Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 371: 313-323, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38823585

RESUMO

Poly(ethylene glycol) (PEG) is widely utilized as a hydrophilic coating to extend the circulation time and improve the tumor accumulation of polymeric micelles. Nonetheless, PEGylated micelles often activate complement proteins, leading to accelerated blood clearance and negatively impacting drug efficacy and safety. Here, we have crafted amphiphilic block copolymers that merge hydrophilic sulfoxide-containing polymers (psulfoxides) with the hydrophobic drug 7-ethyl-10-hydroxylcamptothecin (SN38) into drug-conjugate micelles. Our findings show that the specific variant, PMSEA-PSN38 micelles, remarkably reduce protein fouling, prolong blood circulation, and improve intratumoral accumulation, culminating in significantly increased anti-cancer efficacy compared with PEG-PSN38 counterpart. Additionally, PMSEA-PSN38 micelles effectively inhibit complement activation, mitigate leukocyte uptake, and attenuate hyperactivation of inflammatory cells, diminishing their ability to stimulate tumor metastasis and cause inflammation. As a result, PMSEA-PSN38 micelles show exceptional promise in the realm of anti-metastasis and significantly abate SN38-induced intestinal toxicity. This study underscores the promising role of psulfoxides as viable PEG substitutes in the design of polymeric micelles for efficacious anti-cancer drug delivery.

2.
Adv Mater ; : e2400894, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38636448

RESUMO

Peritoneal metastasis (PM) is considered one of the most dreaded forms of cancer metastases for both patients and physicians. Aggressive cytoreductive surgery (CRS) is the primary treatment for peritoneal metastasis. Unfortunately, this intensive treatment frequently causes clinical complications, such as postoperative recurrence, metastasis, and adhesion formation. Emerging evidence suggests that neutrophil extracellular traps (NETs) released by inflammatory neutrophils contribute to these complications. Effective NET-targeting strategies thus show considerable potential in counteracting these complications but remain challenging. Here, one type of sulfoxide-containing homopolymer, PMeSEA, with potent fouling-resistant and NET-inhibiting capabilities, is synthesized and screened. Hydrating sulfoxide groups endow PMeSEA with superior nonfouling ability, significantly inhibiting protein/cell adhesion. Besides, the polysulfoxides can be selectively oxidized by ClO- which is required to stabilize the NETs rather than H2O2, and ClO- scavenging effectively inhibits NETs formation without disturbing redox homeostasis in tumor cells and quiescent neutrophils. As a result, PMeSEA potently prevents postoperative adhesions, significantly suppresses peritoneal metastasis, and shows synergetic antitumor activity with chemotherapeutic 5-Fluorouracil. Moreover, coupling CRS with PMeSEA potently inhibits CRS-induced tumor metastatic relapse and postoperative adhesions. Notably, PMeSEA exhibits low in vivo acute and subacute toxicities, implying significant potential for clinical postoperative adjuvant treatment.

3.
Chem Rev ; 123(18): 10920-10989, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37713432

RESUMO

Anticancer nanomedicines have been proven effective in mitigating the side effects of chemotherapeutic drugs. However, challenges remain in augmenting their therapeutic efficacy. Nanomedicines responsive to the pathological abnormalities in the tumor microenvironment (TME) are expected to overcome the biological limitations of conventional nanomedicines, enhance the therapeutic efficacies, and further reduce the side effects. This Review aims to quantitate the various pathological abnormalities in the TME, which may serve as unique endogenous stimuli for the design of stimuli-responsive nanomedicines, and to provide a broad and objective perspective on the current understanding of stimuli-responsive nanomedicines for cancer treatment. We dissect the typical transport process and barriers of cancer drug delivery, highlight the key design principles of stimuli-responsive nanomedicines designed to tackle the series of barriers in the typical drug delivery process, and discuss the "all-into-one" and "one-for-all" strategies for integrating the needed properties for nanomedicines. Ultimately, we provide insight into the challenges and future perspectives toward the clinical translation of stimuli-responsive nanomedicines.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Nanomedicina , Neoplasias/terapia , Sistemas de Liberação de Medicamentos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Preparações Farmacêuticas , Microambiente Tumoral
4.
J Ethnopharmacol ; 292: 115027, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35091011

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Centipeda minima (CM), the dried whole plant of Centipeda minima (L.) A. Braun and Aschers, has been used as a traditional Chinese medicinal herb for thousands of years for the treatments of rhinitis, sinusitis, cough and asthmatic diseases. This review aimed to evaluate the therapeutic potential of CM by summarizing its phytochemistry, pharmacology, clinical application and safety. METHODS: This review summarizes the published studies on CM in the Chinese Pharmacopoeia and literature databases including PubMed, Web of Science, Baidu Scholar, Wiley and China Knowledge Resource Integrated Database (CNKI), as well as the research articles on the phytochemistry, pharmacology, clinical application and safety of CM. RESULTS: A total of 191 compounds have been isolated and identified from CM, including terpenes, flavonoids, sterols, phenols, organic acids and volatile oils. In addition, the pharmacological effects of CM, such as anti-cancer, anti-inflammatory and anti-bacterial activities, have also been evaluated by both in vitro and in vivo studies. The signaling pathways and mechanisms of action underlying the anti-cancer effects of CM have been revealed. Clinical applications of CM mainly include rhinitis and sinusitis, gynecological inflammation, cough, as well as asthma. CONCLUSION: CM is a medicinal herb that possesses many therapeutic effects. Cutting-edge technology and system biology could provide us a more comprehensive understanding of the therapeutic effects, constituting components and toxicity of CM, which are the prerequisites for its translation into therapeutics for various disease treatments.


Assuntos
Asteraceae , Plantas Medicinais , Rinite , Tosse/tratamento farmacológico , Etnofarmacologia , Humanos , Medicina Tradicional Chinesa , Compostos Fitoquímicos/efeitos adversos , Extratos Vegetais/farmacologia , Rinite/tratamento farmacológico
5.
Curr Opin Biotechnol ; 64: 134-140, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32299032

RESUMO

Yarrowia lipolytica has emerged as an important non-model host for terpene production. However, three main challenges remain in industrial production using this yeast. First, considerable knowledge gaps exist in metabolic flux across multiple compartments, cofactor generation, and catabolism of non-sugar carbon sources. Second, many enzymatic steps in the complex-terpene synthesis pathway can pose rate-limitations, causing accumulation of toxic intermediates and increased metabolic burdens. Third, metabolic shifts, morphological changes, and genetic mutations are poorly characterized under industrial fermentation conditions. To overcome these challenges, systems metabolic analysis, protein engineering, novel pathway engineering, model-guided strain design, and fermentation optimization have been attempted with some successes. Further developments that address these challenges are needed to advance the Yarrowia lipolytica platform for industrial-scale production of high-value terpenes, including those with highly complex structures such as anticancer molecules withanolides and insecticidal limonoids.


Assuntos
Yarrowia , Fermentação , Engenharia Metabólica , Terpenos , Yarrowia/genética
6.
Appl Microbiol Biotechnol ; 98(12): 5435-47, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24682482

RESUMO

Malonyl-CoA is the essential building block of natural products such as fatty acids, polyketides, and flavonoids. Engineering the biosynthesis of fatty acids is important for biofuel production while that of polyketides provides precursors of medicines and nutritional supplements. However, microorganisms maintain a small amount of cellular malonyl-CoA, which could limit production of lipid and polyketides under certain conditions. Malonyl-CoA concentration is regulated by multiple pathways and signals, and changes in intracellular malonyl-CoA often lead to complex alterations in metabolism. In the present work, overexpression of a plant malonyl-CoA synthetase gene (AAE13) in Saccharomyces cerevisiae resulted in 1.6- and 2.4-fold increases in lipid and resveratrol accumulation simultaneously. We also demonstrated that AAE13 partially complemented the temperature-sensitive acc1 mutant, replacing this key enzyme in central metabolism. Mechanistic analysis by CoA quantification and transcriptomic measurement suggested that increases in malonyl-CoA concentration were coupled with drastic reductions in other major CoA compounds and clear suppression of tricarboxylic acid cycle-related genes. These results suggest that malonyl-CoA is a critical target for fatty acid and polyketide engineering and that overexpression of malonyl-CoA synthetic enzymes needs to be combined with upregulation of CoA synthesis to maintain metastasis of central metabolism.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Coenzima A Ligases/genética , Lipídeos/biossíntese , Policetídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Coenzima A Ligases/metabolismo , Engenharia Metabólica
7.
J Biotechnol ; 157(1): 258-60, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22100267

RESUMO

Resveratrol is a polyphenolic compound produced by a few higher plants when under attack by pathogens such as bacteria or fungi. Besides antioxidant benefits to humans, this health-promoting compound has been reported to extend longevity in yeasts, flies, worms, fishes and obesity mice. Here we utilized the synthetic scaffolds strategy to improve resveratrol production in Saccharomyces cerevisiae. We observed a 5.0-fold improvement over the non-scaffolded control, and a 2.7-fold increase over the previous reported with fusion protein. This work demonstrated the synthetic scaffolds can be used for the optimization of engineered metabolic pathway.


Assuntos
Engenharia de Proteínas/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Estilbenos/metabolismo , Aciltransferases/química , Aciltransferases/genética , Aciltransferases/metabolismo , Coenzima A Ligases/química , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Vetores Genéticos/genética , Domínios PDZ , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Resveratrol , Domínios de Homologia de src
8.
Metab Eng ; 13(5): 455-63, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21570474

RESUMO

Resveratrol is a unique, natural polyphenolic compound with diverse health benefits. In the present study, we attempted to improve resveratrol biosynthesis in yeast by different methods of metabolic engineering. We first mutated and then re-synthesized tyrosine ammonia lyase (TAL) by replacing the bacteria codons with yeast-preferred codons, which increased translation and improved p-coumaric acid and resveratrol biosynthesis drastically. We then demonstrated that low-affinity, high-capacity bacterial araE transporter could enhance resveratrol accumulation, without transporting resveratrol directly. Yeast cells carrying the araE gene produced up to 2.44-fold higher resveratrol than control cells. For commercial applications, resveratrol biosynthesis was detected in sucrose medium and fresh grape juice using our engineered yeast cells. In collaboration with the Chaumette Winery of Missouri, we were able to produce resveratrol-containing white wines, with levels comparable to the resveratrol levels found in most red wines.


Assuntos
Amônia-Liases/biossíntese , Proteínas de Bactérias/biossíntese , Proteínas de Transporte de Monossacarídeos/biossíntese , Organismos Geneticamente Modificados/metabolismo , Saccharomyces cerevisiae/metabolismo , Estilbenos/metabolismo , Amônia-Liases/genética , Proteínas de Bactérias/genética , Transporte Biológico Ativo/genética , Ácidos Cumáricos/metabolismo , Meios de Cultura/farmacologia , Proteínas de Transporte de Monossacarídeos/genética , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/crescimento & desenvolvimento , Propionatos , Resveratrol , Rhodobacter sphaeroides/enzimologia , Rhodobacter sphaeroides/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Sacarose/farmacologia , Vinho/microbiologia
9.
Mol Biol Rep ; 37(7): 3439-44, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20012370

RESUMO

Geranylgeranyl diphosphate synthase (GGPPS) [EC 2.5.1.29] catalyzes the biosynthesis of geranylgeranyl diphosphate (GGPP), which is a key precursor for diterpenes such as taxol. Herein, a full-length cDNA encoding GGPPS (designated as CgGGPPS) was cloned and characterized from hazel (Corylus avellana L. Gasaway), a taxol-producing angiosperms. The full-length cDNA of CgGGPPS was 1515 bp with a 1122 bp open reading frame (ORF) encoding a 373 amino acid polypeptide. The CgGGPPS genomic DNA sequence was also obtained, revealing CgGGPPS gene was not interrupted by an intron. Southern blot analysis indicated that CgGGPPS belonged to a small gene family. Tissue expression pattern analysis indicated that CgGGPPS expressed the highest in leaves. RT-PCR analysis indicated that CgGGPPS expression could be induced by exogenous methyl jasmonate acid. Furthermore, carotenoid accumulation was observed in Escherichia coli carrying pACCAR25ΔcrtE plasmid carrying CgGGPPS. The result revealed that cDNA encoded a functional GGPP synthase.


Assuntos
Corylus/enzimologia , Corylus/genética , Farnesiltranstransferase/genética , Acetatos/farmacologia , Sequência de Bases , Southern Blotting , Carotenoides/metabolismo , Clonagem Molecular , Biologia Computacional , Ciclopentanos/farmacologia , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Farnesiltranstransferase/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Teste de Complementação Genética , Genoma de Planta/genética , Dados de Sequência Molecular , Oxilipinas/farmacologia , Mapeamento por Restrição
10.
J Plant Physiol ; 165(2): 203-13, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17257708

RESUMO

As the second enzyme of the non-mevalonate terpenoid pathway for isopentenyl diphosphate biosynthesis, DXP reductoisomerase (DXR, EC: 1.1.1.267) catalyzes a committed step of the MEP pathway for camptothecin (CPT) biosynthesis. In order to understand more about the role of DXR involved in the CPT biosynthesis at the molecular level, the full-length DXR cDNA sequence (designated as CaDXR) was isolated and characterized for the first time from a medicinal Nyssaceae plant species, Camptotheca acuminata. The full-length cDNA of CaDXR was 1823 bp containing a 1416 bp open reading frame (ORF) encoding a polypeptide of 472 amino acids. Comparative and bioinformatic analyses revealed that CaDXR showed extensive homology with DXRs from other plant species and contained a conserved transit peptide for plastids, an extended Pro-rich region and a highly conserved NADPH binding motif in its N-terminal region owned by all plant DXRs. Phylogenetic analysis indicated that CaDXR was more ancient than other plant DXRs. Tissue expression pattern analysis revealed that CaDXR expressed strongly in stem, weak in leaf and root. CaDXR was found to be an elicitor-responsive gene, which could be induced by exogenous elicitor of methyl jasmonate. The functional color complementation assay indicated that CaDXR could accelerate the biosynthesis of carotenoids in the Escherichia coli transformant, demonstrating that DXP reductoisomerase plays an influential step in isoprenoid biosynthesis.


Assuntos
Aldose-Cetose Isomerases/genética , Camptotheca/genética , Perfilação da Expressão Gênica , Genes de Plantas , Complexos Multienzimáticos/genética , Oxirredutases/genética , Aldose-Cetose Isomerases/química , Sequência de Aminoácidos , Sequência de Bases , Camptotheca/enzimologia , Clonagem Molecular , DNA Complementar , Escherichia coli/genética , Dados de Sequência Molecular , Complexos Multienzimáticos/química , Oxirredutases/química , Filogenia , Reação em Cadeia da Polimerase , RNA de Plantas/genética , RNA de Plantas/isolamento & purificação , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA