Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Bioorg Chem ; 149: 107500, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38823310

RESUMO

This study aimed to develop the first dual-target small molecule inhibitor concurrently targeting Discoidin domain receptor 1 (DDR1) and Epidermal growth factor receptor (EGFR), which play a crucial interdependent roles in non-small cell lung cancer (NSCLC), demonstrating a synergistic inhibitory effect. A series of innovative dual-target inhibitors for DDR1 and EGFR were discovered. These compounds were designed and synthesized using structural optimization strategies based on the lead compound BZF02, employing 4,6-pyrimidine diamine as the core scaffold, followed by an investigation of their biological activities. Among these compounds, D06 was selected and showed micromolar enzymatic potencies against DDR1 and EGFR. Subsequently, compound D06 was observed to inhibit NSCLC cell proliferation and invasion. Demonstrating acceptable pharmacokinetic performance, compound D06 exhibited its anti-tumor activity in NSCLC PC-9/GR xenograft models without apparent toxicity or significant weight loss. These collective results showcase the successful synthesis of a potent dual-targeted inhibitor, suggesting the potential therapeutic efficacy of co-targeting DDR1 and EGFR for DDR1/EGFR-positive NSCLC.

2.
Front Chem ; 12: 1384301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562527

RESUMO

Introduction: Cancer, a significant global health concern, necessitates innovative treatments. The pivotal role of chronic inflammation in cancer development underscores the urgency for novel therapeutic strategies. Benzothiazole derivatives exhibit promise due to their distinctive structures and broad spectrum of biological effects. This study aims to explore new anti-tumor small molecule drugs that simultaneously anti-inflammatory and anticancer based on the advantages of benzothiazole frameworks. Methods: The compounds were characterized by nuclear magnetic resonance (NMR), liquid chromatograph-mass spectrometer (LC-MS) and high performance liquid chromatography (HPLC) for structure as well as purity and other related physicochemical properties. The effects of the compounds on the proliferation of human epidermoid carcinoma cell line (A431) and human non-small cell lung cancer cell lines (A549, H1299) were evaluated by MTT method. The effect of compounds on the expression levels of inflammatory factors IL-6 and TNF-α in mouse monocyte macrophages (RAW264.7) was assessed using enzyme-linked immunosorbent assay (ELISA). The effect of compounds on apoptosis and cell cycle of A431 and A549 cells was evaluated by flow cytometry. The effect of compounds on A431 and A549 cell migration was evaluated by scratch wound healing assay. The effect of compounds on protein expression levels in A431 and A549 cells was assessed by Western Blot assay. The physicochemical parameters, pharmacokinetic properties, toxicity and drug similarity of the active compound were predicted using Swiss ADME and admetSAR web servers. Results: Twenty-five novel benzothiazole compounds were designed and synthesized, with their structures confirmed through spectrogram verification. The active compound 6-chloro-N-(4-nitrobenzyl) benzo[d] thiazol-2-amine (compound B7) was screened through a series of bioactivity assessments, which significantly inhibited the proliferation of A431, A549 and H1299 cancer cells, decreased the activity of IL-6 and TNF-α, and hindered cell migration. In addition, at concentrations of 1, 2, and 4 µM, B7 exhibited apoptosis-promoting and cell cycle-arresting effects similar to those of the lead compound 7-chloro-N-(2, 6-dichlorophenyl) benzo[d] thiazole-2-amine (compound 4i). Western blot analysis confirmed that B7 inhibited both AKT and ERK signaling pathways in A431 and A549 cells. The prediction results of ADMET indicated that B7 had good drug properties. Discussion: This study has innovatively developed a series of benzothiazole derivatives, with a focus on compound B7 due to its notable dual anticancer and anti-inflammatory activities. B7 stands out for its ability to significantly reduce cancer cell proliferation in A431, A549, and H1299 cell lines and lower the levels of inflammatory cytokines IL-6 and TNF-α. These results position B7B7 as a promising candidate for dual-action cancer therapy. The study's mechanistic exploration, highlighting B7's simultaneous inhibition of the AKT and ERK pathways, offers a novel strategy for addressing both the survival mechanisms of tumor cells and the inflammatory milieu facilitating cancer progression.

3.
Bioorg Chem ; 125: 105864, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35584606

RESUMO

Overexpressed tubulin and continuously activated STAT3 play important roles in the development of many cancers and are potential therapeutic targets. A series of 4-methoxy-N -(1-naphthalene) benzenesulfonamide derivatives were designed and optimized based on ß-tubulin inhibitor ABT-751 to verify whether STAT3 and tubulin dual target inhibitors have better antitumor effects. Compound DL14 showed strong inhibitory activity against A549, MDA-MB-231 and HCT-116 cells in vitro with IC50 values of 1.35 µM, 2.85 µM and 3.04 µM, respectively. Further experiments showed that DL14 not only competitively bound to colchicine binding site to inhibit tubulin polymerization with IC50 values 0.83 µM, but also directly bound to STAT3 protein to inhibit STAT3 phosphorylation with IC50 value of 6.84 µM. Three other compounds (TG03, DL15, and DL16) also inhibit this phosphorylation. In terms of single target inhibition, DL14 is slightly inferior to positive drugs, but it shows a good anti-tumor effect in vivo, and can inhibit >80% of xenograft tumor growth. This study describes a novel 4-methoxy-N-(1-naphthyl) benzenesulfonamide skeleton as an effective double-targeted anticancer agent targeting STAT3 and tubulin.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Fator de Transcrição STAT3/metabolismo , Relação Estrutura-Atividade , Sulfonamidas , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia , Benzenossulfonamidas
4.
Eur J Med Chem ; 218: 113362, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33774344

RESUMO

Signal transducer and activator of transcription 3 (STAT3) has been confirmed as an attractive therapeutic target for cancer therapy. Herein, we designed and synthesized a series of N-substituted Sulfamoylbenzamide STAT3 inhibitors based on small-molecule STAT3 inhibitor Niclosamide. Compound B12, the best active compound of this series, was identified as an inhibitor of IL-6/STAT3 signaling with an IC50 of 0.61-1.11 µM in MDA-MB-231, HCT-116 and SW480 tumor cell lines with STAT3 overexpression, by inhibiting the phosphorylation of STAT3 of Tyr705 residue and the expression of STAT3 downstream genes, inducing apoptosis and inhibiting the migration of cancer cells. Furthermore, in vivo study revealed that compound B12 suppressed the MDA-MB-231 xenograft tumor growth in nude mice at the dose of 30 mg/kg (i.g.), which has better antitumor activity than the positive control Niclosamide. More importantly, B12 is an orally bioavailable anticancer agent as a promising candidate for further development.


Assuntos
Benzamidas/farmacologia , Descoberta de Drogas , Niclosamida/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Benzamidas/síntese química , Benzamidas/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Niclosamida/síntese química , Niclosamida/química , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
5.
J Cell Mol Med ; 24(23): 13634-13647, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33118312

RESUMO

It has been demonstrated that the action of dopamine (DA) could enhance the production of tumour necrosis factor-α (TNF-α) by astrocytes and potentiate neuronal apoptosis in minimal hepatic encephalopathy (MHE). Recently, sodium hydrosulfide (NaHS) has been found to have neuroprotective properties. Our study addressed whether NaHS could rescue DA-challenged inflammation and apoptosis in neurons to ameliorate memory impairment in MHE rats and in the neuron and astrocyte coculture system. We found that NaHS suppressed DA-induced p65 acetylation, resulting in reduced TNF-α production in astrocytes both in vitro and in vivo. Furthermore, decreased apoptosis was observed in neurons exposed to conditioned medium from DA + NaHS-challenged astrocytes, which was similar to the results obtained in the neurons exposed to TNF-α + NaHS, suggesting a therapeutic effect of NaHS on the suppression of neuronal apoptosis via the reduction of TNF-α level. DA triggered the inactivation of p70 S6 ribosomal kinase (S6K1) and dephosphorylation of Bad, resulting in the disaggregation of Bclxl and Bak and the release of cytochrome c (Cyt. c), and this process could be reversed by NaHS administration. Our work demonstrated that NaHS attenuated DA-induced astrocytic TNF-α release and ameliorated inflammation-induced neuronal apoptosis in MHE. Further research into this approach may uncover future potential therapeutic strategies for MHE.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Dopamina/efeitos adversos , Encefalopatia Hepática/complicações , Encefalopatia Hepática/metabolismo , Sulfeto de Hidrogênio/farmacologia , Doenças Neurodegenerativas/etiologia , Animais , Apoptose/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Biomarcadores , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Cognição/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Suscetibilidade a Doenças , Dopamina/metabolismo , Encefalopatia Hepática/patologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica , Ratos , Fator de Necrose Tumoral alfa/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo , Proteína bcl-X/metabolismo
6.
Eur J Med Chem ; 187: 111943, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31846829

RESUMO

FGF2-FGFR1 autocrine pathway activation reduces the sensitivity of non-small cell lung cancer (NSCLC) cells to EGFR inhibitors like Gefitinib. Therefore, dual-specific drugs targeting EGFR and FGFR with high selectivity and activity are required. Through structure analysis of excellent EGFR inhibitors and FGFR inhibitors, we designed and synthesized 33 4,6-pyrimidinediamine derivatives as dual EGFR and FGFR inhibitors and selected BZF 2 as a potential EGFR and FGFR inhibitor after initial cell screening. Then, through kinase testing and western blot analysis, BZF 2 was defined as a dual EGFR and FGFR inhibitor with high selectivity 1and activity. Biological evaluation of NSCLC cell lines with the FGF2-FGFR1 autocrine loop indicated that BZF 2 significantly inhibited cell proliferation (IC50 values for H226 and HCC827 GR were 2.11 µM, and 0.93 µM, respectively), cell migration, and induced cell apoptosis and cell cycle arrest. Anti-tumor activity test in vivo showed that BZF 2 obviously shrank tumor size. Therefore, BZF 2 is a highly selective and potent dual EGFR/FGFR compound with promising therapeutic effects against EGFR/FGFR1-positive NSCLC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Diaminas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Diaminas/síntese química , Diaminas/química , Relação Dose-Resposta a Droga , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Relação Estrutura-Atividade
7.
Eur J Med Chem ; 179: 218-232, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31254923

RESUMO

Sustained activation of STAT3 is closely related to the cancer development, but the inhibitors for STAT3 overexpression are still in the clinical research stage. In this study, a series of 2,6-disubstituted purine derivatives were designed and synthesized, and their biological activities, as small molecule inhibitors of STAT3, were assessed. Compound PD26-TL07 exhibited remarkable antiproliferative activity against three cancer cell lines (IC50 values for HCT-116, SW480 and MDA-MB-231 were 1.77 ±â€¯0.35, 1.51 ±â€¯0.19, and 1.25 ±â€¯0.38 µM, respectively). Moreover, detailed biological assays revealed that PD26-TL07 could effectively inhibited STAT3 phosphorylation, and had little inhibition to others'. The newly discovered PD26-TL07 displayed an expecting anticancer effect both in vitro and in vivo. The molecular docking models revealed that PD26-TL07 could bind to the SH2 domain of STAT3. Three additional compounds (PD26-BZ01, PD26-TL03 and PD26-AS06) were also able to inhibit this phosphorylation. This study described novel 2,6-disubstituted purine derivatives as potent anticancer agents targeting STAT3.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Purinas/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Estrutura Molecular , Purinas/síntese química , Purinas/química , Fator de Transcrição STAT3/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
8.
J Enzyme Inhib Med Chem ; 33(1): 905-919, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29734851

RESUMO

A series of 4-bromo-N-(3,5-dimethoxyphenyl)benzamide derivatives were designed and synthesised as novel fibroblast growth factor receptor-1 (FGFR1) inhibitors. We found that one of the most promising compounds, C9, inhibited five non-small cell lung cancer (NSCLC) cell lines with FGFR1 amplification, including NCI-H520, NCI-H1581, NCI-H226, NCI-H460 and NCI-H1703. Moreover, the IC50 values for the compound C9 were 1.36 ± 0.27 µM, 1.25 ± 0. 23 µM, 2.31 ± 0.41 µM, 2.14 ± 0.36 µM and 1.85 ± 0.32 µM, respectively. The compound C9 arrested the cell cycle at the G2 phase in NSCLC cell lines. The compound C9 also induced cellular apoptosis and inhibited the phosphorylation of FGFR1, PLCγ1 and ERK in a dose-dependent manner. In addition, molecular docking experiments showed that compound C9 binds to FGFR1 to form six hydrogen bonds. Taken together, our data suggested that the compound C9 represented a promising lead compound-targeting FGFR1.


Assuntos
Antineoplásicos/farmacologia , Benzamidas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzamidas/síntese química , Benzamidas/química , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Tirosina Quinases/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Relação Estrutura-Atividade
9.
Psychopharmacology (Berl) ; 235(4): 1163-1178, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29404643

RESUMO

BACKGROUND: It has been reported that D1 receptor (D1R) activation reduces GABAA receptor (GABAAR) current, and baicalin (BAI) displays therapeutic efficacy in diseases involving cognitive impairment. METHODS: We investigated the mechanisms by which BAI could improve DA-induced minimal hepatic encephalopathy (MHE) using immunoblotting, immunofluorescence, and co-immunoprecipitation. RESULTS: BAI did not induce toxicity on the primary cultured neurons. And no obvious toxicity of BAI to the brain was found in rats. DA activated D1R/dopamine and adenosine 3'5'-monophosphate-regulated phospho-protein (DARPP32) to reduce the GABAAR current; BAI treatment did not change the D1R/DARPP32 levels but blocked DA-induced reduction of GABAAR levels in primary cultured neurons. DA decreased the interaction of GABAAR with TrkB and the expression of downstream AKT, which was blocked by BAI treatment. Moreover, BAI reversed the decrease in the expression of GABAAR/TrkB/AKT and prevented the impairment of synaptogenesis and memory deficits in MHE rats. CONCLUSIONS: These results suggest that BAI has neuroprotective and synaptoprotective effects on MHE which are not related to upstream D1R/DARPP32 signaling, but to the targeting of downstream GABAAR signaling to TrkB.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Dopamina/metabolismo , Flavonoides/farmacologia , Encefalopatia Hepática/metabolismo , Receptor trkB/metabolismo , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Animais , Animais Recém-Nascidos , Anti-Inflamatórios não Esteroides/uso terapêutico , Células Cultivadas , Dopamina/farmacologia , Relação Dose-Resposta a Droga , Flavonoides/uso terapêutico , Encefalopatia Hepática/tratamento farmacológico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Sinapses/efeitos dos fármacos
10.
Molecules ; 22(6)2017 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-28629145

RESUMO

The aim of this research was to prove the speculation that phenylxanthine (PX) derivatives possess adenosine A2A receptor (A2AR)-blocking properties and to screening and evaluate these PX derivatives as dual A2AR antagonists/MAO-B inhibitors for Parkinson's disease. To explore this hypothesis, two series of PX derivatives were prepared and their antagonism against A2AR and inhibition against MAO-B were determined in vitro. In order to evaluate further the antiparkinsonian properties, pharmacokinetic and haloperidol-induced catalepsy experiments were carried out in vivo. The PX-D and PX-E analogues acted as potent A2AR antagonists with Ki values ranging from 0.27 to 10 µM, and these analogues displayed relatively mild MAO-B inhibition potencies, with inhibitor dissociation constants (Ki values) ranging from 0.25 to 10 µM. Further, the compounds PX-D-P6 and PX-E-P8 displayed efficacious antiparkinsonian properties in haloperidol-induced catalepsy experiments, verifying that these two compounds were potent A2AR antagonists and MAO-B inhibitors. We conclude that PX-D and PX-E analogues are a promising candidate class of dual-acting compounds for treating Parkinson's disease.


Assuntos
Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/farmacologia , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacologia , Xantina/química , Xantina/farmacologia , Antagonistas do Receptor A2 de Adenosina/síntese química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Estrutura Molecular , Inibidores da Monoaminoxidase/síntese química , Doença de Parkinson/tratamento farmacológico , Ratos , Distribuição Tecidual , Xantina/síntese química
11.
Med Chem ; 13(8): 753-760, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28641527

RESUMO

BACKGROUND: Thienopyrimidinone is a newly designed, selective fibroblast growth factor receptor 1 (FGFR1) inhibitor with an excellent anticancer effect. OBJECTIVE: The goal of the present study was to design and synthesize better FGFR1 inhibitors through modifications of the lead compound thienopyrimidinone. METHODS: In the present study, a series of C-2 substituted derivatives of thienopyrimidinone, namely L1-L16, were synthesized, and their inhibitory effects on FGFR1 were evaluated. The anti-proliferative activities of these compounds were assessed by MTT assay. RESULTS: Among the novel derivatives, L11 was found to exert remarkable FGFR1 inhibitory activity (79.93% at 10 µM) and anti-proliferative activity, with IC50 values of 2.1, 2.5, and 3.5 .M in the FGFR1-overexpressing cell lines, H460, HT-1197, and B16F10, respectively. CONCLUSION: Our newly synthesized thienopyrimidinone derivatives may be candidate FGFR1 inhibitors for future development as novel anticancer agents.


Assuntos
Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirimidinonas/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinonas/síntese química , Pirimidinonas/química , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Relação Estrutura-Atividade
12.
Toxicol Sci ; 159(2): 290-306, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28505381

RESUMO

Hepatic cirrhosis-induced Minimal hepatic encephalopathy (MHE) has been characterized for cognitive dysfunction and central nervous system (CNS) insulin resistance (IR) has been acknowledged to be closely correlated with cognitive impairment while hepatic cirrhosis has been recognized to induce IR. Thus, this study aimed to investigate whether CNS IR occurred in MHE and induced MHE, as well as the underlying mechanism. We found IR in the MHE rats, an especially decreased level of the insulin receptor (InsR), and an increased serine phosphorylation of IRS1 in CNS. PI3K/AKT pathway signaling to the phosphorylation of N-Methyl-d-Aspartate receptors (NMDA receptors, NRs, NR1/NR2B) and downstream activation of the CaMKIV/CREB pathway and final production of neurotrophic factors were triggered by insulin, but impaired in the MHE rats. Additionally, CNS IR, memory impairment, the desensitization of the PI3K/AKT/NMDA receptor (NR)/CaMKIV/CREB pathway and decreased production of BDNF/NT3 in MHE rats were improved by rosiglitazone (RSG). These results suggested that IR, which induces the deficits in the insulin-mediated PI3K/AKT/NR/CaMKIV/CREB/neurotrophin pathway and subsequent memory decline, contributes to the pathogenesis of MHE.


Assuntos
Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Encefalopatia Hepática/metabolismo , Resistência à Insulina , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Encefalopatia Hepática/enzimologia , Encefalopatia Hepática/patologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Aprendizagem em Labirinto , Fosforilação , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Receptor de Insulina/metabolismo , Rosiglitazona , Tiazolidinedionas/farmacologia
13.
Chem Biol Drug Des ; 87(4): 499-507, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26575787

RESUMO

A series of tetrahydrobenzothieno[2,3-d]pyrimidine derivatives were designed, synthesized, and evaluated as inhibitors of FGFR1. These analogs were synthesized via Gewald's reaction under mild conditions. The structures of the synthesized compounds were characterized by spectroscopic data (IR, (1) H NMR and MS). Their antitumor activities were evaluated against H460, A549 and U251 cell lines in vitro. Results revealed that the tested compounds showed moderate antitumor activities. Structure-activity relationship analyses indicated that compounds with an aromatic ring substituted in the C-2 position or with larger molecules such as 3g, 4c, and 7 were more effective than others. The compound, 3g (78.8% FGFR1 inhibition at 10 µm), was identified to have the most potent antitumor activities, with IC50 values of 7.7, 18.9, and 13.3 µm against the H460, A549, and U251 cell lines, respectively. Together, the results suggested that tetrahydrobenzothieno[2,3-d]pyrimidine derivatives may serve as a potential agent for the treatment of FGFR1-mediated cancers.


Assuntos
Antineoplásicos/farmacologia , Pirimidinas/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Espectroscopia de Prótons por Ressonância Magnética , Pirimidinas/química , Espectrometria de Massas por Ionização por Electrospray
14.
Mol Neurobiol ; 53(8): 5324-43, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26433377

RESUMO

Dopamine (DA)-induced learning and memory impairment is well documented in minimal hepatic encephalopathy (MHE), but the contribution of DA to neurodegeneration and the involved underlying mechanisms are not fully understood. In this study, the effect of DA on neuronal apoptosis was initially detected. The results showed that MHE/DA (10 µg)-treated rats displayed neuronal apoptosis. However, we found that DA (10 µM) treatment did not induce evident apoptosis in primary cultured neurons (PCNs) but did produce TNF-α in primary cultured astrocytes (PCAs). Furthermore, co-cultures between PCAs and PCNs exposed to DA exhibited increased astrocytic TNF-α levels and neuronal apoptosis compared with co-cultures exposed to the vehicle, indicating the attribution of the neuronal apoptosis to astrocytic TNF-α. We also demonstrated that DA enhanced TNF-α production from astrocytes by activation of the TLR4/MyD88/NF-κB pathway, and secreted astrocytic TNF-α-potentiated neuronal apoptosis through inactivation of the PI3K/Akt/mTOR pathway. Overall, the findings from this study suggest that DA stimulates substantial production and secretion of astrocytic TNF-α, consequently and indirectly triggering progressive neurodegeneration, resulting in cognitive decline and memory loss in MHE.


Assuntos
Astrócitos/metabolismo , Dopamina/metabolismo , Encefalopatia Hepática/metabolismo , Encefalopatia Hepática/patologia , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/metabolismo , Animais , Apoptose , Astrócitos/patologia , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Receptor 4 Toll-Like/metabolismo
15.
PLoS One ; 8(12): e83060, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24340079

RESUMO

Trace elements have been recognized to play an important role in the development of Parkinson's disease (PD). However, it is difficult to precisely identify the relationship between these elements and the progression of PD because of an insufficient number of patients. In this study, quantifications of selenium (Se), copper (Cu), iron (Fe) and zinc (Zn) by atomic absorption spectrophotometry were performed in plasma from 238 PD patients and 302 controls recruited from eastern China, which is so far the largest cohort of PD patients and controls for measuring plasma levels of these elements. We found that plasma Se and Fe concentrations were significantly increased whereas Cu and Zn concentrations decreased in PD patients as compared with controls. Meanwhile, these four elements displayed differential changes with regard to age. Linear and logistic regression analyses revealed that both Fe and Zn were negatively correlated with age in PD patients. Association analysis suggests that lower plasma Se and Fe levels may reduce the risk for PD, whereas lower plasma Zn is probably a PD risk factor. Finally, a model was generated to predict PD patients based on the plasma concentrations of these four trace elements as well as other features such as sex and age, which achieved an accuracy of 80.97±1.34% using 10-fold cross-validation. In summary, our data provide new insights into the roles of Se, Cu, Fe and Zn in PD progression.


Assuntos
Cobre/sangue , Ferro/sangue , Doença de Parkinson/sangue , Selênio/sangue , Zinco/sangue , Fatores Etários , Idoso , Estudos de Casos e Controles , China , Estudos de Coortes , Progressão da Doença , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Análise de Regressão , Reprodutibilidade dos Testes , Espectrofotometria Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA