Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
J Am Heart Assoc ; 13(9): e033700, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38700005

RESUMO

BACKGROUND: The only clinically approved drug that reduces doxorubicin cardiotoxicity is dexrazoxane, but its application is limited due to the risk of secondary malignancies. So, exploring alternative effective molecules to attenuate its cardiotoxicity is crucial. Colchicine is a safe and well-tolerated drug that helps reduce the production of reactive oxygen species. High doses of colchicine have been reported to block the fusion of autophagosomes and lysosomes in cancer cells. However, the impact of colchicine on the autophagy activity within cardiomyocytes remains inadequately elucidated. Recent studies have highlighted the beneficial effects of colchicine on patients with pericarditis, postprocedural atrial fibrillation, and coronary artery disease. It remains ambiguous how colchicine regulates autophagic flux in doxorubicin-induced heart failure. METHODS AND RESULTS: Doxorubicin was administered to establish models of heart failure both in vivo and in vitro. Prior studies have reported that doxorubicin impeded the breakdown of autophagic vacuoles, resulting in damaged mitochondria and the accumulation of reactive oxygen species. Following the administration of a low dose of colchicine (0.1 mg/kg, daily), significant improvements were observed in heart function (left ventricular ejection fraction: doxorubicin group versus treatment group=43.75%±3.614% versus 57.07%±2.968%, P=0.0373). In terms of mechanism, a low dose of colchicine facilitated the degradation of autolysosomes, thereby mitigating doxorubicin-induced cardiotoxicity. CONCLUSIONS: Our research has shown that a low dose of colchicine is pivotal in restoring the autophagy activity, thereby attenuating the cardiotoxicity induced by doxorubicin. Consequently, colchicine emerges as a promising therapeutic candidate to improve doxorubicin cardiotoxicity.


Assuntos
Autofagia , Cardiotoxicidade , Colchicina , Doxorrubicina , Lisossomos , Miócitos Cardíacos , Colchicina/toxicidade , Colchicina/farmacologia , Doxorrubicina/toxicidade , Cardiotoxicidade/prevenção & controle , Autofagia/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Animais , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Modelos Animais de Doenças , Masculino , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Antibióticos Antineoplásicos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Função Ventricular Esquerda/efeitos dos fármacos
2.
Cancer Lett ; 591: 216871, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604310

RESUMO

Chimeric antigen receptor T (CAR-T) cell therapy, as an adoptive immunotherapy, is playing an increasingly important role in the treatment of malignant tumors. CAR-T cells are referred to as "living drugs" as they not only target tumor cells directly, but also induce long-term immune memory that has the potential to provide long-lasting protection. CD19.CAR-T cells have achieved complete response rates of over 90 % for acute lymphoblastic leukemia and over 60 % for non-Hodgkin's lymphoma. However, the response rate of CAR-T cells in the treatment of solid tumors remains extremely low and the side effects potentially severe. In this review, we discuss the limitations that the solid tumor microenvironment poses for CAR-T application and the solutions that are being developed to address these limitations, in the hope that in the near future, CAR-T cell therapy for solid tumors can attain the same success rates as are now being seen clinically for hematological malignancies.


Assuntos
Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos Quiméricos , Microambiente Tumoral , Humanos , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Neoplasias/imunologia , Microambiente Tumoral/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/transplante , Animais , Receptores de Antígenos de Linfócitos T/imunologia
3.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279262

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive type of pancreatic cancer, which rapidly develops resistance to the current standard of care. Several oncolytic Human AdenoViruses (HAdVs) have been reported to re-sensitize drug-resistant cancer cells and in combination with chemotherapeutics attenuate solid tumour growth. Obstacles preventing greater clinical success are rapid hepatic elimination and limited viral replication and spread within the tumour microenvironment. We hypothesised that higher intratumoural levels of the virus could be achieved by altering cellular epigenetic regulation. Here we report on the screening of an enriched epigenetics small molecule library and validation of six compounds that increased viral gene expression and replication. The greatest effects were observed with three epigenetic inhibitors targeting bromodomain (BRD)-containing proteins. Specifically, BRD4 inhibitors enhanced the efficacy of Ad5 wild type, Ad∆∆, and Ad-3∆-A20T in 3-dimensional co-culture models of PDAC and in vivo xenografts. RNAseq analysis demonstrated that the inhibitors increased viral E1A expression, altered expression of cell cycle regulators and inflammatory factors, and attenuated expression levels of tumour cell oncogenes such as c-Myc and Myb. The data suggest that the tumour-selective Ad∆∆ and Ad-3∆-A20T combined with epigenetic inhibitors is a novel strategy for the treatment of PDAC by eliminating both cancer and associated stromal cells to pave the way for immune cell access even after systemic delivery of the virus.


Assuntos
Carcinoma Ductal Pancreático , Terapia Viral Oncolítica , Vírus Oncolíticos , Neoplasias Pancreáticas , Humanos , Proteínas Nucleares/genética , Epigênese Genética , Vírus Oncolíticos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/patologia , Terapia Viral Oncolítica/métodos , Adenoviridae/genética , Microambiente Tumoral , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/metabolismo
4.
Life Sci ; 336: 122254, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977355

RESUMO

AIMS: Gliomas are the most common central nervous system malignancies, with limited therapeutic options and poor prognosis, which are primarily attributed to the "immune desert" microenvironment. Previously, we constructed a three-gene-deleted oncolytic adenovirus (Ad-TD) loaded with non-secreting interleukin-12 (nsIL-12), which could be amplified in tumor cells and induce immunity to suppress tumors. However, the effects of this oncolytic virus on gliomas and their immune microenvironment remain unclear. There is an urgent need for further research. MATERIALS AND METHODS: We constructed a Syrian hamster brain tumor model and demonstrated the efficacy and mechanism of the novel oncolytic virus in treating brain tumors through a series of in vitro and in vivo experiments. We investigated the efficacy and safety (the number of hamsters in each group is either 5 or 10) of the oncolytic virus treatment in Syrian hamsters using a virus-treated group, a control virus-treated group, and a blank control group. KEY FINDINGS: In vitro assays showed that Ad-TD-nsIL-12 could specifically proliferate in brain tumor cells which induce tumor cell apoptosis and intracellular expression of interleukin (IL)-12. Moreover, in vivo experiments demonstrated that Ad-TD-nsIL-12 could effectively inhibit the progression of brain tumors and prolong survival. Ad-TD-nsIL-12 significantly enhanced T-cell infiltration in the brain tumor microenvironment. SIGNIFICANCE: Ad-TD-nsIL-12 can inhibit glioma progression and increase T-cell infiltration in the tumor tissue, particularly infiltration by cytotoxic T cells (CD8+). Ad-TD-nsIL-12 can amplify and produce IL-12, inducing anti-glioma immune responses to inhibit tumor progression.


Assuntos
Neoplasias Encefálicas , Glioma , Terapia Viral Oncolítica , Vírus Oncolíticos , Cricetinae , Animais , Humanos , Vírus Oncolíticos/genética , Interleucina-12/genética , Microambiente Tumoral , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Glioma/terapia , Neoplasias Encefálicas/terapia , Mesocricetus
5.
Front Immunol ; 14: 1285801, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077392

RESUMO

γδ T cells, a specialized subset of T lymphocytes, have garnered significant attention within the realm of cancer immunotherapy. Operating at the nexus between adaptive and innate immunological paradigms, these cells showcase a profound tumor discernment repertoire, hinting at novel immunotherapeutic strategies. Significantly, these cells possess the capability to directly identify and eliminate tumor cells without reliance on HLA-antigen presentation. Furthermore, γδ T cells have the faculty to present tumor antigens to αß T cells, amplifying their anti-tumoral efficacy.Within the diverse and heterogeneous subpopulations of γδ T cells, distinct immune functionalities emerge, manifesting either anti-tumor or pro-tumor roles within the tumor microenvironment. Grasping and strategically harnessing these heterogeneous γδ T cell cohorts is pivotal to their integration in tumor-specific immunotherapeutic modalities. The aim of this review is to describe the heterogeneity of the γδ T cell lineage and the functional plasticity it generates in the treatment of malignant tumors. This review endeavors to elucidate the intricate heterogeneity inherent to the γδ T cell lineage, the consequential functional dynamics in combating malignancies, the latest advancements from clinical trials, and the evolving landscape of γδ T cell-based oncological interventions, while addressing the challenges impeding the field.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T gama-delta , Humanos , Imunoterapia , Antígenos de Neoplasias , Apresentação de Antígeno , Microambiente Tumoral
6.
Cancers (Basel) ; 15(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38136259

RESUMO

PURPOSE: To eliminate the contaminants of Replication-Competent Adenovirus (RCA) during high titer recombinant oncolytic adenovirus production. METHODS: At first, we detected E1A copy numbers of different sources of 293 cells using Q-PCR, and we screened a subclone JH293-C21 of the JH293 cell line (purchased from ATCC) with lower early region 1A (E1A) copy numbers and higher adenovirus production ability. Then, we deleted the conserved region (CR)2 of the E1A gene in this subclone using the CRISPR-Cas9 system and obtained a stable cell clone JH293-C21-C14 with lower E1A expression, but the RCA formation had no significant reduction. Then, we further deleted the CR2 of JH293-C21-C14 cells with the CRISPR-Cas9 system and obtained a strain of cells named JH293-C21-C14-C28. Finally, we detected the capacity for cell proliferation, adenovirus production, and RCA formation in the production of recombinant adenovirus. RESULTS: The JH293-C21-C14-C28 cells had a similar cell proliferation ability and human adenovirus production as JH293-C21 cells. Most importantly, RCA production in JH293-C21-C14-C28 cells was lower than in JH293-C21 cells. CONCLUSION: Human adenovirus producer cell clone JH293-C21-C14-C28 with CR2 deletion can effectively prevent the RCA production of replication-competent oncolytic adenovirus; this will provide significant advantages in utility and safety in gene therapy.

7.
Mol Ther Oncolytics ; 30: 216-226, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37663131

RESUMO

CD19-targeted chimeric antigen receptor-modified T (CD19 CAR-T) cell therapy has been demonstrated as one of the most promising therapeutic strategies for treating B cell malignancies. However, it has shown limited treatment efficacy for diffuse large B cell lymphoma (DLBCL). This is, in part, due to the tumor heterogeneity and the hostile tumor microenvironment. Human interleukin-12 (IL-12), as a potent antitumor cytokine, has delivered encouraging outcomes in preclinical studies of DLBCL. However, potentially lethal toxicity associated with systemic administration precludes its clinical application. Here, an armed CD19 CAR expressing hypoxia-regulated IL-12 was developed (CAR19/hIL12ODD). In this vector, IL-12 secretion was restricted to hypoxic microenvironments within the tumor site by fusion of IL-12 with the oxygen degradation domain (ODD) of HIF1α. In vitro, CAR19/hIL12ODD-T cells could only secrete bioactive IL-12 under hypoxic conditions, accompanied by enhanced proliferation, robust IFN-γ secretion, increased abundance of CD4+, and central memory T cell phenotype. In vivo, adoptive transfer of CAR19/hIL12ODD-T cells significantly enhanced regression of large, established DLBCL xenografts in a novel immunodeficient Syrian hamster model. Notably, this targeted and controlled IL-12 treatment was without toxicity in this model. Taken together, our results suggest that armed CD19 CARs with hypoxia-controlled IL-12 (CAR19/hIL12ODD) might be a promising and safer approach for treating DLBCL.

8.
J Immunother Cancer ; 11(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37586771

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) corresponds to approximately 20% of all breast tumors, with a high propensity for metastasis and a poor prognosis. Because TNBC displays a high mutational load compared with other breast cancer types, a neoantigen-based immunotherapy strategy could be effective. One major bottleneck in the development of a neoantigen-based vaccine for TNBC is the selection of the best targets, that is, tumor-specific neoantigens which are presented at the surface of tumor cells and capable of eliciting robust immune responses. In this study, we aimed to set up a platform for identification and delivery of immunogenic neoantigens in a vaccine regimen for TNBC using oncolytic vaccinia virus (VV). METHODS: We used bioinformatic tools and cell-based assays to identify immunogenic neoantigens in TNBC patients' samples, human and murine cell lines. Immunogenicity of the neoantigens was tested in vitro (human) and ex vivo (murine) in T-cell assays. To assess the efficacy of our regimen, we used a preclinical model of TNBC where we treated tumor-bearing mice with neoantigens together with oncolytic VV and evaluated the effect on induction of neoantigen-specific CD8+T cells, tumor growth and survival. RESULTS: We successfully identified immunogenic neoantigens and generated neoantigen-specific CD8+T cells capable of recognizing a human TNBC cell line expressing the mutated gene. Using a preclinical model of TNBC, we showed that our tumor-specific oncolytic VV was able to change the tumor microenvironment, attracting and maintaining mature cross-presenting CD8α+dendritic cells and effector T-cells. Moreover, when delivered in a prime/boost regimen together with oncolytic VV, long peptides encompassing neoantigens were able to induce neoantigen-specific CD8+T cells, slow tumor growth and increase survival. CONCLUSIONS: Our study provides a promising approach for the development of neoantigen-based immunotherapies for TNBC. By identifying immunogenic neoantigens and developing a delivery system through tumor-specific oncolytic VV, we have demonstrated that neoantigen-based vaccines could be effective in inducing neoantigen-specific CD8+T cells response with significant impact on tumor growth. Further studies are needed to determine the safety and efficacy of this approach in clinical trials.


Assuntos
Vírus Oncolíticos , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/terapia , Vaccinia virus/genética , Bioensaio , Linfócitos T CD8-Positivos , Imunoterapia , Microambiente Tumoral
9.
Cancer Lett ; 568: 216303, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37422126

RESUMO

Chimeric antigen receptor T cell immunotherapy has achieved promising therapeutic effects in the treatment of hematological malignancies. However, there are still many obstacles, including on-target off-tumor antigen expression, that prevent successful application to solid tumors. We designed a tumor microenvironment (TME) regulated system chimeric antigen receptor T (MRS.CAR-T) which can only be auto-activated in the solid TME. B7-H3 was selected as the target antigen for esophageal carcinoma. An element comprising a human serum albumin (HSA) binding peptide and a matrix metalloproteases (MMPs) cleavage site was inserted between the 5' terminal signal peptide and single chain fragment variable (scFv) of the CAR skeleton. Upon administration, HSA bound the binding peptide in MRS.B7-H3.CAR-T effectively and promoted proliferation and differentiation into memory cells. MRS.B7-H3.CAR-T was not cytotoxic in normal tissues expressing B7-H3 as the antigen recognition site in the scFv was cloaked by HSA. The anti-tumor function of MRS.B7-H3.CAR-T was recovered once the cleavage site was cleaved by MMPs in the TME. The anti-tumor efficacy associated with MRS.B7-H3.CAR-T cells was improved compared to classic B7-H3.CAR-T cells in vitro and less IFN-γ was released, suggesting a treatment that may induce less extent of cytokine release syndrome-mediated toxicity. In vivo, MRS.B7-H3.CAR-T cells had strong anti-tumor activity and were safe. MRS.CAR-T represents a novel strategy to improve the efficacy and safety of CAR-T therapy in solid tumors.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva , Carcinoma de Células Escamosas do Esôfago/terapia , Antígenos de Neoplasias , Neoplasias Esofágicas/terapia , Microambiente Tumoral
10.
Front Immunol ; 14: 1126969, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923404

RESUMO

Cancer immunotherapy (CIT) has emerged as an exciting new pillar of cancer treatment. Although benefits have been achieved in individual patients, the overall response rate is still not satisfactory. To address this, an ideal preclinical animal model for evaluating CIT is urgently needed. Syrian hamsters present similar features to humans with regard to their anatomy, physiology, and pathology. Notably, the histological features and pathological progression of tumors and the complexity of the tumor microenvironment are equivalent to the human scenario. This article reviews the current tumor models in Syrian hamster and the latest progress in their application to development of tumor treatments including immune checkpoint inhibitors, cytokines, adoptive cell therapy, cancer vaccines, and oncolytic viruses. This progress strongly advocates Syrian hamster as an ideal animal model for development and assessment of CIT for human cancer treatments. Additionally, the challenges of the Syrian hamster as an animal model for CIT are also discussed.


Assuntos
Neoplasias , Vírus Oncolíticos , Cricetinae , Animais , Humanos , Mesocricetus , Modelos Animais , Vírus Oncolíticos/fisiologia , Citocinas , Imunoterapia , Neoplasias/terapia
12.
Front Pharmacol ; 13: 1036502, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386122

RESUMO

Many energy metabolism pathways exist in cancer, including glycolysis, amino acid metabolism, fatty acid oxidation, and mitochondrial respiration. Tumor cells mainly generate energy through glycolysis to maintain growth and biosynthesis of tumor cells under aerobic conditions. Natural products regulate many steps in glycolysis and targeting glycolysis using natural products is a promising approach to cancer treatment. In this review, we exemplify the relationship between glycolysis and tumors, demonstrate the natural products that have been discovered to target glycolysis for cancer treatment and clarify the mechanisms involved in their actions. Natural products, such as resveratrol mostly found in red grape skin, licochalcone A derived from root of Glycyrrhiza inflate, and brusatol found in Brucea javanica and Brucea mollis, largely derived from plant or animal material, can affect glycolysis pathways in cancer by targeting glycolytic enzymes and related proteins, oncogenes, and numerous glycolytic signal proteins. Knowledge of how natural products regulate aerobic glycolysis will help illuminate the mechanisms by which these products can be used as therapeutics to inhibit cancer cell growth and regulate cellular metabolism. Systematic Review Registration: https://pubmed.ncbi.nlm.nih.gov/, https://clinicaltrials.gov/, http://lib.zzu.edu.cn/.

13.
Front Immunol ; 13: 896627, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35812448

RESUMO

Esophageal Squamous Cell carcinomas (ESCC) is a highly heterogeneous malignancy that is among the leading cause of cancer-related death worldwide. B cells play pivotal roles in the immune defense system and cancer progression and regression, yet the repertoire of tumor infiltrating B cells (TIBs) and its association with clinical outcome remains unexplored in ESCC. Here we collected bulk RNA-seq sequencing data from 119 ESCC tumors and matched adjacent normal samples to delineate the B cell repertoire. We found that ESCC is more heavily infiltrated by B cells and plasma cells compared to activated T cells. The immunoglobulin heavy chain variable region (IGHV) gene usage was remarkably biased and IGHV3-74 was under-represented in ESCC tumors. The TIBs showed a more oligoclonal profile along with widespread clonal expansion and IgG subclass switch events (CSRs). Survival analysis revealed several unexpected associations between tumor infiltrating B cells and prognosis. Higher levels of immunoglobulin expression (IGH), CD138 expression, IGH to MS4A1 ratio, CSR events and clone diversity are all associated with better survival. Notably, we found that the abundance of CD20-negative IgG2-producing plasma cells has a strong positive effect on overall survival with a hazard ratio (HR) of 0.40 (log-rank p: 0.002). Combing molecular subtyping, the IgG2-producing plasma cells could stratify high-risk patients more accurately with a HR of 0.253 (log-rank p: 0.0006). The direct link between protective B cell populations and ESCC prognosis provides biomarkers for high-risk patient selection and holds great promise for developing strategies for immunotherapy targeting B cells in ESCC patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/patologia , Humanos , Imunoglobulina G , Prognóstico
14.
Mol Ther Oncolytics ; 26: 105-119, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35795092

RESUMO

Glioblastoma (GBM) is the most common primary malignant tumor in the brain, accounting for 51.4% of all primary brain tumors. GBM has a highly immunosuppressive tumor microenvironment (TME) and, as such, responses to immunotherapeutic strategies are poor. Vaccinia virus (VV) is an oncolytic virus that has shown tremendous therapeutic effect in various tumor types. In addition to its directly lytic effect on tumor cells, it has an ability to enhance immune cell infiltration into the TME allowing for improved immune control over the tumor. Here, we used a new generation of VV expressing the therapeutic payload interleukin-21 to treat murine GL261 glioma models. After both intratumoral and intravenous delivery, virus treatment induced remodeling of the TME to promote a robust anti-tumor immune response that resulted in control over tumor growth and long-term survival in both subcutaneous and orthotopic mouse models. Treatment efficacy was significantly improved in combination with systemic α-PD1 therapy, which is ineffective as a standalone treatment but synergizes with oncolytic VV to enhance therapeutic outcomes. Importantly, this study also revealed the upregulation of stem cell memory T cell populations after the virus treatment that exert strong and durable anti-tumor activity.

15.
Front Mol Biosci ; 9: 887059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903153

RESUMO

Background: Deoxythymidylate kinase (DTYMK) serves as a pyrimidine metabolic rate-limiting enzyme that catalyzes deoxythymidine monophosphate (dTMP) to generate deoxythymidine diphosphate (dTDP). It remains unclear whether DTYMK expression has the potential to predict outcome and immune cell infiltration in cancers. Methods: DTYMK expression profile was analyzed using Oncomine, TIMER, GEPIA and UALCAN databases. The influence of DTYMK on immune infiltration was examined using TIMER and TISIDB databases. DTYMK interactive gene hub and co-expressing genes were obtained and analyzed by STRING and Linkedomics, respectively. The relationship between DTYMK expression and patient prognosis was validated using GEPIA, Kaplan-Meier plotter, and PrognoScan databases. The functions of DTYMK in cancer cells were also biologically validated in vitro. Results: DTYMK expression was elevated in tumor tissues compared with their control counterparts. DTYMK expression varied in different stages and discriminatorily distributed in different immune and molecular subtypes. Higher expression of DTYMK predicted worse outcome in several cancer types such as liver hepatocellular carcinoma (LIHC) and lung adenocarcinoma (LUAD). High DTYMK expression was positively or negatively correlated with immune cell infiltration, including B cell, CD8+ cell, CD4+ T cell, macrophage, neutrophil and dendritic cell, depending on the type of cancers. Additionally, DTYMK co-expressing genes participated in pyrimidine metabolism as well as in T helper cell differentiation in LIHC and LUAD. In vitro, knockdown of DTYMK suppressed cell migration of liver and lung cancer cells. Conclusion: DTYMK might be taken as an useful prognostic and immunological marker in cancers and further investigation is warrented.

16.
Cells ; 11(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35883650

RESUMO

Background: Lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSCC) are two of the most common subtypes of non-small cell lung cancer (NSCLC), with high mortality rates and rising incidence worldwide. Ferroptosis is a mode of programmed cell death caused by lipid peroxidation, the accumulation of reactive oxygen species, and is dependent on iron. The recent discovery of ferroptosis has provided new insights into tumor development, and the clinical relevance of ferroptosis for tumor therapy is being increasingly appreciated. However, its role in NSCLC remains to be explored. Methods: The clinical and molecular data for 1727 LUAD and LUSCC patients and 73 control individuals were obtained from the Gene Expression Omnibus (GEO) database and the Cancer Genome Atlas (TCGA) database. Gene expression profiles, copy number variations and somatic mutations of 57 ferroptosis-related genes in 1727 tumor samples from the four datasets were used in a univariate Cox analysis and consensus clustering analysis. The biological signatures of each pattern were identified. A ferroptosis score was generated by combining the univariate Cox regression analysis and random forest algorithm followed by principal component analysis (PCA) and further investigated for its predictive and therapeutic value in LUAD and LUSCC. Results: The expression of 57 ferroptosis-related genes in NSCLC patients differed significantly from that of normal subjects. Based on unsupervised clustering of ferroptosis-related genes, we divided all patients into three ferroptosis expression pattern groups, which showed differences in ferroptosis-associated gene expression patterns, immune cell infiltration levels, prognostic characteristics and enriched pathways. Using the differentially expressed genes in the three ferroptosis expression patterns, a set of 17 ferroptosis-related gene prognostic models was established, which clustered all patients in the cohort into a low score group and a high score group, with marked differences in prognosis (p < 0.001). The high ferroptosis score was significantly associated with positive response to radiotherapy (p < 0.001), high T stage (p < 0.001), high N stage (p < 0.001) and high-grade tumor (p < 0.001) characteristics. Conclusions: The 17 ferroptosis-associated genes show great potential for stratifying LUAD and LUSCC patients into high and low risk groups. Interestingly, a high ferroptosis score in LUAD patients was associated with a good prognosis, whereas a similar high ferroptosis score in LUSCC patients was associated with a poor prognosis. Familiarity with the mechanisms underlying ferroptosis and its implications for the treatment of NSCLC, as well as its effect on OS and PFS, may provide guidance and insights in developing new therapeutic targets for NSCLC.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Ferroptose , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Variações do Número de Cópias de DNA , Ferroptose/genética , Humanos , Neoplasias Pulmonares/patologia
17.
Oncoimmunology ; 11(1): 2080329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655709

RESUMO

MHC class II expression is a hallmark of professional antigen-presenting cells and key to the induction of CD4+ T helper cells. We found that these molecules are ectopically expressed on tumor cells in a large proportion of patients with pancreatic ductal adenocarcinoma (PDAC) and on several PDAC cell lines. In contrast to the previous reports that tumoral expression of MHC-II in melanoma enabled tumor cells to evade immunosurveillance, the expression of MHC-II on PDAC cells neither protected cancer cells from Fas-mediated cell death nor caused T-cell suppression by engagement with its ligand LAG-3 on activated T-cells. In fact and surprisingly, the MHC-II/LAG-3 pathway contributed to CD4+ and CD8+ T-cell cytotoxicity toward MHC-II-positive PDAC cells. By combining bioinformatic tools and cell-based assays, we identified a number of immunogenic neo-antigens that can be presented by the patients' HLA class II alleles. Furthermore, CD4+ T-cells stimulated with neo-antigens were capable of recognizing and killing a human PDAC cell line expressing the mutated genes. To expand this approach to a larger number of PDAC patients, we show that co-treatment with IFN-γ and/or MEK/HDAC inhibitors induced tumoral MHC-II expression on MHC-II-negative tumors that are IFN-γ-resistant. Taken together, our data point to the possibility of harnessing MHC-II expression on PDAC cells for neo-antigen-based immunotherapy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Fatores Imunológicos , Imunoterapia , Pâncreas/metabolismo , Hormônios Pancreáticos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas
18.
Cell Biosci ; 12(1): 77, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641966

RESUMO

BACKGROUND: Activating transcription factor-2 (ATF2) is a member of the basic leucine zipper family of DNA-binding proteins, which exhibits both oncogenic and tumor suppression activity in different tumors. However, the molecular mechanism of its dual function in cancer chemotherapy especially in gastric cancer has still not been elucidated. METHODS: The protein expression and location of ATF2 in gastric cancer tissues was detected with immunohistochemistry assay, and the clinical significance was analyzed using TCGA and GEO database. The activation and impact of ATF2 in cisplatin treated cells were evaluated with western blot, incucyte live cell analysis, clone formation and tumor xenografts assays. Interaction between ATF2 and p53 was confirmed with immunoprecipitation and GST-pull down. Potential molecular mechanism of ATF2 in different p53 status cells was analyzed with RNA sequencing and real-time quantitative PCR. RESULTS: ATF2 mainly located in the nucleus of cancer cells, higher ATF2 level was associated with poor five-year survival of gastric patients, especially in those undergone chemotherapy treatment. Cisplatin treatment significantly activated ATF2 in p53 mutant cells. ATF2 could interact with the trans-activation domain of p53 and enhance cisplatin sensitivity in p53 wild type cell lines, while promoted cell survival in mutant p53 cancer cells by affecting ERK1/2 pathway. CONCLUSIONS: This study confirmed the effect of ATF2 on cisplatin sensitivity was associated with the functional status of p53 in gastric cancer cells. Integrated analysis of ATF2 expression and P53 status could be used to evaluate the chemotherapy sensitivity and prognosis of gastric cancer patients.

19.
Front Immunol ; 13: 902709, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720289

RESUMO

RAS mutations occur in approximately 20% of all cancers and given their clonality, key role as driver mutation, association with poor prognosis and undruggability, they represent attractive targets for immunotherapy. We have identified immunogenic peptides derived from codon 12 mutant RAS (G12A, G12C, G12D, G12R, G12S and G12V), which bind to HLA-A*02:01 and HLA-A*03:01 and elicit strong peptide-specific CD8+ T cell responses, indicating that there is an effective CD8+ T-cell repertoire against these mutant RAS-derived peptides that can be mobilized. Alterations in anchor residues of these peptides enhanced their binding affinity to HLA-A*02:01 molecules and allowed generation of CD8+ T cells that responded to target cells pulsed with the anchor-modified and also with the original peptide. Cytotoxic T cells generated against these peptides specifically lysed tumor cells expressing mutant RAS. Vaccination of transgenic humanized HLA-A2/DR1 mice with a long peptide encompassing an anchor-modified 9-mer G12V epitope generated CD8+ T cells reactive to the original 9-mer and to a HLA-A*02:01-positive human cancer cell line harboring the G12V mutation. Our data provide strong evidence that mutant RAS can be targeted by immunotherapy.


Assuntos
Antígeno HLA-A2 , Neoplasias , Animais , Linfócitos T CD8-Positivos , Antígeno HLA-A2/genética , Antígeno HLA-A2/metabolismo , Fatores Imunológicos/metabolismo , Imunoterapia , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Peptídeos/genética , Peptídeos/metabolismo , Linfócitos T Citotóxicos
20.
J Immunother Cancer ; 10(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35640930

RESUMO

Tumor cells manipulate the local environment in which they grow, creating a tumor microenvironment (TME) that promotes tumor survival and metastasis. The TME is an extremely complex environment rich in immunosuppressive cells and cytokines. Various methods to therapeutically target the complicated TME are emerging as a potential approach for cancer treatment. Oncolytic viruses (OVs) are one of the most promising methods for remodeling the TME into an antitumor environment and can be used alone or in combination with other immunotherapy options. OVs replicate specifically in tumor cells and can be genetically engineered to target multiple elements of the TME simultaneously, thus representing a therapeutic with the potential to modify the TME to promote activation of antitumor immune cells and overcome tumor therapeutic resistance and recurrence. In this review, we analyze the tropism of OVs towards tumor cells and explore the interaction between OVs and immune cells, tumor stroma, vasculature and the metabolic environment in detail to help understand how OVs may be one of our most promising prospects for long-term curative therapies. We also discuss some of the challenges associated with TME therapies, and future perspectives in this evolving field.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Imunoterapia , Terapia Viral Oncolítica/métodos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA