Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38848252

RESUMO

ß-catenin (CTNNB1) is an oncogenic transcription factor that is important in cell-cell adhesion and transcription of cell proliferation and survival genes that drive the pathogenesis of many different types of cancers. However, direct pharmacological targeting of CTNNB1 has remained challenging. Here, we have performed a screen with a library of cysteine-reactive covalent ligands to identify the monovalent degrader EN83 that depletes CTNNB1 in a ubiquitin-proteasome-dependent manner. We show that EN83 directly and covalently targets CTNNB1 three cysteines C466, C520, and C619, leading to destabilization and degradation of CTNNB1. Through structural optimization, we generate a highly potent and relatively selective destabilizing degrader that acts through the targeting of only C619 on CTNNB1. Our results show that chemoproteomic approaches can be used to covalently target and degrade challenging transcription factors like CTNNB1 through destabilization-mediated degradation.

2.
ACS Chem Biol ; 19(6): 1260-1270, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739449

RESUMO

Ophiobolin A (OPA) is a sesterterpenoid fungal natural product with broad anticancer activity. While OPA possesses multiple electrophilic moieties that can covalently react with nucleophilic amino acids on proteins, the proteome-wide targets and mechanism of OPA remain poorly understood in many contexts. In this study, we used covalent chemoproteomic platforms to map the proteome-wide reactivity of the OPA in a highly sensitive lung cancer cell line. Among several proteins that OPA engaged, we focused on two targets: lysine-72 of cytochrome c oxidase subunit 5A (COX5A) and cysteine-53 of mitochondrial hypoxia induced gene 1 domain family member 2A (HIGD2A). These two subunit proteins are part of complex IV (cytochrome C oxidase) within the electron transport chain and contributed significantly to the antiproliferative activity of OPA. OPA activated mitochondrial respiration in a COX5A- and HIGD2A-dependent manner, leading to an initial spike in mitochondrial ATP and heightened mitochondrial oxidative stress. OPA compromised mitochondrial membrane potential, ultimately leading to ATP depletion. We have used chemoproteomic strategies to discover a unique anticancer mechanism of OPA through activation of complex IV leading to compromised mitochondrial energetics and rapid cell death.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Mitocôndrias , Sesterterpenos , Humanos , Sesterterpenos/farmacologia , Sesterterpenos/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Estresse Oxidativo/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Proliferação de Células/efeitos dos fármacos
3.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961622

RESUMO

ß-catenin (CTNNB1) is an oncogenic transcription factor that is important in cell-cell adhesion and transcription of cell proliferation and survival genes that drives the pathogenesis of many different types of cancers. However, direct pharmacological targeting of CTNNB1 has remained challenging deeming this transcription factor as "undruggable." Here, we have performed a screen with a library of cysteine-reactive covalent ligands to identify a monovalent degrader EN83 that depletes CTNNB1 in a ubiquitin-proteasome-dependent manner. We show that EN83 directly and covalently targets CTNNB1 through targeting four distinct cysteines within the armadillo repeat domain-C439, C466, C520, and C619-leading to a destabilization of CTNNB1. Using covalent chemoproteomic approaches, we show that EN83 directly engages CTNNB1 in cells with a moderate degree of selectivity. We further demonstrate that direct covalent targeting of three of these four cysteines--C466, C520, and C619--in cells contributes to CTNNB1 degradation in cells. We also demonstrate that EN83 can be further optimized to yield more potent CTNNB1 binders and degraders. Our results show that chemoproteomic approaches can be used to covalently target and degrade challenging transcription factors like CTNNB1 through a destabilization-mediated degradation.

4.
bioRxiv ; 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36945520

RESUMO

Ophiobolin A (OPA) is a sesterterpenoid fungal natural product with broad anti-cancer activity. While OPA possesses multiple electrophilic moieties that can covalently react with nucleophilic amino acids on proteins, the proteome-wide targets and mechanism of OPA remain poorly understood in many contexts. In this study, we used covalent chemoproteomic platforms to map the proteome-wide reactivity of OPA in a highly sensitive lung cancer cell line. Among several proteins that OPA engaged, we focused on two targets-cysteine C53 of HIG2DA and lysine K72 of COX5A-that are part of complex IV of the electron transport chain and contributed significantly to the anti-proliferative activity. OPA activated mitochondrial respiration in a HIG2DA and COX5A-dependent manner, led to an initial spike in mitochondrial ATP, but then compromised mitochondrial membrane potential leading to ATP depletion. We have used chemoproteomic strategies to discover a unique anti-cancer mechanism of OPA through activation of complex IV leading to compromised mitochondrial energetics and rapid cell death.

5.
Biomed Chromatogr ; 34(10): e4922, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32537761

RESUMO

Recent advances suggest that abnormal fatty acid metabolism highly correlates with breast cancer, which provide clues to discover potential biomarkers of breast cancer. This study aims to identify serum free fatty acid (FFA) metabolic profiles and screen potential biomarkers for breast cancer diagnosis. Gas chromatography-mass spectrometry and our in-house fatty acid methyl ester standard substances library were combined to accurately identify FFA profiles in serum samples of breast cancer patients and breast adenosis patients (as controls). Potential biomarkers were screened by applying statistical analysis. A total of 18 FFAs were accurately identified in serum sample. Two groups of patients were correctly discriminated by the orthogonal partial least squares-discriminant analysis model based on FFA profiles. Seven FFA levels were significantly higher in serum from breast cancer patients than that in controls, and exhibited positive correlation with malignant degrees of disease. Furthermore, five candidates (palmitic acid, oleic acid, cis-8,11,14-eicosatrienoic acid, docosanoic acid and the ratio of oleic acid to stearic acid) were selected as potential serum biomarkers for differential diagnosis of breast cancer. Our study will help to reveal the metabolic signature of FFAs in breast cancer patients, and provides valuable information for facilitating clinical noninvasive diagnosis.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias da Mama , Ácidos Graxos não Esterificados/sangue , Cromatografia Gasosa-Espectrometria de Massas/métodos , Adulto , Idoso , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Análise Discriminante , Feminino , Humanos , Análise dos Mínimos Quadrados , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA