based statement. Finally, we issued 34 statements. Among them, 6 were strong recommendations for, 14 were weak recommendations for, 3 were weak recommendations against and 11 were ungraded consensus-based statement. They covered topics of chemoprophylaxis (including agents and Traditional Chinese Medicine (TCM) agents), diagnosis (including clinical manifestations, reverse transcription-polymerase chain reaction (RT-PCR), respiratory tract specimens, IgM and IgG antibody tests, chest computed tomography, chest x-ray, and CT features of asymptomatic infections), treatments (including lopinavir-ritonavir, umifenovir, favipiravir, interferon, remdesivir, combination of antiviral drugs, hydroxychloroquine/chloroquine, interleukin-6 inhibitors, interleukin-1 inhibitors, glucocorticoid, qingfei paidu decoction, lianhua qingwen granules/capsules, convalescent plasma, lung transplantation, invasive or noninvasive ventilation, and extracorporeal membrane oxygenation (ECMO)), and discharge management (including discharge criteria and management plan in patients whose RT-PCR retesting shows SARS-CoV-2 positive after discharge). We also created two figures of these recommendations for the implementation purpose. We hope these recommendations can help support healthcare workers caring for COVID-19 patients.
Assuntos
Quimioprevenção/métodos , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Adulto , Betacoronavirus , COVID-19 , Teste para COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/prevenção & controle , Medicina Baseada em Evidências , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias/prevenção & controle , Alta do Paciente/normas , Pneumonia Viral/diagnóstico , Pneumonia Viral/prevenção & controle , Guias de Prática Clínica como Assunto , SARS-CoV-2RESUMO
Background: The aberrant activation of the Sonic hedgehog (Shh) signaling pathway is involved in progression of several types of cancer, including gastric cancer (GC). However, it remains uncertain whether it also plays a critical role in promoting cancer initiation and progression by inducing epithelial-to-mesenchymal transition (EMT) in GC. Thus, the aim of the present study was to determine whether the Shh pathway is involved in GC, and to investigate the function of the Shh pathway in the induction of EMT in GC. Materials and methods: The expression levels of Shh pathway members and EMT markers were examined in GC tissues by immunohistochemistry. The association between these factors and patient clinicopathological characteristics was analyzed. In addition, Gli-antagonist 61 (GANT61) was used to block Shh/Gli1 pathway activity, and recombinant Shh proteins (N-Shh) were used to activate the Shh pathway in GC cells. Wound healing and Transwell invasion and migration assays were performed to assess the effects of the Shh pathway on the migration and invasion of GC cells in vitro. Furthermore, western blot analysis was used to examine the changes in protein expression. Results: The results demonstrated that these Shh/Gli1 pathway members were upregulated in GC tissues, and that Gli1 upregulation was associated with tumor progression and a poor prognosis. Gli1 expression was negatively associated with E-cadherin (E-Cad) expression, and positively with Vimentin (VIM) expression in GC specimens. Further analysis revealed that when the Shh/Gli1 pathway was activated, the migratory and invasive abilities of GC cells were enhanced, and the expression levels of Gli1 and VIM were increased, while E-Cad expression was decreased. Opposite results were observed when the Shh/Gli1 pathway was blocked by GANT61. Conclusions: The present study indicated that the Shh/Gli1 pathway exhibits an abnormal activation pattern in GC with possible predictive and prognostic significance. The Shh/Gli1 pathway may promote the migratory and invasive potential of GC cells by inducing EMT. The Shh/Gli1 pathway can thus be considered as a potential therapeutic target for GC.
RESUMO
Plants and natural compounds have been widely recognized to have potential for the prevention of cancer progression and as complementary or standalone treatments for cancer patients. The major benefits of natural compounds are their reduced toxicity compared to more aggressive and widely utilized cancer treatment approaches. Preclinical studies have led to the discovery of a number of natural anticancer compounds, including preparations of Vitex negundo L., green tea, mandarin peel oil, ursolic acid, curcumin and resveratrol. Although the in vitro data highlights the potential of these natural alternatives, their benefits in clinical cancer treatment remain less conclusive. In this review, we will discuss some of the recent advances in natural anticancer treatment discovery for the four most prominent global cancers, namely, breast, lung, prostate and skin metastases. As the exploration of natural therapeutics continues to expand, these substances have the potential to be utilized as preventative strategies and complimentary therapeutics. In some cases, they may have sufficient anti-tumor and anti-carcinogenic properties to function as standalone cancer treatments.