Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Nanobiotechnology ; 22(1): 208, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664789

RESUMO

BACKGROUND: Bone marrow mesenchymal stem cells (BMSCs) can undergo inadequate osteogenesis or excessive adipogenesis as they age due to changes in the bone microenvironment, ultimately resulting in decreased bone density and elevated risk of fractures in senile osteoporosis. This study aims to investigate the effects of osteocyte senescence on the bone microenvironment and its influence on BMSCs during aging. RESULTS: Primary osteocytes were isolated from 2-month-old and 16-month-old mice to obtain young osteocyte-derived extracellular vesicles (YO-EVs) and senescent osteocyte-derived EVs (SO-EVs), respectively. YO-EVs were found to significantly increase alkaline phosphatase activity, mineralization deposition, and the expression of osteogenesis-related genes in BMSCs, while SO-EVs promoted BMSC adipogenesis. Neither YO-EVs nor SO-EVs exerted an effect on the osteoclastogenesis of primary macrophages/monocytes. Our constructed transgenic mice, designed to trace osteocyte-derived EV distribution, revealed abundant osteocyte-derived EVs embedded in the bone matrix. Moreover, mature osteoclasts were found to release osteocyte-derived EVs from bone slices, playing a pivotal role in regulating the functions of the surrounding culture medium. Following intravenous injection into young and elderly mouse models, YO-EVs demonstrated a significant enhancement of bone mass and biomechanical strength compared to SO-EVs. Immunostaining of bone sections revealed that YO-EV treatment augmented the number of osteoblasts on the bone surface, while SO-EV treatment promoted adipocyte formation in the bone marrow. Proteomics analysis of YO-EVs and SO-EVs showed that tropomyosin-1 (TPM1) was enriched in YO-EVs, which increased the matrix stiffness of BMSCs, consequently promoting osteogenesis. Specifically, the siRNA-mediated depletion of Tpm1 eliminated pro-osteogenic activity of YO-EVs both in vitro and in vivo. CONCLUSIONS: Our findings suggested that YO-EVs played a crucial role in maintaining the balance between bone resorption and formation, and their pro-osteogenic activity declining with aging. Therefore, YO-EVs and the delivered TPM1 hold potential as therapeutic targets for senile osteoporosis.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Osteócitos , Osteogênese , Tropomiosina , Animais , Masculino , Camundongos , Adipogenia , Diferenciação Celular , Células Cultivadas , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteoclastos/metabolismo , Osteócitos/metabolismo , Osteoporose/metabolismo , Tropomiosina/metabolismo , Tropomiosina/genética
2.
Mol Med ; 30(1): 41, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519941

RESUMO

BACKGROUND: Benign prostatic hyperplasia (BPH) is a prevalent disease affecting elderly men, with chronic inflammation being a critical factor in its development. Omentin-1, also known as intelectin-1 (ITLN-1), is an anti-inflammatory protein primarily found in the epithelial cells of the small intestine. This study aimed to investigate the potential of ITLN-1 in mitigating BPH by modulating local inflammation in the prostate gland. METHODS: Our investigation involved two in vivo experimental models. Firstly, ITLN-1 knockout mice (Itln-1-/-) were used to study the absence of ITLN-1 in BPH development. Secondly, a testosterone propionate (TP)-induced BPH mouse model was treated with an ITLN-1 overexpressing adenovirus. We assessed BPH severity using prostate weight index and histological analysis, including H&E staining, immunohistochemistry, and enzyme-linked immunosorbent assay. In vitro, the impact of ITLN-1 on BPH-1 cell proliferation and inflammatory response was evaluated using cell proliferation assays and enzyme-linked immunosorbent assay. RESULTS: In vivo, Itln-1-/- mice exhibited elevated prostate weight index, enlarged lumen area, and higher TNF-α levels compared to wild-type littermates. In contrast, ITLN-1 overexpression in TP-induced BPH mice resulted in reduced prostate weight index, lumen area, and TNF-α levels. In vitro studies indicated that ITLN-1 suppressed the proliferation of prostate epithelial cells and reduced TNF-α production in macrophages, suggesting a mechanism involving the inhibition of macrophage-mediated inflammation. CONCLUSION: The study demonstrates that ITLN-1 plays a significant role in inhibiting the development of BPH by reducing local inflammation in the prostate gland. These findings highlight the potential of ITLN-1 as a therapeutic target in the management of BPH.


Assuntos
Proteínas Ligadas por GPI , Lectinas , Hiperplasia Prostática , Animais , Masculino , Camundongos , Citocinas/genética , Citocinas/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Inflamação/patologia , Lectinas/genética , Lectinas/metabolismo , Extratos Vegetais/farmacologia , Próstata/metabolismo , Próstata/patologia , Hiperplasia Prostática/genética , Hiperplasia Prostática/tratamento farmacológico , Hiperplasia Prostática/metabolismo , Fator de Necrose Tumoral alfa
3.
Nat Commun ; 14(1): 8461, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123537

RESUMO

Endothelial cells (ECs) and bone marrow stromal cells (BMSCs) play crucial roles in supporting hematopoiesis and hematopoietic regeneration. However, whether ECs are a source of BMSCs remains unclear. Here, we evaluate the contribution of endothelial-to-mesenchymal transition to BMSC generation in postnatal mice. Single-cell RNA sequencing identifies ECs expressing BMSC markers Prrx1 and Lepr; however, this could not be validated using Prrx1-Cre and Lepr-Cre transgenic mice. Additionally, only a minority of BMSCs are marked by EC lineage tracing models using Cdh5-rtTA-tetO-Cre or Tek-CreERT2. Moreover, Cdh5+ BMSCs and Tek+ BMSCs show distinct spatial distributions and characteristic mesenchymal markers, suggestive of their origination from different progenitors rather than CDH5+ TEK+ ECs. Furthermore, myeloablation induced by 5-fluorouracil treatment does not increase Cdh5+ BMSCs. Our findings indicate that ECs hardly convert to BMSCs during homeostasis and myeloablation-induced hematopoietic regeneration, highlighting the importance of using appropriate genetic models and conducting careful data interpretation in studies concerning endothelial-to-mesenchymal transition.


Assuntos
Células Endoteliais , Células-Tronco Mesenquimais , Camundongos , Animais , Medula Óssea , Camundongos Transgênicos
4.
J Dermatolog Treat ; 34(1): 2280508, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37968926

RESUMO

Palmoplantar pustulosis (PPP) is a rare chronic pustular disease. Psoriatic arthritis (PsA) is one of the common manifestations of arthritis in PPP associated with a high burden of disease. The treatment of PPP is difficult and still in the exploratory stage. Only a few cases show that PPP complicated with arthritis have been successfully treated with janus kinase inhibition, interleukin (IL)-6 inhibitors, IL-12/23 inhibitors and tumor necrosis factor inhibitors. Here we reported that two patients were diagnosed as PPP with PsA and initially treated with IL-17 inhibitors. One case was only partially relieved, and the other case had severe paradoxical reaction in the trunk. The joint and skin condition of two patients had been significantly improved without reported adverse reactions after 18 weeks treatment with upadacitinib, which support upadacitinib may be a potential option for patients with PPP combined PsA.


Assuntos
Artrite Psoriásica , Psoríase , Humanos , Artrite Psoriásica/tratamento farmacológico , Artrite Psoriásica/complicações , Interleucina-17 , Inibidores de Interleucina , Psoríase/complicações , Doença Crônica , Doença Aguda
5.
Inflamm Res ; 72(10-11): 2053-2072, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37816881

RESUMO

OBJECTIVE: Nanoparticles (NPs) hold a great promise in combating rheumatoid arthritis, but are often compromised by their toxicities because the currently used NPs are usually synthesized by chemical methods. Our group has previously fabricated Ångstrom-scale silver particles (AgÅPs) and demonstrated the anti-tumor and anti-sepsis efficacy of fructose-coated AgÅPs (F-AgÅPs). This study aimed to uncover the efficacy and mechanisms of F-AgÅPs for arthritis therapy. METHODS: We evaluated the efficacy of F-AgÅPs in collagen-induced arthritis (CIA) mice. We also compared the capacities of F-AgÅPs, the commercial AgNPs, and the clinical drug methotrexate (MTX) in protecting against K/BxN serum-transfer arthritis (STA) mice. Moreover, we evaluated the effects of F-AgÅPs and AgNPs on inflammation, osteoclast formation, synoviocytes migration, and matrix metalloproteinases (MMPs) production in vitro and in vivo. Meanwhile, the toxicities of F-AgÅPs and AgNPs in vitro and in vivo were also tested. RESULTS: F-AgÅPs significantly prevented bone erosion, synovitis, and cartilage damage, attenuated rheumatic pain, and improved the impaired motor function in mouse models of CIA or STA, the anti-rheumatic effects of which were comparable or stronger than AgNPs and MTX. Further studies revealed that F-AgÅPs exhibited similar or greater inhibitory abilities than AgNPs to suppress inflammation, osteoclast formation, synoviocytes migration, and MMPs production. No obvious toxicities were observed in vitro and in vivo after F-AgÅPs treatment. CONCLUSIONS: F-AgÅPs can effectively alleviate arthritis without notable toxicities and their anti-arthritic effects are associated with the inhibition of inflammation, osteoclastogenesis, synoviocytes migration, and MMPs production. Our study suggests the prospect of F-AgÅPs as an efficient and low-toxicity agent for arthritis therapy.


Assuntos
Artrite Experimental , Artrite Reumatoide , Camundongos , Animais , Prata/uso terapêutico , Osteogênese , Inflamação/tratamento farmacológico , Inflamação/patologia , Artrite Reumatoide/tratamento farmacológico , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Colágeno , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Metaloproteinases da Matriz
6.
J Mater Chem B ; 10(28): 5454-5464, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35786741

RESUMO

The SARS-CoV-2 pandemic has become a severe global public health event, and the development of protective and therapeutic strategies is urgently needed. Downregulation of angiotensin converting enzyme 2 (ACE2; one of the important SARS-CoV-2 entry receptors) and aberrant inflammatory responses (cytokine storm) are the main targets to inhibit and control COVID-19 invasion. Silver nanomaterials have well-known pharmaceutical properties, including antiviral, antibacterial, and anticancer properties. Here, based on a self-established metal evaporation-condensation-size graded collection system, smaller silver particles reaching the Ångstrom scale (AgÅPs) were fabricated and coated with fructose to obtain a stabilized AgÅP solution (F-AgÅPs). F-AgÅPs potently inactivated SARS-CoV-2 and prevented viral infection. Considering the application of anti-SARS-CoV-2, a sterilized F-AgÅP solution was produced via spray formulation. In our model, the F-AgÅP spray downregulated ACE2 expression and attenuated proinflammatory factors. Moreover, F-AgÅPs were found to be rapidly eliminated to avoid respiratory and systemic toxicity in this study as well as our previous studies. This work presents a safe and potent anti-SARS-CoV-2 agent using an F-AgÅP spray.


Assuntos
Enzima de Conversão de Angiotensina 2 , Tratamento Farmacológico da COVID-19 , Humanos , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Prata/farmacologia
7.
Adv Sci (Weinh) ; 9(17): e2105316, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35508803

RESUMO

Both Alzheimer's disease (AD) and osteoporosis (OP) are common age-associated degenerative diseases and are strongly correlated with clinical epidemiology. However, there is a lack of clear pathological relationship between the brain and bone in the current understanding. Here, it is found that young osteocyte, the most abundant cells in bone, secretes extracellular vesicles (OCYYoung -EVs) to ameliorate cognitive impairment and the pathogenesis of AD in APP/PS1 mice and model cells. These benefits of OCYYoung -EVs are diminished in aged osteocyte-derived EVs (OCYAged -EVs). Based on the self-constructed OCY-EVs tracer transgenic mouse models and the in vivo fluorescent imaging system, OCY-EVs have been observed to be transported to the brain under physiological and pathological conditions. In the hippocampal administration of Aß40 induced young AD model mice, the intramedullary injection of Rab27a-shRNA adenovirus inhibits OCYYoung -EVs secretion from bone and aggravates cognitive impairment. Proteomic quantitative analysis reveals that OCYYoung -EVs, compared to OCYAged -EVs, enrich multiple protective factors of AD pathway. The study uncovers the role of OCY-EV as a regulator of brain health, suggesting a novel mechanism in bone-brain communication.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Envelhecimento , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Vesículas Extracelulares/metabolismo , Camundongos , Osteócitos/metabolismo , Proteômica
8.
Nat Commun ; 13(1): 1453, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304471

RESUMO

Adipocyte differentiation of bone marrow mesenchymal stem/stromal cells (BMSCs) instead of osteoblast formation contributes to age- and menopause-related marrow adiposity and osteoporosis. Vascular calcification often occurs with osteoporosis, a contradictory association called "calcification paradox". Here we show that extracellular vesicles derived from aged bone matrix (AB-EVs) during bone resorption favor BMSC adipogenesis rather than osteogenesis and augment calcification of vascular smooth muscle cells. Intravenous or intramedullary injection of AB-EVs promotes bone-fat imbalance and exacerbates Vitamin D3 (VD3)-induced vascular calcification in young or old mice. Alendronate (ALE), a bone resorption inhibitor, down-regulates AB-EVs release and attenuates aging- and ovariectomy-induced bone-fat imbalance. In the VD3-treated aged mice, ALE suppresses the ovariectomy-induced aggravation of vascular calcification. MiR-483-5p and miR-2861 are enriched in AB-EVs and essential for the AB-EVs-induced bone-fat imbalance and exacerbation of vascular calcification. Our study uncovers the role of AB-EVs as a messenger for calcification paradox by transferring miR-483-5p and miR-2861.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Animais , Matriz Óssea , Diferenciação Celular , Feminino , Camundongos , MicroRNAs/genética , Osteogênese
9.
Mol Med Rep ; 23(5)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34227673

RESUMO

The estrogen 17ß­estradiol has been proven to serve an indispensable role in the occurrence and development of adenomyosis (ADS). The let­7a/Lin28B axis can control cell proliferation by acting as a tumor­inhibiting axis in numerous types of cancer. However, its role in ADS remains unknown. The present study aimed i) to elucidate the role of let­7a in regulating the proliferation of human uterine junctional zone (JZ) smooth muscle cells (SMCs) in ADS, ii) to evaluate whether 17ß­estradiol modifies the expression levels of let­7a and Lin28B in JZ SMCs in ADS, and iii) to establish how 17ß­estradiol affects the function of the let­7a/Lin28B axis in the proliferation of JZ SMCs in ADS. A total of 36 premenopausal women with ADS were enrolled as the experimental group and 34 women without ADS were recruited as the control group. Reverse transcription­quantitative PCR was used to evaluate the expression level of let­7a, and western blotting was performed to determine the Lin28B expression levels. Lentiviral null vector, let­7a overexpression lentiviral vector GV280 and let­7a inhibition lentiviral vector GV369 were used to infect cells to alter the expression of let­7a for further functional experiments. 17ß­estradiol and Cell Counting Kit­8 assays were conducted to determine how 17ß­estradiol affects the function of the let­7a/Lin28B axis in the proliferation of JZ SMCs in ADS. The results demonstrated that let­7a was downregulated and Lin28B was upregulated in the JZ SMCs of ADS compared with the control cells (P<0.0001). Moreover, a lower expression of let­7a led to faster proliferation of JZ SMCs (P<0.05), and 17ß­estradiol affected the let­7a/Lin28B axis to accelerate the proliferation of JZ SMCs in ADS (P<0.05). These data suggested that 17ß­estradiol collaborates with the let­7a/Lin28B axis to affect the development of ADS.


Assuntos
Adenomiose/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Estradiol/farmacologia , MicroRNAs/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Útero/efeitos dos fármacos , Adenomiose/genética , Adenomiose/metabolismo , Adulto , Proliferação de Células/genética , Endométrio/metabolismo , Feminino , Humanos , MicroRNAs/genética , Pessoa de Meia-Idade , Miócitos de Músculo Liso/metabolismo , Miométrio/metabolismo , Cultura Primária de Células , Proteínas de Ligação a RNA/genética , Transdução de Sinais/efeitos dos fármacos , Útero/metabolismo
10.
Mol Cell Endocrinol ; 534: 111373, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34174367

RESUMO

Fracture healing is a complicated process affected by many factors, such as inflammatory responses and angiogenesis. Omentin-1 is an adipokine with anti-inflammatory properties, but whether omentin-1 affects the fracture healing process is still unknown. Here, by using global omentin-1 knockout (omentin-1-/-) mice, we demonstrated that omentin-1 deficiency resulted in delayed fracture healing in mice, accompanied by increased inflammation and osteoclast formation, and decreased production of platelet-derived growth factor-BB (PDGF-BB) and osteogenesis-promoting vessels that are strongly positive for CD31 and Endomucin (CD31hiEmcnhi) in the fracture area. In vitro, omentin-1 treatment suppressed the ability of the tumor necrosis factor-α (TNF-α)-activated macrophages to stimulate multi-nuclear osteoclast formation, resulting in a significant increase in the generation of mono-nuclear preosteoclasts and PDGF-BB, a pro-angiogenic protein that is abundantly secreted by preosteoclasts. PDGF-BB significantly augmented endothelial cell proliferation, tube formation and migration, whereas direct treatment with omentin-1 did not induce obvious effects on angiogenesis activities of endothelial cells. Our study suggests a positive role of omentin-1 in fracture healing, which may be associated with the inhibition of inflammation and stimulation of preosteoclast PDGF-BB-mediated promotion of CD31hiEmcnhi vessel formation.


Assuntos
Citocinas/genética , Fraturas do Fêmur/genética , Consolidação da Fratura , Proteínas Ligadas por GPI/genética , Lectinas/genética , Sialoglicoproteínas/metabolismo , Animais , Movimento Celular , Modelos Animais de Doenças , Feminino , Fraturas do Fêmur/etiologia , Fraturas do Fêmur/imunologia , Técnicas de Inativação de Genes , Camundongos , Osteoclastos/metabolismo , Osteogênese , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Células RAW 264.7 , Microtomografia por Raio-X
11.
Reprod Biol Endocrinol ; 19(1): 81, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082774

RESUMO

BACKGROUND: Let-7a is a small non-coding RNA that has been found to take part in cell proliferation and apoptosis. The hippo-YAP1 axis, known as a tumour suppressor pathway, also plays an important role in cell proliferation and apoptosis. YAP1, TAZ, and phospho-YAP1 play key roles in actions of the hippo-YAP1 axis. Adenomyosis (ADS) is a proliferative disease leading to a large uterus in patients with prolonged illness. Abnormal proliferation of smooth muscle cells (SMCs) in the uterine endometrial-myometrial junctional zone (JZ) is an important reason for developing ADS. This study aimed to explore the expression levels of let-7a and components of the hippo-YAP1 axis in SMCs in the uterine endometrial-myometrial JZ in ADS and to explore the roles of let-7a and the hippo-YAP1 axis of JZ SMC proliferation and apoptosis in ADS. METHODS: We collected JZ tissues for the primary culture of SMCs from 25 women diagnosed with ADS and 27 women without ADS. We used quantitative real-time polymerase chain reaction and western blotting to measure the mRNA and protein expression levels of let-7a, YAP1, TAZ, and phospho-YAP1 in ADS JZ SMCs. A CCK-8 assay and flow cytometry analysis of apoptosis were utilized to test the proliferation and apoptosis of JZ SMCs. The let-7a overexpression lentiviral vector GV280 was used to increase the expression level of let-7a. We added verteporfin to block the phosphorylation of components of the hippo-YAP1 axis. RESULTS: We found that the let-7a level was decreased, while the YAP1 and TAZ levels were increased in ADS JZ SMCs. Upregulated let-7a affected the expression levels of components of the hippo-YAP1 axis, accelerated apoptosis, and inhibited proliferation in JZ SMCs. Furthermore, accumulated YAP1 led to increasing proliferation of JZ SMCs after verteporfin treatment to block the phosphorylation of components of the hippo-YAP1 axis. If components of the hippo-YAP1 axis were unphosphorylated, upregulated let-7a could not inhibit the proliferation of ADS JZ SMCs. Upregulated let-7a could not activate the hippo-YAP1 axis in verteporfin treatment. CONCLUSIONS: Our findings suggest that the let-7a and hippo-YAP1 axis may act as important regulators of JZ SMCs proliferation, and upregulated let-7a may be an effective method to treat ADS.


Assuntos
Adenomiose/genética , Endométrio/metabolismo , MicroRNAs/genética , Miócitos de Músculo Liso/metabolismo , Miométrio/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/genética , Proteínas de Sinalização YAP/genética , Adenomiose/metabolismo , Adulto , Apoptose/genética , Estudos de Casos e Controles , Proliferação de Células/genética , Feminino , Via de Sinalização Hippo , Humanos , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Proteínas de Sinalização YAP/metabolismo
12.
Mol Cell Endocrinol ; 531: 111301, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933560

RESUMO

Benign prostatic hyperplasia (BPH) is one of the most common diseases in elderly men. BPH patients exhibit an increased risk of vertebral and hip fractures, which are most attributable to pre-existing osteoporosis. However, the relationship between BPH and osteoporosis is still unknown. Here we found that osteocytes, the most abundant bone cells, promoted BPH development by secreting exosomes. In vitro, osteocyte exosomes (OCY-Exo) directly promoted cell proliferation of a prostate epithelial cell line BPH-1 and a macrophage cell line RAW264.7, OCY-Exo also stimulated macrophage-induced proliferation of BPH-1 cells. In vivo, intramedullary injection of OCY-Exo accumulated in prostate. Intravenous administration of OCY-Exo exacerbated testosterone-induced BPH in C57BL/6J mice. Our study uncovers the role of OCY-Exo as a stimulator of BPH, suggesting a novel mechanism in bone-prostate communication.


Assuntos
Exossomos/transplante , Osteócitos/citologia , Osteoporose/metabolismo , Hiperplasia Prostática/patologia , Testosterona/efeitos adversos , Administração Intravenosa , Animais , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Modelos Animais de Doenças , Exossomos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteócitos/metabolismo , Hiperplasia Prostática/etiologia , Hiperplasia Prostática/metabolismo , Células RAW 264.7
13.
Reprod Biol Endocrinol ; 19(1): 70, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990206

RESUMO

Adenomyosis (ADS) is an estrogen-dependent gynecological disease with unspecified etiopathogenesis. Local hyperestrogenism may serve a key role in contributing to the origin of ADS. Talin1 is mostly identified to be overexpressed and involved in the progression of numerous human carcinomas through mediating cell proliferation, adhesion and motility. Whether Talin1 exerts an oncogenic role in the pathogenesis of ADS and puts an extra impact on the efficacy of estrogen, no relevant data are available yet. Here we demonstrated that the adenomyotic eutopic and ectopic endometrial stromal cells (ADS_Eu_ESC and ADS_Ec_ESC) treated with ß-estradiol (ß-E2) presented stronger proliferative and pro-angiogenetic capacities, accompanied by increased expression of PCNA, Ki67, VEGFB and ANGPTL4 proteins. Meanwhile, these promoting effects were partially abrogated by Fulvestrant (ICI 182780, an estrogen-receptor antagonist). Aberrantly upregulation of Talin1 mRNA and protein level was observed in ADS endometrial specimens and stromal cells. Through performing functional experiments in vitro, we further determined that merely overexpression of Talin1 (OV-Talin1) also enhanced ADS stromal cell proliferation and pro-angiogenesis, while the most pronounced facilitating effects were found in the co-intervention group of OV-Talin1 plus ß-E2 treatment. Results from the xenograft nude mice model showed that the hypodermic endometrial lesions from co-intervention group had the highest mean weight and volume, compared with that of individual OV-Talin1 or ß-E2 treatment. The expression levels of PCNA, Ki67, VEGFB and ANGPTL4 in the lesions were correspondingly elevated the most in the co-intervention group. Our findings unveiled that overexpressed Talin1 might cooperate withß-E2 in stimulating ADS endometrial stromal cell proliferation and neovascularization, synergistically promoting the growth and survival of ectopic lesions. These results may be beneficial to provide a new insight for clarifying the pathogenesis of ADS.


Assuntos
Adenomiose/fisiopatologia , Endométrio/patologia , Células Estromais/fisiologia , Talina/fisiologia , Adenocarcinoma , Adenomiose/genética , Adenomiose/metabolismo , Animais , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Neoplasias do Endométrio , Estradiol/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Miométrio/patologia , Neovascularização Patológica/fisiopatologia , Neovascularização Fisiológica/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Recombinantes/metabolismo , Organismos Livres de Patógenos Específicos , Células Estromais/efeitos dos fármacos , Talina/biossíntese , Talina/genética , Regulação para Cima
14.
J Cell Mol Med ; 25(12): 5525-5533, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33960660

RESUMO

Osteoporosis is one of the most common metabolic bone diseases affecting millions of people. We previously found that harmine prevents bone loss in ovariectomized mice via increasing preosteoclast platelet-derived growth factor-BB (PDGF-BB) production and type H vessel formation. However, the molecular mechanisms by which harmine promotes preosteoclast PDGF-BB generation are still unclear. In this study, we revealed that inhibitor of DNA binding-2 (Id2) and activator protein-1 (AP-1) were important factors implicated in harmine-enhanced preosteoclast PDGF-BB production. Exposure of RANKL-induced Primary bone marrow macrophages (BMMs), isolated from tibiae and femora of mice, to harmine increased the protein levels of Id2 and AP-1. Knockdown of Id2 by Id2-siRNA reduced the number of preosteoclasts as well as secretion of PDGF-BB in RANKL-stimulated BMMs administrated with harmine. Inhibition of c-Fos or c-Jun (components of AP-1) both reversed the stimulatory effect of harmine on preosteoclast PDGF-BB production. Dual-luciferase reporter assay analyses determined that PDGF-BB was the direct target of AP-1 which was up-regulated by harmine treatment. In conclusion, our data demonstrated a novel mechanism involving in the production of PDGF-BB increased by harmine, which may provide potential therapeutic targets for bone loss diseases.


Assuntos
Becaplermina/metabolismo , Medula Óssea/efeitos dos fármacos , Harmina/farmacologia , Proteína 2 Inibidora de Diferenciação/metabolismo , Macrófagos/efeitos dos fármacos , Osteoclastos/metabolismo , Fator de Transcrição AP-1/metabolismo , Animais , Medula Óssea/metabolismo , Células Cultivadas , Alucinógenos/farmacologia , Proteína 2 Inibidora de Diferenciação/genética , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Osteoclastos/citologia , Fator de Transcrição AP-1/genética
15.
Biomed Res Int ; 2021: 8868700, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33728345

RESUMO

Several theories on the origin of adenomyosis (ADS) have been proposed, of which the most widely accepted is the fundamental pathogenic role of uterine eutopic endometrium. Emerging evidence suggests that circular RNAs participate in the multiple tumorgenesis. The vital importance of circular RNA PVT1 (circPVT1) in the pathological progress like malignancies has been well documented. Nevertheless, its underlying correlation with ADS remains elusive yet. The purpose of this study was to investigate the expression pattern, regulatory effect, and internal mechanism of circPVT1 in ADS. qRT-PCR was performed to detect the relative mRNA expression of circPVT1, miR-145, and Talin1 in ADS endometrial tissue and cells. The protein level of Talin1 was measured by Western blot and immunochemistry. Immunofluorescence was used to identify the primary endometrial epithelial and stromal cells. circPVT1 knockdown in vitro was achieved by transfecting with specific lentivirus vector CCK-8, and colony formation assays were utilized to assess cell proliferation; meanwhile, the transwell assay was employed for evaluating cell invasion ability. By conducting bioinformatics, dual-luciferase reporter assay, or RNA immunoprecipitation (RIP) experiment, the interaction between miR-145 and circPVT1 or Talin1 was verified. Rescue experiments further determined the regulatory effect of circPVT1/miR-145/Talin1 axis. We found both circPVT1 and Talin1 were markedly upregulated in ADS endometrial tissue and cells, whereas miR-145 was decreased. Elevated expression of circPVT1 was closely related to the severity of dysmenorrhea, menorrhagia, and uterine enlargement of patients with ADS. Knockdown of circPVT1 inhibited adenomyotic epithelial and stromal cell proliferation and invasion. Further mechanistic experiments revealed that circPVT1 negatively regulated miR-145 through serving as a molecular sponge. And the facilitating effect of circPVT1 was partially reversed by miR-145. Talin1 was demonstrated to be a down target of miR-145 and indirectly affected by circPVT1. Our findings unveiled that enhanced circPVT1 may be involved in the pathogenesis of ADS via stimulating endometrial cell proliferation and invasion. The establishment of circPVT1/miR-145/Talin1 pathway might present a novel therapeutic insight for ADS.


Assuntos
Adenomiose/metabolismo , Proliferação de Células , Endométrio/metabolismo , MicroRNAs/metabolismo , RNA Circular/biossíntese , RNA Longo não Codificante/biossíntese , Transdução de Sinais , Talina/metabolismo , Regulação para Cima , Adenomiose/genética , Adenomiose/patologia , Endométrio/patologia , Feminino , Humanos , MicroRNAs/genética , RNA Circular/genética , RNA Longo não Codificante/genética , Talina/genética
16.
Reprod Sci ; 28(5): 1523-1539, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33537874

RESUMO

Adenomyosis (ADS) is a commonly encountered benign gynecological disorder. Epithelial-mesenchymal transition (EMT) may serve a pivotal role in the pathogenesis of ADS. Talin1 has been identified to be implicated in multiple human carcinomas, probably through inducing EMT process. However, available data on the precise molecular mechanism of Talin1 in the pathogenesis of ADS remain extremely scanty. In the present study, we aim to investigate the clinical roles of Talin1 and its effects on uterine endometrial cell migration, invasion, and EMT in ADS. Relative mRNA expression of Talin1, microRNA-145-5p (miR-145-5p), and EMT-related markers was determined by qRT-PCR. Immunohistochemistry and immunofluorescence were performed to examine the distribution of Talin1 in ADS endometrium. Protein levels of Talin1, EMT-related markers, and wnt/ß-catenin pathway were measured by western blot. Wound healing assay and transwell assay were utilized for evaluating cell migration and invasion respectively. Dual-luciferase reporter assay was performed to verify the relationship between Talin1 and miR-145-5p. We found Talin1 was markedly overexpressed in ADS endometrial tissue and cells, whereas miR-145-5p was downregulated. Elevated Talin1 mRNA level might be closely related to some clinicopathological features of ADS. Through functional experiments, we demonstrated that overexpression of Talin1 induced EMT and enhanced migration and invasion ability of ADS eutopic and ectopic endometrial epithelial cells (ADS_Eu_EEC and ADS_Ec_EEC) in vitro through activating the canonical wnt/ß-catenin pathway. From a mechanistic perspective, Talin1 was inversely regulated by miR-145-5p as a direct target. Our findings unveiled that under the regulation of miR-145-5p, Talin1 might promote endometrial cell migration and invasion through inducing EMT, presenting a novel insight for elucidating the pathogenesis of ADS.


Assuntos
Adenomiose/metabolismo , Movimento Celular , Endométrio/metabolismo , Transição Epitelial-Mesenquimal , MicroRNAs/metabolismo , Talina/metabolismo , Endométrio/citologia , Feminino , Humanos , Cultura Primária de Células , Via de Sinalização Wnt
17.
Theranostics ; 11(5): 2395-2409, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33500732

RESUMO

Alzheimer's disease (AD) is currently ranked as the third leading cause of death for eldly people, just behind heart disease and cancer. Autophagy is declined with aging. Our study determined the biphasic changes of miR-331-3p and miR-9-5p associated with AD progression in APPswe/PS1dE9 mouse model and demonstrated inhibiting miR-331-3p and miR-9-5p treatment prevented AD progression by promoting the autophagic clearance of amyloid beta (Aß). Methods: The biphasic changes of microRNAs were obtained from RNA-seq data and verified by qRT-PCR in early-stage (6 months) and late-stage (12 months) APPswe/PS1dE9 mice (hereinafter referred to as AD mice). The AD progression was determined by analyzing Aß levels, neuron numbers (MAP2+) and activated microglia (CD68+IBA1+) in brain tissues using immunohistological and immunofluorescent staining. MRNA and protein levels of autophagic-associated genes (Becn1, Sqstm1, LC3b) were tested to determine the autophagic activity. Morris water maze and object location test were employed to evaluate the memory and learning after antagomirs treatments in AD mice and the Aß in the brain tissues were determined. Results: MiR-331-3p and miR-9-5p are down-regulated in early-stage of AD mice, whereas up-regulated in late-stage of AD mice. We demonstrated that miR-331-3p and miR-9-5p target autophagy receptors Sequestosome 1 (Sqstm1) and Optineurin (Optn), respectively. Overexpression of miR-331-3p and miR-9-5p in SH-SY5Y cell line impaired autophagic activity and promoted amyloid plaques formation. Moreover, AD mice had enhanced Aß clearance, improved cognition and mobility when treated with miR-331-3p and miR-9-5p antagomirs at late-stage. Conclusion: Our study suggests that using miR-331-3p and miR-9-5p, along with autophagic activity and amyloid plaques may distinguish early versus late stage of AD for more accurate and timely diagnosis. Additionally, we further provide a possible new therapeutic strategy for AD patients by inhibiting miR-331-3p and miR-9-5p and enhancing autophagy.


Assuntos
Doença de Alzheimer/prevenção & controle , Autofagia , Modelos Animais de Doenças , Regulação da Expressão Gênica , MicroRNAs/antagonistas & inibidores , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Humanos , Masculino , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Neurônios/metabolismo , Neurônios/patologia
18.
J Minim Invasive Gynecol ; 28(1): 82-92, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32283327

RESUMO

STUDY OBJECTIVE: To report a new improved laparoscopic Vecchietti vaginoplasty in patients with congenital vaginal agenesis and to investigate its efficacy and safety. DESIGN: A retrospective descriptive and case-control study. SETTING: Single academic institution. PATIENTS: Women who were diagnosed with Mayer-Rokitansky-Küster-Hauster (MRKH) syndrome and underwent our new improved laparoscopic Vecchietti procedure from July 2010 to June 2019 were selected as the study group. The eligible participants had congenital vaginal agenesis with normal 46,XX karyotype and ovarian function. Age-matched, nulliparous, sexually active women were selected as the control group. INTERVENTIONS: Women with MRKH syndrome in the study group underwent the novel improved laparoscopic Vecchietti procedure. All participants in both groups were required to complete Female Sexual Function Index and Female Genital Self-Image Scale questionnaires. MEASUREMENTS AND MAIN RESULTS: The effects of our procedure, including the anatomic and functional efficacy of the neovagina, were the primary outcomes. The secondary outcomes consisted of the perioperative complications, surgical morbidities, and long-term postoperative discomfort. A total of 79 patients with MRKH syndrome underwent our new improved Vecchietti vaginoplasty, of whom 44 (55.7%) were diagnosed as Type I MRKH syndrome, whereas 35 (44.3%) were Type II MRKH syndrome. At a 30-month follow-up after surgery, an anatomic neovagina measuring 10.44 cm in length and 1.30 cm in width was achieved. All 79 patients obtained anatomic success with 92.41% of functional efficacy. Compared with 81 age-matched, nulliparous women in the control group, there was no statistical difference regardless of individual measure or total Female Sexual Function Index scores (p >.05). The Female Genital Self-Image Scale assessment showed a significantly lower score in patients undergoing the vaginoplasty (20.14 ± 3.05 vs 22.95 ± 2.12; p <.001). There were no severe perioperative complications except 1 mild bladder injury and 1 transient fever. CONCLUSION: Our novel improved laparoscopic Vecchietti vaginoplasty is a relatively safe and effective method for surgical treatment of congenital vaginal agenesis. It may be an alternative to neovagina creation for reaching satisfying anatomic and functional efficacy and improving patients' sexual function.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual/cirurgia , Anormalidades Congênitas/cirurgia , Procedimentos Cirúrgicos em Ginecologia/métodos , Laparoscopia/métodos , Ductos Paramesonéfricos/anormalidades , Procedimentos de Cirurgia Plástica/métodos , Estruturas Criadas Cirurgicamente , Vagina/cirurgia , Transtornos 46, XX do Desenvolvimento Sexual/epidemiologia , Transtornos 46, XX do Desenvolvimento Sexual/patologia , Adolescente , Adulto , Estudos de Casos e Controles , China/epidemiologia , Anormalidades Congênitas/epidemiologia , Anormalidades Congênitas/patologia , Feminino , Humanos , Invenções , Ductos Paramesonéfricos/patologia , Ductos Paramesonéfricos/cirurgia , Complicações Pós-Operatórias/epidemiologia , Estudos Retrospectivos , Autoimagem , Disfunções Sexuais Fisiológicas/epidemiologia , Disfunções Sexuais Fisiológicas/etiologia , Estruturas Criadas Cirurgicamente/patologia , Terapias em Estudo/métodos , Resultado do Tratamento , Vagina/anormalidades , Vagina/patologia , Adulto Jovem
19.
Autophagy ; 17(10): 2766-2782, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33143524

RESUMO

Senile osteoporosis (OP) is often concomitant with decreased autophagic activity. OPTN (optineurin), a macroautophagy/autophagy (hereinafter referred to as autophagy) receptor, is found to play a pivotal role in selective autophagy, coupling autophagy with bone metabolism. However, its role in osteogenesis is still mysterious. Herein, we identified Optn as a critical molecule of cell fate decision for bone marrow mesenchymal stem cells (MSCs), whose expression decreased in aged mice. Aged mice revealed osteoporotic bone loss, elevated senescence of MSCs, decreased osteogenesis, and enhanced adipogenesis, as well as optn-/ - mice. Importantly, restoring Optn by transplanting wild-type MSCs to optn-/ - mice or infecting optn-/ - mice with Optn-containing lentivirus rescued bone loss. The introduction of a loss-of-function mutant of OptnK193R failed to reestablish a bone-fat balance. We further identified FABP3 (fatty acid binding protein 3, muscle and heart) as a novel selective autophagy substrate of OPTN. FABP3 promoted adipogenesis and inhibited osteogenesis of MSCs. Knockdown of FABP3 alleviated bone loss in optn-/ - mice and aged mice. Our study revealed that reduced OPTN expression during aging might lead to OP due to a lack of FABP3 degradation via selective autophagy. FABP3 accumulation impaired osteogenesis of MSCs, leading to the occurrence of OP. Thus, reactivating OPTN or inhibiting FABP3 would open a new avenue to treat senile OP.Abbreviations: ADIPOQ: adiponectin, C1Q and collagen domain containing; ALPL: alkaline phosphatase, liver/bone/kidney; BGLAP/OC/osteocalcin: bone gamma carboxyglutamate protein; BFR/BS: bone formation rate/bone surface; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CDKN1A/p21: cyclin-dependent kinase inhibitor 1A; CDKN2A/p16: cyclin dependent kinase inhibitor 2A; CDKN2B/p15: cyclin dependent kinase inhibitor 2B; CEBPA: CCAAT/enhancer binding protein (C/EBP), alpha; COL1A1: collagen, type I, alpha 1; Ct. BV/TV: cortical bone volume fraction; Ct. Th: cortical thickness; Es. Pm: endocortical perimeter; FABP4/Ap2: fatty acid binding protein 4, adipocyte; H2AX: H2A.X variant histone; HE: hematoxylin and eosin; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MAR: mineral apposition rate; MSCs: bone marrow mesenchymal stem cells; NBR1: NBR1, autophagy cargo receptor; OP: osteoporosis; OPTN: optineurin; PDB: Paget disease of bone; PPARG: peroxisome proliferator activated receptor gamma; Ps. Pm: periosteal perimeter; qRT-PCR: quantitative real-time PCR; γH2AX: Phosphorylation of the Serine residue of H2AX; ROS: reactive oxygen species; RUNX2: runt related transcription factor 2; SA-GLB1: senescence-associated (SA)-GLB1 (galactosidase, beta 1); SP7/Osx/Osterix: Sp7 transcription factor 7; SQSTM1/p62: sequestosome 1; TAX1BP1: Tax1 (human T cell leukemia virus type I) binding protein 1; Tb. BV/TV: trabecular bone volume fraction; Tb. N: trabecular number; Tb. Sp: trabecular separation; Tb. Th: trabecular thickness; µCT: micro computed tomography.


Assuntos
Envelhecimento , Autofagia , Proteínas de Ciclo Celular , Proteína 3 Ligante de Ácido Graxo , Proteínas de Membrana Transportadoras , Células-Tronco Mesenquimais , Adipogenia , Animais , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Proteína 3 Ligante de Ácido Graxo/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteogênese , Osteoporose , Microtomografia por Raio-X
20.
Sci Adv ; 6(43)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33097529

RESUMO

Poor wound healing after diabetes or extensive burn remains a challenging problem. Recently, we presented a physical approach to fabricate ultrasmall silver particles from Ångstrom scale to nanoscale and determined the antitumor efficacy of Ångstrom-scale silver particles (AgÅPs) in the smallest size range. Here we used the medium-sized AgÅPs (65.9 ± 31.6 Å) to prepare carbomer gel incorporated with these larger AgÅPs (L-AgÅPs-gel) and demonstrated the potent broad-spectrum antibacterial activity of L-AgÅPs-gel without obvious toxicity on wound healing-related cells. Induction of reactive oxygen species contributed to L-AgÅPs-gel-induced bacterial death. Topical application of L-AgÅPs-gel to mouse skin triggered much stronger effects than the commercial silver nanoparticles (AgNPs)-gel to prevent bacterial colonization, reduce inflammation, and accelerate diabetic and burn wound healing. L-AgÅPs were distributed locally in skin without inducing systemic toxicities. This study suggests that L-AgÅPs-gel represents an effective and safe antibacterial and anti-inflammatory material for wound therapy.


Assuntos
Queimaduras , Nanopartículas Metálicas , Resinas Acrílicas , Animais , Antibacterianos/farmacologia , Queimaduras/tratamento farmacológico , Inflamação/tratamento farmacológico , Camundongos , Prata/farmacologia , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA