Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Med Phys ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042041

RESUMO

BACKGROUND: Stereotactic radiosurgery (SRS) is a widely employed strategy for intracranial metastases, utilizing linear accelerators and volumetric modulated arc therapy (VMAT). Ensuring precise linear accelerator performance is crucial, given the small planning target volume (PTV) margins. Rapid dose falloff is vital to minimize brain radiation necrosis. Despite advances in SRS planning, tools for end-to-end testing of SRS treatments are lacking, hindering confidence in the procedure. PURPOSE: This study introduces a novel end-to-end three-dimensional (3D) anthropomorphic dosimetry system for characterization of a radiosurgery platform, aiming to measure planning metrics, dose gradient index (DGI), brain volumes receiving at least 10 and 12 Gy (V10, V12), as well as assess delivery uncertainties in multitarget treatments. The study also compares metrics from benchmark plans to enhance understanding and confidence in SRS treatments. METHODS: The developed anthropomorphic 3D dosimetry system includes a modified Stereotactic End-to-End Verification (STEEV) phantom with a customized insert integrating 3D dosimeters and a fiber optic CT scanner. Labview and MATLAB programs handle optical scanning, image preprocessing, and dosimetric analysis. SlicerRT is used for 3D dose visualization and analysis. A film stack insert was used to validate the 3D dosimeter measurements at specific slices. Benchmark plans were developed and measured to investigate off-axis errors, dose spillage, small field dosimetry, and multi-target delivery. RESULTS: The accuracy of the developed 3D dosimetry system was rigorously assessed using radiochromic films. Two two-dimensional (2D) dose planes, extracted from the 3D dose distribution, were compared with film measurements, resulting in high passing rates of 99.9% and 99.6% in gamma tests. The mean relative dose difference between film and 3D dosimeter measurements was -1%, with a standard deviation of 2.2%, well within dosimeter uncertainties. In the first module, evaluating single-isocenter multitarget treatments, a 1.5 mm dose distribution shift was observed when targets were 7 cm off-axis. This shift was attributed to machine mechanical errors and image-guided system uncertainties, indicating potential limitations in conventional gamma tests. The second module investigated discrepancies in intermediate-to-low dose spillage, revealing higher measured doses in the connecting region between closely positioned targets. This discrepancy was linked to uncertainties in treatment planning system (TPS) modeling of out-of-field dose and multileaf collimator (MLC) characteristics, resulting in lower DGI values and higher V10 and V12 values compared to TPS calculations. In the third module, irradiating multiple targets showed consistent V10 and V12 values within 1 cm3 agreement with dose calculations. However, lower DGI values from measurements compared to calculations suggested intricacies in the treatment process. Conducting vital end-to-end testing demonstrated the anthropomorphic 3D dosimetry system's capacity to assess overall treatment uncertainty, offering a valuable tool for enhancing treatment accuracy in radiosurgery platforms. CONCLUSIONS: The study introduces a novel anthropomorphic 3D dosimetry system for end-to-end testing of a radiosurgery platform. The system effectively measures plan quality metrics, captures mechanical errors, and visualizes dose discrepancies in 3D space. The comprehensive evaluation capability enhances confidence in the commissioning and verification process, ensuring patient safety. The system is recommended for commissioning new radiosurgery platforms and remote auditing of existing programs.

2.
Front Med (Lausanne) ; 11: 1364089, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011455

RESUMO

Gynecomastia can be caused by neurofibromas but has rarely been reported. The present case report describes the clinical appearance, diagnosis, and therapy of a rare combination of a 14 year-old adolescent male unilateral severe gynecomastia with NF-1 neurofibromatosis. In this particular case, we successfully performed minimally invasive surgery using endoscopic mastectomy, which not only resulted in a satisfactory appearance but also confirmed the presence of neurofibroma type 1 by detecting typical immunohistochemical indicators associated with the disease. Additionally, we analyzed the gene responsible for the disease, c.1431del: p. F477Lfs*21, based on the patient's family history.

3.
Cell Rep Med ; 5(5): 101522, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38701781

RESUMO

Neuroinflammation plays a significant role in ischemic injury, which can be promoted by oxidized mitochondrial DNA (Ox-mtDNA). Cytidine/uridine monophosphate kinase 2 (CMPK2) regulates mtDNA replication, but its role in neuroinflammation and ischemic injury remains unknown. Here, we report that CMPK2 expression is upregulated in monocytes/macrophages and microglia post-stroke in humans and mice, respectively. Microglia/macrophage CMPK2 knockdown using the Cre recombination-dependent adeno-associated virus suppresses the inflammatory responses in the brain, reduces infarcts, and improves neurological outcomes in ischemic CX3CR1Cre/ERT2 mice. Mechanistically, CMPK2 knockdown limits newly synthesized mtDNA and Ox-mtDNA formation and subsequently blocks NLRP3 inflammasome activation in microglia/macrophages. Nordihydroguaiaretic acid (NDGA), as a CMPK2 inhibitor, is discovered to reduce neuroinflammation and ischemic injury in mice and prevent the inflammatory responses in primary human monocytes from ischemic patients. Thus, these findings identify CMPK2 as a promising therapeutic target for ischemic stroke and other brain disorders associated with neuroinflammation.


Assuntos
AVC Isquêmico , Microglia , Doenças Neuroinflamatórias , Animais , Humanos , Masculino , Camundongos , Lesões Encefálicas/patologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/genética , Isquemia Encefálica/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Inflamassomos/metabolismo , AVC Isquêmico/patologia , AVC Isquêmico/metabolismo , AVC Isquêmico/genética , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Monócitos/metabolismo , Monócitos/efeitos dos fármacos , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
4.
Biology (Basel) ; 13(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38534438

RESUMO

Transient receptor potential vanilloid-6 (TRPV6) is a cation channel belonging to the TRP superfamily, specifically the vanilloid subfamily, and is the sixth member of this subfamily. Its presence in the body is primarily limited to the skin, ovaries, kidney, testes, and digestive tract epithelium. The body maintains calcium homeostasis using the TRPV6 channel, which has a greater calcium selectivity than the other TRP channels. Several pieces of evidence suggest that it is upregulated in the advanced stages of thyroid, ovarian, breast, colon, and prostate cancers. The function of TRPV6 in regulating calcium signaling in cancer will be covered in this review, along with its potential applications as a cancer treatment target.

5.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397056

RESUMO

The development of acquired resistance to small molecule tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptor (EGFR) signaling has hindered their efficacy in treating non-small cell lung cancer (NSCLC) patients. Our previous study showed that constitutive activation of the 70 kDa ribosomal protein S6 kinase 1 (S6K1) contributes to the acquired resistance to EGFR-TKIs in NSCLC cell lines and xenograft tumors in nude mice. However, the regulatory mechanisms underlying S6K1 constitutive activation in TKI-resistant cancer cells have not yet been explored. In this study, we recapitulated this finding by taking advantage of a gefitinib-resistant patient-derived xenograft (PDX) model established through a number of passages in mice treated with increasing doses of gefitinib. The dissociated primary cells from the resistant PDX tumors (PDX-R) displayed higher levels of phosphor-S6K1 expression and were resistant to gefitinib compared to cells from passage-matched parental PDX tumors (PDX-P). Both genetic and pharmacological inhibition of S6K1 increased sensitivity to gefitinib in PDX-R cells. In addition, both total and phosphorylated mechanistic target of rapamycin kinase (MTOR) levels were upregulated in PDX-R and gefitinib-resistant PC9G cells. Knockdown of MTOR by siRNA decreased the expression levels of total and phosphor-S6K1 and increased sensitivity to gefitinib in PDX-R and PC9G cells. Moreover, a transcription factor ELK1, which has multiple predicted binding sites on the MTOR promoter, was also upregulated in PDX-R and PC9G cells, while the knockdown of ELK1 led to decreased expression of MTOR and S6K1. The chromatin immunoprecipitation (ChIP)-PCR assay showed the direct binding between ELK1 and the MTOR promoter, and the luciferase reporter assay further indicated that ELK1 could upregulate MTOR expression through tuning up its transcription. Silencing ELK1 via siRNA transfection improved the efficacy of gefitinib in PDX-R and PC9G cells. These results support the notion that activation of ELK1/MTOR/S6K1 signaling contributes to acquired resistance to gefitinib in NSCLC. The findings in this study shed new light on the mechanism for acquired EGFR-TKI resistance and provide potential novel strategies by targeting the ELK1/MTOR/S6K1 pathway.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Gefitinibe , Neoplasias Pulmonares , Proteínas Elk-1 do Domínio ets , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/metabolismo , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos Nus , Proteínas Quinases S6 Ribossômicas , RNA Interferente Pequeno/farmacologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , /uso terapêutico
6.
Eur Arch Otorhinolaryngol ; 281(5): 2441-2450, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38180607

RESUMO

OBJECTIVE: The primary objective of this study was to find the association between dietary zinc intake and the prevalence of olfactory disorders using data from the National Health and Nutrition Examination Survey (NHANES). METHODS: A cross-sectional study was conducted using the 2013-2014 NHANES data. A linear regression model was constructed with dietary zinc intake as the independent variable and olfactory dysfunction as the dependent variable. Initially, in the unadjusted model, weighted logistic regression analysis was carried out for continuous variables, and stratified analysis was conducted for categorical variables. Subsequently, three models were created to perform subgroup analysis by adjusting for different confounding factors, further investigating the relationship between dietary zinc intake and olfactory dysfunction. Finally, restricted cubic spline (RCS) models adjusting for all confounding factors were utilized to study the nonlinear associations of age and dietary zinc intake with olfactory dysfunction and their relevant thresholds. RESULTS: A total of 2958 samples were analyzed in this study. Weighted logistic regression analysis displayed a negative relationship between dietary zinc intake and the prevalence of olfactory dysfunction in the population of non-Hispanic whites and other Hispanics, as well as in individuals with body mass index (BMI) ≥ 25 kg/m2 (OR < 1, P < 0.05). The P values for the multiplicative interaction terms adjusting for all confounding factors were not significant (P for interaction > 0.05). In the three regression models adjusting for different confounding factors, dietary zinc intake was significantly negatively related to olfactory dysfunction in all populations (Crude: OR 0.63, 95% CI 0.44-0.91; Model I: OR 0.58, 95% CI 0.38-0.90; Model II: OR 0.59, 95% CI 0.35-1.00). Subgroup analysis based on BMI showed a remarkable negative relationship between dietary zinc intake and olfactory dysfunction in the group with BMI of 25-30 kg/m2 (Crude: OR 0.50, 95% CI 0.28-0.90, P = 0.012; Model I: OR 0.49, 95% CI 0.24-1.00, P = 0.021) and the group with BMI ≥ 30 kg/m2 (Crude: OR 0.55, 95% CI 0.33-0.92, P = 0.013; Model I: OR 0.51, 95% CI 0.29-0.88, P = 0.005; Model II: OR 0.51, 95% CI 0.29-0.91, P = 0.004). RCS analysis revealed a remarkable nonlinear association of age and dietary zinc intake with olfactory dysfunction (P-non-linear < 0.05). The prevalence of olfactory dysfunction was considerably higher in individuals aged 60 and above compared to those under 60 years old. Daily dietary zinc intake within the range of 9.60-17.45 mg was a protective factor for olfactory dysfunction, while intake outside this range increased the prevalence of olfactory dysfunction. CONCLUSION: Daily dietary zinc intake within the range of 9.60-17.45 mg has a protective effect against olfactory dysfunction. Intake outside this range increases the prevalence of olfactory dysfunction. The prevalence of olfactory dysfunction is significantly higher in individuals aged 60 and above compared to those under 60 years old. For individuals with a BMI of 25-30 kg/m2 and a BMI ≥ 30 kg/m2, dietary zinc intake is negatively correlated with olfactory dysfunction. Therefore, it is recommended that these populations increase their dietary zinc intake to develop healthier lifestyles and maintain olfactory health.


Assuntos
Transtornos do Olfato , Zinco , Humanos , Pessoa de Meia-Idade , Inquéritos Nutricionais , Estudos Transversais , Dieta , Transtornos do Olfato/epidemiologia
7.
Adv Radiat Oncol ; 9(3): 101399, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38292890

RESUMO

Purpose: The emerging online adaptive radiation therapy (OART) treatment strategy based on cone beam computed tomography allows for real-time replanning according to a patient's current anatomy. However, implementing this procedure requires a new approach across the patient's care path and monitoring of the "black box" adaptation process. This study identifies high-risk failure modes (FMs) associated with AI-driven OART and proposes an interdisciplinary workflow to mitigate potential medical errors from highly automated processes, enhance treatment efficiency, and reduce the burden on clinicians. Methods and Materials: An interdisciplinary working group was formed to identify safety concerns in each process step using failure mode and effects analysis (FMEA). Based on the FMEA results, the team designed standardized procedures and safety checklists to prevent errors and ensure successful task completion. The Risk Priority Numbers (RPNs) for the top twenty FMs were calculated before and after implementing the proposed workflow to evaluate its effectiveness. Three hundred seventy-four adaptive sessions across 5 treatment sites were performed, and each session was evaluated for treatment safety and FMEA assessment. Results: The OART workflow has 4 components, each with 4, 8, 13, and 4 sequentially executed tasks and safety checklists. Site-specific template preparation, which includes disease-specific physician directives and Intelligent Optimization Engine template testing, is one of the new procedures introduced. The interdisciplinary workflow significantly reduced the RPNs of the high-risk FMs, with an average decrease of 110 (maximum reduction of 305.5 and minimum reduction of 27.4). Conclusions: This study underscores the importance of addressing high-risk FMs associated with AI-driven OART and emphasizes the significance of safety measures in its implementation. By proposing a structured interdisciplinary workflow and integrated checklists, the study provides valuable insights into ensuring the safe and efficient delivery of OART while facilitating its effective integration into clinical practice.

8.
Int J Mol Sci ; 24(22)2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-38003694

RESUMO

Epithelial ovarian cancer (EOC) is a lethal gynecological cancer, of which paclitaxel resistance is the major factor limiting treatment outcomes, and identification of paclitaxel resistance-related genes is arduous. We obtained transcriptomic data from seven paclitaxel-resistant ovarian cancer cell lines and corresponding sensitive cell lines. Define genes significantly up-regulated in at least three resistant cell lines, meanwhile they did not down-regulate in the other resistant cell lines as candidate genes. Candidate genes were then ranked according to the frequencies of significant up-regulation in resistant cell lines, defining genes with the highest rankings as paclitaxel resistance-related genes (PRGs). Patients were grouped based on the median expression of PRGs. The lipid metabolism-related gene set and the oncological gene set were established and took intersections with genes co-upregulated with PRGs, obtaining 229 co-upregulated genes associated with lipid metabolism and tumorigenesis. The PPI network obtained 19 highly confidential synergistic targets (interaction score > 0.7) that directly associated with CPT1A. Finally, FASN and SCD were up-stream substrate provider and competitor of CPT1A, respectively. Western blot and qRT-PCR results confirmed the over-expression of CPT1A, SCD and FASN in the A2780/PTX cell line. The inhibition of CPT1A, SCD and FASN down-regulated cell viability and migration, pharmacological blockade of CPT1A and SCD increased apoptosis rate and paclitaxel sensitivity of A2780/PTX. In summary, our novel bioinformatic methods can overcome difficulties in drug resistance evaluation, providing promising therapeutical strategies for paclitaxel-resistant EOC via taregting lipid metabolism-related enzymes.


Assuntos
Neoplasias Ovarianas , Paclitaxel , Humanos , Feminino , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Metabolismo dos Lipídeos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/genética , Apoptose/genética , Ácido Graxo Sintase Tipo I/metabolismo
9.
ACS Omega ; 8(34): 31529-31540, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37663478

RESUMO

This study aimed to investigate the active ingredients and therapeutic mechanisms of Jingu Tongxiao Pill (JGTXP), a commonly used Chinese patent medicine, in treating osteoarthritis (OA) via network pharmacology analysis combined with experimental validation. First, we administered JGTXP to rat plasma and identified the candidate active compounds. Next, target prediction, protein-protein interaction, compound-target network construction, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted for JGTXP. Lastly, the network-derived key targets and pathways were validated in vitro and in vivo. Finally, we identified 106 compounds in JGTXP and 24 absorbed compounds in the rat plasma. Network analysis revealed that JGTXP interferes with OA mainly via regulating the inflammatory response, collagen catabolic process, and osteoclast differentiation, and the nuclear factor kappa B (NF-κB) signaling pathway plays a pivotal role in these processes. Experimentally, JGTXP exerted potential protective effects on articular cartilage and inhibited expression of inflammatory mediators and collagen catabolism-related proteins, including interleukin 1 beta (IL-1ß), interleukin 6, tumor necrosis factor alpha (TNF-α), and matrix metalloproteinase (MMP) 3 and MMP13, in a papain-induced OA rat model. Consistently, mRNA expression levels of these factors and nitric oxide release were suppressed by JGTXP in an LPS-induced RAW 264.7 inflammation model. The reporter gene assay showed that JGTXP could reduce the transcriptional activity of NF-κB. Consecutive western blot analysis demonstrated that nuclear NF-κB p65, inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX-2) expression were inhibited while cytoplasmic NF-κB p65 was upregulated by JGTXP. Using a combination of chemical profiling, network pharmacology analysis, and experimental validation, we preliminarily clarified the active ingredients of JGTXP intervention for OA and demonstrated that JGTXP ameliorates OA, at least partially, by regulating the NF-κB signaling pathway.

10.
Radiol Imaging Cancer ; 5(4): e230011, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37449917

RESUMO

Adaptive radiation therapy is a feedback process by which imaging information acquired over the course of treatment, such as changes in patient anatomy, can be used to reoptimize the treatment plan, with the end goal of improving target coverage and reducing treatment toxicity. This review describes different types of adaptive radiation therapy and their clinical implementation with a focus on CT-guided online adaptive radiation therapy. Depending on local anatomic changes and clinical context, different anatomic sites and/or disease stages and presentations benefit from different adaptation strategies. Online adaptive radiation therapy, where images acquired in-room before each fraction are used to adjust the treatment plan while the patient remains on the treatment table, has emerged to address unpredictable anatomic changes between treatment fractions. Online treatment adaptation places unique pressures on the radiation therapy workflow, requiring high-quality daily imaging and rapid recontouring, replanning, plan review, and quality assurance. Generating a new plan with every fraction is resource intensive and time sensitive, emphasizing the need for workflow efficiency and clinical resource allocation. Cone-beam CT is widely used for image-guided radiation therapy, so implementing cone-beam CT-guided online adaptive radiation therapy can be easily integrated into the radiation therapy workflow and potentially allow for rapid imaging and replanning. The major challenge of this approach is the reduced image quality due to poor resolution, scatter, and artifacts. Keywords: Adaptive Radiation Therapy, Cone-Beam CT, Organs at Risk, Oncology © RSNA, 2023.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia Guiada por Imagem , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Radioterapia Guiada por Imagem/métodos , Tomografia Computadorizada de Feixe Cônico , Órgãos em Risco
11.
Genes Genomics ; 45(7): 855-866, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37133722

RESUMO

BACKGROUND: Non-voltage-gated sodium channel, also known as the epithelial sodium channel (ENaC), formed by heteromeric complexes consisting of SCNN1A, SCNN1B, and SCNN1G, is responsible for maintaining sodium ion and body fluid homeostasis in epithelial cells. However, no systematic study of SCNN1 family members has been conducted in renal clear cell carcinoma (ccRCC) to date. OBJECTIVE: To investigate the abnormal expression of SCNN1 family in ccRCC and its potential correlation with clinical parameters. METHODS: The transcription and protein expression levels of SCNN1 family members in ccRCC were analyzed based on the TCGA database, and were confirmed by quantitative RT-PCR and immunohistochemical staining assays, respectively. The area under curve (AUC) was used to evaluate the diagnostic value of SCNN1 family members for ccRCC patients. RESULTS: The mRNA and protein expression of SCNN1 family members was significantly downregulated in ccRCC compared with normal kidney tissues, which might be due to DNA hypermethylation in the promoter region. It is worth noting that the AUC of SCNN1A, SCNN1B, and SCNN1G were 0.965, 0.979, and 0.988 based on the TCGA database (p < 0.0001), respectively. The diagnostic value was even higher when combing these three members together (AUC = 0.997, p < 0.0001). Intriguingly, the mRNA level of SCNN1A was significantly lower in females compared with males, while SCNN1B and SCNN1G were increased with the progression of ccRCC and remarkably associated with a worse outcome for patients. CONCLUSION: The aberrantly decrease of SCNN1 family members might serve as valuable biomarkers for the diagnosis of ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Masculino , Feminino , Humanos , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Rim/metabolismo , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , RNA Mensageiro/metabolismo
12.
Thorac Cancer ; 14(12): 1098-1101, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36924059

RESUMO

Thoracoscopic segmentectomy might be an alternative to lobectomy for small size lung cancer. Precise identification of the pulmonary intersegmental plane was needed for an optimal segmentectomy. Recently, (1) the ultra-high-definition 4K systems had claimed to overcome the lack of depth perception by secondary visual cues; (2) the no-waiting procedure was induced as an alternative and optimized method for identifying the plane. It was unclear whether combined ultra-high-definition 4K endovision systems with "no-waiting" technique in thoracoscopic segmentectomy could achieve an excellent result. A 68-year-old female patient was admitted into our hospital for occasional pulmonary nodule during her routine physical examination. The nodule is located between S8 and S9 segment, and was suspected to be an early-stage lung cancer. She underwent a thoracoscopic S89 complex segmentectomy using ultra-high-definition 4K endovision systems and "no-waiting" surgical technique. The intersegmental plane was clearly detected and easily treated by the endoscopic linear cutting staplers. The patient recovered well and was discharged without complications. Combining ultra-high-definition 4K endovision systems with "no-waiting" technique seems to be an optimal thoracoscopic segmentectomy approach for the management of lung cancers.


Assuntos
Neoplasias Pulmonares , Pneumonectomia , Feminino , Humanos , Idoso , Pneumonectomia/métodos , Neoplasias Pulmonares/cirurgia , Pulmão/cirurgia , Toracoscopia/métodos
13.
J Physiol ; 601(1): 83-98, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36420836

RESUMO

Autosomal dominant polycystic kidney disease is caused by mutations in the membrane receptor PKD1 or the cation channel PKD2. TACAN (also termed TMEM120A), recently reported as an ion channel in neurons for mechanosensing and pain sensing, is also distributed in diverse non-neuronal tissues, such as kidney, heart and intestine, suggesting its involvement in other functions. In this study, we found that TACAN is in a complex with PKD2 in native renal cell lines. Using the two-electrode voltage clamp in Xenopus oocytes, we found that TACAN inhibits the channel activity of PKD2 gain-of-function mutant F604P. TACAN fragments containing the first and last transmembrane domains interacted with the PKD2 C- and N-terminal fragments, respectively. The TACAN N-terminus acted as a blocking peptide, and TACAN inhibited the function of PKD2 by the binding of PKD2 with TACAN. By patch clamping in mammalian cells, we found that TACAN inhibits both the single-channel conductance and the open probability of PKD2 and mutant F604P. PKD2 co-expressed with TACAN, but not PKD2 alone, exhibited pressure sensitivity. Furthermore, we found that TACAN aggravates PKD2-dependent tail curvature and pronephric cysts in larval zebrafish. In summary, this study revealed that TACAN acts as a PKD2 inhibitor and mediates mechanosensitivity of the PKD2-TACAN channel complex. KEY POINTS: TACAN inhibits the function of PKD2 in vitro and in vivo. TACAN N-terminal S1-containing fragment T160X interacts with the PKD2 C-terminal fragment N580-L700, and its C-terminal S6-containing fragment L296-D343 interacts with the PKD2 N-terminal A594X. TACAN inhibits the function of the PKD2 channel by physical interaction. The complex of PKD2 with TACAN, but not PKD2 alone, confers mechanosensitivity.


Assuntos
Rim Policístico Autossômico Dominante , Peixe-Zebra , Animais , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Canais Iônicos/genética , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Rim/metabolismo , Mamíferos/metabolismo
14.
Radiat Res ; 199(1): 1-16, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35994701

RESUMO

Validation of biodosimetry assays is routinely performed using primarily orthovoltage irradiators at a conventional dose rate of approximately 1 Gy/min. However, incidental/ accidental exposures caused by nuclear weapons can be more complex. The aim of this work was to simulate the DNA damage effects mimicking those caused by the detonation of a several kilotons improvised nuclear device (IND). For this, we modeled complex exposures to: 1. a mixed (photons + IND-neutrons) field and 2. different dose rates that may come from the blast, nuclear fallout, or ground deposition of radionuclides (ground shine). Additionally, we assessed whether myeloid cytokines affect the precision of radiation dose estimation by modulating the frequency of dicentric chromosomes. To mimic different exposure scenarios, several irradiation systems were used. In a mixed field study, human blood samples were exposed to a photon field enriched with neutrons (ranging from 10% to 37%) from a source that mimics Hiroshima's A-bomb's energy spectrum (0.2-9 MeV). Using statistical analysis, we assessed whether photons and neutrons act in an additive or synergistic way to form dicentrics. For the dose rates study, human blood was exposed to photons or electrons at dose rates ranging from low (where the dose was spread over 32 h) to extremely high (where the dose was delivered in a fraction of a microsecond). Potential effects of cytokine treatment on biodosimetry dose predictions were analyzed in irradiated blood subjected to Neupogen or Neulasta for 24 or 48 h at the concentration recommended to forestall manifestation of an acute radiation syndrome in bomb survivors. All measurements were performed using a robotic station, the Rapid Automated Biodosimetry Tool II, programmed to culture lymphocytes and score dicentrics in multiwell plates (the RABiT-II DCA). In agreement with classical concepts of radiation biology, the RABiT-II DCA calibration curves suggested that the frequency of dicentrics depends on the type of radiation and is modulated by changes in the dose rate. The resulting dose-response curves suggested an intermediate dicentric yields and additive effects of photons and IND-neutrons in the mixed field. At ultra-high dose rate (600 Gy/s), affected lymphocytes exhibited significantly fewer dicentrics (P < 0.004, t test). In contrast, we did not find the dose-response modification effects of radiomitigators on the yields of dicentrics (Bonferroni corrected P > 0.006, ANOVA test). This result suggests no bias in the dose predictions should be expected after emergency cytokine treatment initiated up to 48 h prior to blood collection for dicentric analysis.


Assuntos
Aberrações Cromossômicas , Exposição à Radiação , Humanos , Relação Dose-Resposta à Radiação , Linfócitos/efeitos da radiação , Cromossomos , Radiometria/métodos
15.
Cancers (Basel) ; 14(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36497250

RESUMO

Environmental and occupational exposure to heavy metals, such as hexavalent chromium, nickel, and cadmium, are major health concerns worldwide. Some heavy metals are well-documented human carcinogens. Multiple mechanisms, including DNA damage, dysregulated gene expression, and aberrant cancer-related signaling, have been shown to contribute to metal-induced carcinogenesis. However, the molecular mechanisms accounting for heavy metal-induced carcinogenesis and angiogenesis are still not fully understood. In recent years, an increasing number of studies have indicated that in addition to genotoxicity and genetic mutations, epigenetic mechanisms play critical roles in metal-induced cancers. Epigenetics refers to the reversible modification of genomes without changing DNA sequences; epigenetic modifications generally involve DNA methylation, histone modification, chromatin remodeling, and non-coding RNAs. Epigenetic regulation is essential for maintaining normal gene expression patterns; the disruption of epigenetic modifications may lead to altered cellular function and even malignant transformation. Therefore, aberrant epigenetic modifications are widely involved in metal-induced cancer formation, development, and angiogenesis. Notably, the role of epigenetic mechanisms in heavy metal-induced carcinogenesis and angiogenesis remains largely unknown, and further studies are urgently required. In this review, we highlight the current advances in understanding the roles of epigenetic mechanisms in heavy metal-induced carcinogenesis, cancer progression, and angiogenesis.

16.
Pathol Res Pract ; 240: 154175, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36327816

RESUMO

The sodium channel epithelial 1 subunit gamma (SCNN1G) is mainly responsible for sodium entry and absorption. The dysfunction of SCNN1G has been widely studied in kidney-related diseases and chronic heart failure. However, its role in cancer remains unclear. Here, we found that SCNN1G was aberrantly downregulated in head and neck squamous cell cancer (HNSCC) tissues, which showed an efficifent diagnostic value according to the ROC curve analysis. The lower expression of SCNN1G was significantly correlated with lymphatic metastasis and a worse outcome of HNSCC patients. Ectopic overexpressing SCNN1G inhibited the invasive and migratory abilities of HNSCC cells, while knocking down SCNN1G showed an opposite effect. A positive correlation between SCNN1G and CDH1 expression was observed, which suggested that SCNN1G might impede HNSCC metastasis via strengthing cell-cell adherin. In addition, RAS signaling and ion channel transport signaling were enriched by SCNN1G in HNSCC using GSEA analysis, indicating that these signaling pathways might be the underlying mechanisms for SCNN1G as well. In addition, six sorts of immune infiltrate subtype cells were associated with SCNN1G expression. Our findings support that SCNN1G inactivation contributes to the metastasis of HNSCC. SCNN1G could serves as a valuable diagnostic and prognostic marker for HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias de Cabeça e Pescoço/genética , Linhagem Celular Tumoral , Movimento Celular , Metástase Linfática , Regulação Neoplásica da Expressão Gênica , Prognóstico , Canais Epiteliais de Sódio
17.
Cancers (Basel) ; 14(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36139662

RESUMO

Arsenic is a crucial environmental metalloid whose high toxicity levels negatively impact human health. It poses significant health concerns to millions of people in developed and developing countries such as the USA, Canada, Bangladesh, India, China, and Mexico by enhancing sensitivity to various types of diseases, including cancers. However, how arsenic causes changes in gene expression that results in heinous conditions remains elusive. One of the proposed essential mechanisms that still has seen limited research with regard to causing disease upon arsenic exposure is the dysregulation of epigenetic components. In this review, we have extensively summarized current discoveries in arsenic-induced epigenetic modifications in carcinogenesis and angiogenesis. Importantly, we highlight the possible mechanisms underlying epigenetic reprogramming through arsenic exposure that cause changes in cell signaling and dysfunctions of different epigenetic elements.

18.
Front Cell Dev Biol ; 10: 861916, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35938161

RESUMO

Commensal microbes cross talk with their colonized mucosa. We show that microbes and their cell wall components induce an inflammatory response in cultured human mucosal cells derived from the nonmalignant nasopharyngeal epithelium (NNE) cells in vitro. NNE cells show significant induction of NF-κB with nuclear shuttling and inflammatory gene response when exposed to Gram-positive bacteria (streptococci) or peptidoglycan (PGN), a component of the Gram-positive bacterial cell wall. This response is abrogated in nasopharyngeal carcinoma (NPC)-derived cell lines. The inflammatory response induced by NF-κB signaling was blocked at two levels in the tumor-derived cells. We found that NF-κB was largely trapped in lipid droplets (LDs) in the cytoplasm of the NPC-derived cells, while the increased expression of lysine-specific histone demethylase 1 (LSD1, a repressive nuclear factor) reduces the response mediated by remaining NF-κB at the promoters responding to inflammatory stimuli. This refractory response in NPC cells might be a consequence of long-term exposure to microbes in vivo during carcinogenic progression. It may contribute to the decreased antitumor immune responses in NPC, among others despite heavy T-helper cell infiltration, and thus facilitate tumor progression.

19.
Sci Total Environ ; 838(Pt 1): 155713, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35660107

RESUMO

Chronic exposure to hexavalent chromium compounds [Cr(VI)] is associated with an increased risk of cancers, but the molecular mechanisms remain to be elucidated. In this study, we found that CXCL5 levels in peripheral blood monocytes (PBMCs) and plasma from workers with occupational exposure to Cr(VI) were dramatically upregulated compared to non-exposure healthy subjects, and plasma C-X-C Motif Chemokine Ligand 5 (CXCL5) CXCL5 levels were positively correlated with Cr concentrations in subjects' toenails. Zinc chromate exposed mice showed higher levels of CXCL5 and its receptor CXCR2 in lung tissues, and in PBMCs. Similar CXCL5 upregulation was evident in Cr(VI)-induced transformed (Cr-T) cells with long-term Cr(VI) treatment. Mechanistic studies showed that elevated CXCL5 expression levels were regulated by Cr(VI)-induced histone modifications and DNA hypomethylation, and that the c-Myc/p300 complex was a key upstream regulator of histone H3 acetylation. CXCL5 overexpression promoted Cr(VI)-induced the epithelial to mesenchyme transition (EMT) by upregulating zinc finger E-box binding homeobox 1 (ZEB1) to promote tumor development. Our findings identify a novel mechanism by which CXCL5 is upregulated and promotes EMT and carcinogenesis upon chronic Cr(VI) exposure. Our work also implies that CXCL5 mRNA and protein levels will elevate in PBMCs and serum after occupational Cr(VI) exposure, which may be a potential target and biomarker for cancer prevention and health surveillance among populations exposed to Cr(VI).


Assuntos
Carcinogênese , Cromo , Animais , Carcinogênese/induzido quimicamente , Quimiocina CXCL5 , Cromo/toxicidade , Epigênese Genética , Humanos , Camundongos , Regulação para Cima
20.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35743145

RESUMO

The diverse repertoires of cellular mechanisms that progress certain cancer types are being uncovered by recent research and leading to more effective treatment options. Ovarian cancer (OC) is among the most difficult cancers to treat. OC has limited treatment options, especially for patients diagnosed with late-stage OC. The dysregulation of miRNAs in OC plays a significant role in tumorigenesis through the alteration of a multitude of molecular processes. The development of OC can also be due to the utilization of endogenously derived reactive oxygen species (ROS) by activating signaling pathways such as PI3K/AKT and MAPK. Both miRNAs and ROS are involved in regulating OC angiogenesis through mediating multiple angiogenic factors such as hypoxia-induced factor (HIF-1) and vascular endothelial growth factor (VEGF). The NAPDH oxidase subunit NOX4 plays an important role in inducing endogenous ROS production in OC. This review will discuss several important miRNAs, NOX4, and ROS, which contribute to therapeutic resistance in OC, highlighting the effective therapeutic potential of OC through these mechanisms.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia , MicroRNAs/genética , NADPH Oxidases/metabolismo , Neovascularização Patológica/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Fosfatidilinositol 3-Quinases , Espécies Reativas de Oxigênio/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA