Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros











Intervalo de ano de publicação
2.
Mol Ther Oncol ; 32(1): 200762, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38596285

RESUMO

Circulating tumor cells (CTCs) are the seeds of distant metastases of malignant tumors and are associated with malignancy and risk of metastasis. However, tumor cells undergo epithelial-mesenchymal transition (EMT) during metastasis, leading to the emergence of different types of CTCs. Real-time dynamic molecular and functional typing of CTCs is necessary to precisely guide personalized treatment. Most CTC detection systems are based on epithelial markers that may fail to detect EMT CTCs. Therefore, it is clinically important to identify new markers of different CTC types. In this study, bioinformatics analysis and experimental assays showed that trophoblast cell surface antigen 2 (TROP2), a target molecule for advanced palliative treatment of triple-negative breast cancer (TNBC), was highly expressed in TNBC tissues and tumor cells. Furthermore, TROP2 can promote the migration and invasion of TNBC cells by upregulating EMT markers. The specificity and potential of TROP2 as an EMT-associated marker of TNBC CTCs were evaluated by flow cytometry, immunofluorescence, spiking experiments, and a well-established CTC assay. The results indicated that TROP2 is a potential novel CTC marker associated with EMT, providing a basis for more efficacious markers that encompass CTC heterogeneity in patients with TNBC.

3.
Free Radic Biol Med ; 209(Pt 2): 252-264, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37852547

RESUMO

Heart failure (HF) severely impairs human health because of its high incidence and mortality. Cardiac hypertrophy is the main cause of HF, while its underlying mechanism is not fully clear. As an E3 ubiquitin ligase, Ring finger protein 13 (RNF13) plays a crucial role in many disorders, such as liver immune, neurological disease and tumorigenesis, whereas the function of RNF13 in cardiac hypertrophy remains largely unknown. In the present study, we found that the protein expression of RNF13 is up-regulated in the transverse aortic constriction (TAC)-induced murine hypertrophic hearts and phenylephrine (PE)-induced cardiomyocyte hypertrophy. Functional investigations indicated that RNF13 global knockout mice accelerates the degree of TAC-induced cardiac hypertrophy, including cardiomyocyte enlargement, cardiac fibrosis and heart dysfunction. On the contrary, adeno-associated virus 9 (AAV9) mediated-RNF13 overexpression mice alleviated cardiac hypertrophy. Furthermore, we demonstrated that adenoviral RNF13 attenuates the PE-induced cardiomyocyte hypertrophy and down-regulates the expression of cardiac hypertrophic markers, while the opposite results were observed in the RNF13 knockdown group. The RNA-sequence of RNF13 knockout and wild type mice showed that RNF13 deficiency activates oxidative stress after TAC surgery. In terms of the mechanism, we found that RNF13 directly interacted with p62 and promoted the activation of downstream NRF2/HO-1 signaling. Finally, we proved that p62 knockdown can reverse the effect of RNF13 in cardiac hypertrophy. In conclusion, RNF13 protects against the cardiac hypertrophy via p62-NRF2 axis.


Assuntos
Insuficiência Cardíaca , Fator 2 Relacionado a NF-E2 , Animais , Camundongos , Cardiomegalia/metabolismo , Insuficiência Cardíaca/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
Cell Rep ; 42(8): 112969, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37573506

RESUMO

The differentiation fate of bone marrow mesenchymal stem cells (BMSCs) affects the progression of steroid-induced osteonecrosis of the femoral head (SONFH). We find that lncRNA DGCR5 encodes a 102-amino acid polypeptide, RIP (Rac1 inactivated peptide), which promotes the adipogenic differentiation of BMSCs and aggravates the progression of SONFH. RIP, instead of lncRNA DGCR5, binds to the N-terminal motif of RAC1, and inactivates the RAC1/PAK1 cascade, resulting in decreased Ser675 phosphorylation of ß-catenin. Ultimately, the nuclear localization of ß-catenin decreases, and the differentiation balance of BMSCs tilts toward the adipogenesis lineage. In the femoral head of rats, overexpression of RIP causes trabecular bone disorder and adipocyte accumulation, which can be rescued by overexpressing RAC1. This finding expands the regulatory role of lncRNAs in BMSCs and suggests RIP as a potential therapeutic target.


Assuntos
Células-Tronco Mesenquimais , RNA Longo não Codificante , Ratos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , beta Catenina/metabolismo , Osteogênese/genética , Diferenciação Celular/genética , Células-Tronco Mesenquimais/metabolismo , Peptídeos/metabolismo , Células Cultivadas
5.
Front Immunol ; 14: 1152678, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215111

RESUMO

Background: Glucosamine 6-phosphate N-acetyltransferase (GNPNAT1) is a crucial enzyme involving hexosamine biosynthesis pathway and is upregulated in breast cancer (BRCA). However, its biological function and mechanism on patients in BRCA have not been investigated. Methods: In this study, the differential expression of GNPNAT1 was analyzed between BRCA tissues and normal breast tissues using the Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database, which was validated by quantitative real-time polymerase chain reaction, Western blot and immunohistochemistry. Then, the potential clinical value of GNPNAT1 in BRCA was investigated based on TCGA database. Functional enrichment analyses, including Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Gene Set Variation Analysis, were performed to explore the potential signaling pathways and biological functions involved in GNPNAT1 in BRCA. Tumor immune infiltration was analyzed using ESTIMATE, CIBERSORT and TISIDB database; and immune therapy response scores were assessed using TIDE. Finally, Western blot, Cell counting kit-8 and Transwell assay were used to determine the proliferation and invasion abilities of breast cancer cells with GNPNAT1 knockdown. Results: GNPNAT1 was up-regulated in BRCA tissues compared with normal tissues which was subsequently verified in different cell lines and clinical tissue samples. Based on TCGA and GEO, the overexpression of GNPNAT1 in BRCA contributed to a significant decline in overall survive and disease specific survive. Functional enrichment analyses indicated that the enriched pathways in high GNPNAT1 expression group included citrate cycle, N-glycan biosynthesis, DNA repair, and basal transcription factors. Moreover, the overexpression of GNPNAT1 was negatively correlated with immunotherapy response and the levels of immune cell infiltration of CD8+ T cells, B cells, natural killer cells, dendritic cells and macrophages. Knockdown of GNPNAT1 impairs the proliferation and invasion abilities of breast cancer cells. Conclusion: GNPNAT1 is a potential diagnostic, prognostic biomarker and novel target for intervention in BRCA.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Mama , Imunoterapia , Biomarcadores , Linfócitos B , Glucosamina 6-Fosfato N-Acetiltransferase
6.
Mol Carcinog ; 62(7): 1009-1024, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37042573

RESUMO

Pyruvate dehydrogenase kinase 1 (PDK1) is a widely known glycolytic enzyme, and some evidence showed that PDK1 promoted breast cancer by multiple approaches. However, very few lncRNAs have been identified to be associated with PDK1 in breast cancer in previous research. In this study, we found that lncRNA sprouty4-intron transcript 1 (SPRY4-IT1) was regulated by PDK1 with correlation analysis, and PDK1 upregulated SPRY4-IT1 remarkably in breast cancer cells, as PDK1 interacted with SPRY4-IT1 in the nucleus and significantly enhanced the stability of SRPY4-IT1. Furthermore, SPRY4-IT1 was highly expressed in breast cancer, significantly promoted the proliferation and inhibited apoptosis of breast cancer cells. In terms of mechanism, SPRY4-IT1 inhibited the transcription of NFKBIA and the expression of IκBα, thus promoting the formation of p50/p65 complex and activating NF-κB signaling pathway, which facilitated survival of breast cancer cells. Therefore, our finding reveals that PDK1/SPRY4-IT1/NFKBIA axis plays a crucial role that promoting tumor progression, and SPRY4-IT1 knockdown incombined with PDK1 inhibitor is promising to be a new therapeutic strategy in breast cancer.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Íntrons , Proliferação de Células/genética , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica
7.
Drug Deliv ; 30(1): 2165736, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36628545

RESUMO

Delivery of drugs to special locations of ocular lesions, while minimizing systemic and local toxic effects, is recognized as a critical challenge in the ophthalmic practice. The special anatomy and physiology barriers within the eyeball entail effective drug delivery systems. Emerging attempts in drug delivery has led to developments in ocular iontophoresis, which acts as a noninvasive technology to enhance drug penetration using a small electric current. This technique offers greater flexibility to deliver desired drug dose in a controlled and tolerable manner. In previous studies, this technique has been testified to deliver antibiotics, corticoid, proteins and other gene drugs into the eye with the potency of treating or alleviating diverse ophthalmological diseases including uveitis, cataract, retinoblastoma, herpes simplex and cytomegalovirus retinitis (CMVR), etc. In this review, we will introduce the recent developments in iontophoresis device. We also summarize the latest progress in coulomb controlled iontophoresis (CCI), hydrogel ionic circuit (HIC) and EyeGate II delivery system (EGDS), as well as overview the potential toxicity of iontophoresis. We will discuss these factors that affect the efficacy of iontophoresis experiments, and focus on the latest progress in its clinical application in the treatment of eye diseases.


Assuntos
Oftalmopatias , Iontoforese , Humanos , Preparações Farmacêuticas/metabolismo , Iontoforese/métodos , Olho , Sistemas de Liberação de Medicamentos/métodos , Oftalmopatias/tratamento farmacológico
8.
Eye (Lond) ; 37(4): 607-617, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35915232

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas) system is an adaptive immune defence system that has gradually evolved in bacteria and archaea to combat invading viruses and exogenous DNA. Advances in technology have enabled researchers to enhance their understanding of the immune process in vivo and its potential for use in genome editing. Thus far, applications of CRISPR/Cas9 genome editing technology in ophthalmology have included gene therapy for corneal dystrophy, glaucoma, congenital cataract, Leber's congenital amaurosis, retinitis pigmentosa, Usher syndrome, fundus neovascular disease, proliferative vitreoretinopathy, retinoblastoma and other eye diseases. Additionally, the combination of CRISPR/Cas9 genome editing technology with adeno-associated virus vector and inducible pluripotent stem cells provides further therapeutic avenues for the treatment of eye diseases. Nonetheless, many challenges remain in the development of clinically feasible retinal genome editing therapy. This review discusses the development, as well as mechanism of CRISPR/Cas9 and its applications and challenges in gene therapy for eye diseases.


Assuntos
Sistemas CRISPR-Cas , Retinose Pigmentar , Humanos , Edição de Genes , Terapia Genética , Retinose Pigmentar/genética
9.
Front Oncol ; 13: 1335637, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239648

RESUMO

[This corrects the article DOI: 10.3389/fonc.2022.848206.].

10.
Anal Biochem ; 658: 114940, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36209895

RESUMO

This paper presents a novel clustered regularly interspaced short palindromic repeat (CRISPR)-associated HRCA technique (CART). During the entire detection process of CART, the target DNA is first specifically recognized and cleaved by a pair of Cas9/sgRNA complexes; then, the cleaved product is ligated into circular DNA as the template of HRCA, and the circular DNA is efficiently amplified by HRCA. Therefore, CART has the advantages of Cas9/sgRNA (single-base mismatch specificity) and HRCA (isothermal reaction temperature and high sensitivity). This technique has been verified by detecting various human papillomavirus (HPV) genes with numerous subtypes. In summary, this study provides a new and effective method for the detection of nucleic acids.


Assuntos
DNA , Técnicas de Amplificação de Ácido Nucleico , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA/genética , DNA Circular/genética , Papillomaviridae , Sistemas CRISPR-Cas/genética
11.
Biomed Res Int ; 2022: 5752575, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36164453

RESUMO

In this paper, Lignosus rhinocerotis (Cooke) Ryvarden (L. rhinocerotis) cultivated in rice medium (LRR) and in sawdust medium (LRS) was harvested. Then, in terms of the LRR, LRS, and wild L. rhinocerotis (LRW), the total flavonoid contents, total polyphenol contents, total polysaccharide contents, and metabolites were detected; antioxidants of their aqueous extracts and anti-inflammatory of their polysaccharides were performed. In addition, the possible mechanism of the polysaccharides of L. rhinocerotis inhibiting lung damage was elucidated. The results showed that 32 compounds were characterized in L. rhinocerotis, including flavonoids, terpenoids, lignans, and steroids and there were 20 compounds in cultivated and wild L. rhinocerotis; LRR has the highest total polyphenol and flavonoid contents, as well as ABTS and DPPH scavenging capacity. The total polysaccharide contents and the FRAP scavenging capacity of wild L. rhinocerotis were higher than those of cultivated L. rhinocerotis. The inhibition of polysaccharides of LRW (PLRW) on LPS-induced MRC-5 damage was stronger than that of the polysaccharides from cultivated L. rhinocerotis. The PLRW may alleviate lung damage by inhibiting the NLRP3 pathway and thereby suppressing the inflammatory response. In summary, both cultivated and wild L. rhinocerotis are abundant in bioactive components and have antioxidant and anti-inflammatory activities.


Assuntos
Antioxidantes , Lignanas , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Carboidratos da Dieta , Lipopolissacarídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Extratos Vegetais/farmacologia , Polifenóis , Polyporaceae , Polissacarídeos/metabolismo , Terpenos
12.
Int J Mol Sci ; 23(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955933

RESUMO

Blood group antigen is a class of heritable antigenic substances present on the erythrocyte membrane. However, the role of blood group antigens in cancer prognosis is still largely unclear. In this study, we investigated the expression of 33 blood group antigen genes and their association with the prognosis of 30 types of cancers in 31,870 tumor tissue samples. Our results revealed that blood group antigens are abnormally expressed in a variety of cancers. The high expression of these antigen genes was mainly related to the activation of the epithelial-mesenchymal transition (EMT) pathway. High expression of seven antigen genes, i.e., FUT7, AQP1, P1, C4A, AQP3, KEL and DARC, were significantly associated with good OS (Overall Survival) in six types of cancers, while ten genes, i.e., AQP1, P1, C4A, AQP3, BSG, CD44, CD151, LU, FUT2, and SEMA7A, were associated with poor OS in three types of cancers. Kidney renal clear cell carcinoma (KIRC) is associated with the largest number (14 genes) of prognostic antigen genes, i.e., CD44, CD151, SEMA7A, FUT7, CR1, AQP1, GYPA, FUT3, FUT6, FUT1, SLC14A1, ERMAP, C4A, and B3GALT3. High expression of SEMA7A gene was significantly correlated with a poor prognosis of KIRC in this analysis but has not been reported previously. SEMA7A might be a putative biomarker for poor prognosis in KIRC. In conclusion, our analysis indicates that blood group antigens may play functional important roles in tumorigenesis, progression, and especially prognosis. These results provide data to support prognostic marker development and future clinical management.


Assuntos
Antígenos de Grupos Sanguíneos , Carcinoma de Células Renais , Neoplasias Renais , Semaforinas , Antígenos CD , Biomarcadores , Carcinoma de Células Renais/patologia , Proteínas Ligadas por GPI , Humanos , Rim/metabolismo , Neoplasias Renais/metabolismo , Prognóstico , Semaforinas/genética
13.
Mol Ther ; 30(8): 2817-2827, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35450820

RESUMO

Chimeric antigen receptor T (CAR-T) cell therapy has faced a series of challenges and has shown very little efficacy in solid tumors to date. Although genetically engineered macrophages have achieved definite therapeutic effect in solid tumors, heterogeneous expression of engineered proteins and the potential for toxicity limit further applications. Herein, we propose a nongenetic and simple macrophage cell engineering strategy through glycan metabolic labeling and click reaction for the treatment of solid tumors. The aptamer-engineered M1 macrophage (ApEn-M1) showed enhanced active targeting ability for tumor cells in vitro and in vivo, resulting in significant cytotoxicity effects. Moreover, ApEn-M1 exhibited superior antitumor efficacy in a breast cancer xenograft mouse model and a lung metastasis mouse model of breast cancer. Interestingly, the ApEn-M1 could reprogram the immunity microenvironment by increasing T cell infiltration and enhancing T cell activity in the tumor region. Additionally, the administration of ApEn-M1 showed no obvious systemic side effects. With glycan metabolic labeling, the macrophages could be efficiently labeled with aptamers on the cell surface via click reaction without genetic alteration or cell damage. Hence, this study serves as a proof of concept for cell-surface anchor engineering and expands the range of nongenetic macrophage cell engineering strategies.


Assuntos
Neoplasias Pulmonares , Neoplasias , Animais , Linhagem Celular Tumoral , Humanos , Imunoterapia/métodos , Imunoterapia Adotiva/métodos , Neoplasias Pulmonares/metabolismo , Macrófagos/metabolismo , Camundongos , Neoplasias/patologia , Linfócitos T , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Front Oncol ; 12: 848206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359417

RESUMO

Breast cancer (BCa) is the most common malignancy in women and claudin-low breast cancer (CL-BCa) is a newly identified BCa subtype characterized by low expression of claudin 3&4&7. However, the hub genes associated with the recruitment of immune cells into CL-BCa were rarely described. This study aimed at exploring the differentially expressed hub genes associated with tumor-infiltrating immune cells in CL-BCa by a multi-approach bioinformatics analysis. The top 200 genes associated with CL-BCa were screened in the METABRIC dataset; the PPI network was constructed using STRING and Cytoscape; tumor-infiltrating immune cells were analyzed by TIMER 2.0; and the correlation of feature cytokines and claudins on survival was examined in METABRIC and TCGA datasets. Consequently, we found that the fraction of tumor-infiltrating immune cells, especially CD8+T cells and macrophages, increased in the CL-BCa. Differentially expressed cytokines (CCL5, CCL19, CXCL9 and CXCL10) and claudins (CLDN8, CLDN11 and CLDN19) were related to the overall survival, and their expression levels were also examined both in tumor tissues of CL-BCa patients by IHC and in typical CL-BCa cell lines by qPCR. Finally, the BCa patients with high expression of these DEGs (CCL5, CCL19, CXCL9, CLDN8 and CLDN11) showed a better overall survival. This study sheds light on molecular features of CL-BCa on immune microenvironments and contributes to identification of prognosis biomarkers for the CL-BCa patients.

15.
ACS Biomater Sci Eng ; 8(5): 1942-1955, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35357802

RESUMO

The integration of reactive oxygen species (ROS)-based chemodynamic therapy (CDT) and photodynamic therapy (PDT) has attracted enormous attention for synergistic antitumor therapies. However, the strategy is severely hampered by tumor hypoxia and overproduced antioxidant glutathione (GSH) in the tumor microenvironment. Inspired by the concept of metal coordination-based nanomedicines, we proposed an effective strategy for synergistic cancer treatment in response to the special tumor microenvironmental properties. Herein, we present novel metal-coordinated multifunctional nanoparticles (NPs) by the Cu2+-triggered assembly of photosensitizer indocyanine green (ICG) and hypoxia-activated anticancer prodrug tirapazamine (TPZ) (Cu-ICG/TPZ NPs). After accumulating within tumor sites via the enhanced permeability and retention (EPR) effect, the Cu-ICG/TPZ NPs were capable of triggering a cascade of combinational therapeutic reactions, including hyperthermia, GSH elimination, and Cu+-mediated •OH generation and the subsequent hypoxia-triggered chemotherapeutic effect of TPZ, thus achieving synergistic tumor therapy. Both in vitro and in vivo evaluations suggested that the multifunctional Cu-ICG/TPZ NPs could realize satisfactory therapeutic efficacy with excellent biosafety. These results thus suggested the great potential of Cu-ICG/TPZ NPs to serve as a metallodrug nanoagent for synergetically enhanced tumor treatment.


Assuntos
Nanopartículas Multifuncionais , Neoplasias , Glutationa/uso terapêutico , Humanos , Hipóxia/tratamento farmacológico , Verde de Indocianina/farmacologia , Verde de Indocianina/uso terapêutico , Neoplasias/tratamento farmacológico , Tirapazamina/uso terapêutico , Microambiente Tumoral
17.
Front Pharmacol ; 13: 807498, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281887

RESUMO

Chemotherapy, as one of the principal modalities for cancer therapy, is limited by its non-specific and inefficient delivery to tumors. To overcome these limitations, we report herein a dual-targeted aptamer-decorated DNA hydrogel system (DTA-H) to achieve efficient, stable, and targeted delivery of drugs. Firstly, DNA hydrogel was formed by the rolling circle amplification. By reasonable design, double target and multivalent aptamers were decorated on DNA hydrogel to load DOX. The results confirmed that DTA-H can deliver chemotherapy drugs and aptamer nucleic acids drugs to target cells, inducing degradation of HER2 protein while chemotherapy is synergistic to inhibit HER2-positive breast cancer growth. The proposed drug delivery system has significant potential to achieve efficient, stable, and targeted delivery of drugs and cancer therapy.

18.
Biology (Basel) ; 11(2)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35205125

RESUMO

Abnormal expression and dysfunction of Annexins (ANXA1-11, 13) have been widely found in several types of cancer. However, the expression pattern and prognostic value of Annexins in bladder cancer (BC) are currently still unknown. In this study, survival analysis by our in-house OSblca web server revealed that high ANXA1/2/3/5/6 expression was significantly associated with poor overall survival (OS) in BC patients, while higher ANXA11 was associated with increased OS. Through Oncomine and GEPIA2 database analysis, we found that ANXA2/3/4/13 were up-regulated, whereas ANXA1/5/6 were down-regulated in BC compared with normal bladder tissues. Further LASSO analysis built an Annexin-Related Prognostic Signature (ARPS, including four members ANXA1/5/6/10) in the TCGA BC cohort and validated it in three independent GEO BC cohorts (GSE31684, GSE32548, GSE48075). Multivariate COX analysis demonstrated that ARPS is an independent prognostic signature for BC. Moreover, GSEA results showed that immune-related pathways, such as epithelial-mesenchymal transition and IL6/JAK/STAT3 signaling were enriched in the high ARPS risk groups, while the low ARPS risk group mainly regulated metabolism-related processes, such as adipogenesis and bile acid metabolism. In conclusion, our study comprehensively analyzed the mRNA expression and prognosis of Annexin family members in BC, constructed an Annexin-related prognostic signature using LASSO and COX regression, and validated it in four independent BC cohorts, which might help to improve clinical outcomes of BC patients, offer insights into the underlying molecular mechanisms of BC development and suggest potential therapeutic targets for BC.

19.
Carcinogenesis ; 43(2): 150-159, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-34922339

RESUMO

Breast cancer is the most common malignancy among women worldwide. Functional studies have demonstrated that miRNA dysregulation in many cases of cancer, in which miRNAs act as either oncogenes or tumor suppressor. Here we report that miR-345-3p is generally upregulated in breast cancer tissues and breast cancer cell lines. Overexpression and inhibition of miR-345-3p revealed its capacity in regulating proliferation and invasion of breast cancer cells. Further research identified protein phosphatase 2 catalytic subunit alpha (PPP2CA), a suppressor of AKT phosphorylation, as a candidate target of miR-345-3p. In vitro, miR-345-3p mimics promoted AKT phosphorylation by targeting its negative regulator, PPP2CA. Blocking miR-345-3p relieved its inhibition of PPP2CA, which attenuated PI3K-AKT signaling pathway. In vivo, inhibiting miR-345-3p by miR-345-3p-inhibition lentivirus suppressed tumor growth and invasiveness in mice. Together, the miR-345-3p/PPP2CA signaling axis exhibits tumor-promoting functions by regulating proliferation and invasion of breast cancer cells. These data provide a clue to novel therapeutic approaches for breast cancer.


Assuntos
Neoplasias da Mama , MicroRNAs , Proteína Fosfatase 2 , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética
20.
Front Pharmacol ; 13: 1043022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36588728

RESUMO

Ethnopharmacological relevance: Hepatic fibrosis (HF) occurs in response to chronic liver injury and may easily develop into irreversible liver cirrhosis or even liver cancer. Amydrium hainanense water extract (AHWE) is a water-soluble component extracted from the Yao medicine Amydrium hainanense (H.Li, Y.Shiao & S.L.Tseng) H.Li, which is commonly used for treating inflammatory diseases in folk. Previous evidence suggested that AHWE significantly inhibited hepatic stellate cell activation. However, little is known regarding the therapeutic effect of AHWE in HF and its underlying action mechanism. Objective: Investigation of the therapeutic effect of AHWE in HF and its underlying mechanism. Methods: The therapeutic effect of AHWE was tested in vivo using an HF mouse model via an intraperitoneal injection of carbon tetrachloride (CCl4). Histological evaluation of liver injury and fibrosis were tested by H&E staining and Masson's trichrome staining. Serum levels of ALT, AST, collagen type I (Col I), and hydroxyproline (HYP) were measured. The mRNA expression of liver fibrotic and inflammatory genes were tested, and the protein levels of alpha smooth muscle actin (α-SMA) and signal transducers and activators of transcription 3 (STAT3) were analyzed. The in vitro experiments were conducted using HSC-T6 and RAW264.7 cell lines. Results: Treatment with AHWE significantly reversed histopathological liver damage and liver function abnormalities in CCl4 mouse model. Also, the serum levels of ALT, AST, Col I, and HYP in CCl4-induced HF mice were improved in AHWE treatment. Further, AHWE showed a remarkable inhibitory effect on the expression of fibrosis markers (Acta2, Col1a1, and Col3a1) and inflammatory factors (Stat3, Tnfa, Il6, and Il1b) induced by CCl4. The results of in vitro experiments were consistent with those obtained in vivo. In addition, it is shown that STAT3 signaling was involved in the anti-fibrotic effects of AHWE as evidenced by STAT3 overexpression. Conclusion: The present study proposed a novel ethnomedicine for HF and suggested the underlying role of STAT3 signaling pathway regulation in this anti-fibrotic effect of the proposed medicine. These findings would serve as solid scientific evidence in support of the development of AHWE as a novel alternative or complementary therapy for HF prevention and treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA