Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0300593, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38517904

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a common condition that is characterized by metabolic impairments. Exercise therapy has proven effective in improving the physiological and psychological states of patients with T2DM; however, the influence of different exercise modalities on metabolic profiles is not fully understood. This study first aimed to investigate the metabolic changes associated with T2DM among patients and then to evaluate the potential physiological effects of different exercise modalities (Tai Chi and brisk walking) on their metabolic profiles. METHODS: This study included 20 T2DM patients and 11 healthy subjects. Patients were randomly allocated to either the Tai Chi or walking group to perform Dijia simplified 24-form Tai Chi or brisk walking (80-100 m/min), with 90 minutes each time, three times per week for 12 weeks, for a total of 36 sessions. The healthy group maintained daily living habits without intervention. Glycemic tests were conducted at the baseline and after 12 weeks. Serum and urine samples were collected for untargeted metabolomic analyses at baseline and 12 weeks to examine the differential metabolic profiles between T2DM and healthy subjects, and the metabolic alterations of T2DM patients before and after exercise therapy. RESULTS: Compared to the healthy group, T2DM patients exhibited metabolic disturbances in carbohydrates (fructose, mannose, galactose, glycolysis/gluconeogenesis), lipids (inositol phosphate), and amino acids (arginine, proline, cysteine, methionine, valine, leucine, and isoleucine) metabolism, including 20 differential metabolites in the serum and six in the urine. After exercise, the glycemic results showed insignificant changes. However, patients who practiced Tai Chi showed significant improvements in their post-treatment metabolic profiles compared to baseline, with nine serum and six urine metabolites, including branch-chained amino acids (BCAAs); while those in the walking group had significantly altered nine serum and four urine metabolites concerning steroid hormone biosynthesis and arachidonic acid metabolism compared to baseline. CONCLUSION: T2DM patients displayed impaired carbohydrate, lipid, and amino acid metabolism, and exercise therapy improved their metabolic health. Different modalities may act through different pathways. Tai Chi may improve disrupted BCAAs metabolism, whereas brisk walking mainly regulates steroid hormone biosynthesis and arachidonic acid metabolism.


Assuntos
Diabetes Mellitus Tipo 2 , Tai Chi Chuan , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/terapia , Terapia por Exercício/métodos , Metabolômica , Tai Chi Chuan/métodos , Hormônios , Aminoácidos , Ácidos Araquidônicos , Esteroides
2.
Apoptosis ; 28(11-12): 1546-1563, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37486406

RESUMO

Breast cancer is a common malignancy in women with poor prognosis. This study aimed to investigate the molecular mechanism of microRNA-944 (miR-944) mediated secreted phosphoprotein-1 (SPP1) in breast cancer progression and its regulatory effect on the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. Differential gene analysis was performed to identify key genes associated with breast cancer development by screening breast cancer-related microarray data. The expression of miR-944 and SPP1 and their relationship were determined in clinical samples and cells. sh-SPP1, oe-SPP1, LY294002 or miR-944 mimic were transfected into MCF-7 cells to investigate the role of miR-944 mediated SPP1 in breast cancer development and its regulatory effect on the PI3K/Akt pathway. Finally, the tumorigenicity of breast cancer cells was observed in nude mice. Through bioinformatics analysis, we identified SPP1 as a key gene in breast cancer, and miR-944 as an upstream miRNA of SPP1. In breast cancer tissues and cells, the expression of miR-944 was decreased while that of SPP1 was increased. miR-944 negatively regulated the expression of SPP1. In breast cancer cells, SPP1 activated the PI3K/Akt pathway to promote cell proliferation and inhibit apoptosis. In vitro cell experiments showed that the downregulation of miR-944 promoted the high expression of SPP1, which then activated the PI3K/Akt signaling pathway, promoting breast cancer cell proliferation. In vivo experiments further confirmed the anti-cancer role of miR-944 mediated SPP1 in breast cancer. Our study highlights the role of miR-944 mediated SPP1 in inhibiting breast cancer progression by blocking the PI3K/Akt pathway.


Assuntos
Neoplasias da Mama , MicroRNAs , Camundongos , Animais , Humanos , Feminino , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias da Mama/genética , Camundongos Nus , Apoptose/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Movimento Celular , Osteopontina/genética , Osteopontina/metabolismo
3.
Nat Commun ; 13(1): 5204, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057605

RESUMO

In addition to investigating the virology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), discovering the host-virus dependencies are essential to identify and design effective antiviral therapy strategy. Here, we report that the SARS-CoV-2 entry receptor, ACE2, conjugates with small ubiquitin-like modifier 3 (SUMO3) and provide evidence indicating that prevention of ACE2 SUMOylation can block SARS-CoV-2 infection. E3 SUMO ligase PIAS4 prompts the SUMOylation and stabilization of ACE2, whereas deSUMOylation enzyme SENP3 reverses this process. Conjugation of SUMO3 with ACE2 at lysine (K) 187 hampers the K48-linked ubiquitination of ACE2, thus suppressing its subsequent cargo receptor TOLLIP-dependent autophagic degradation. TOLLIP deficiency results in the stabilization of ACE2 and elevated SARS-CoV-2 infection. In conclusion, our findings suggest selective autophagic degradation of ACE2 orchestrated by SUMOylation and ubiquitination as a potential way to combat SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Autofagia , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Sumoilação , Ubiquitina-Proteína Ligases/metabolismo
4.
Biomacromolecules ; 23(5): 2007-2018, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35404583

RESUMO

Phototheranostic offers a regional-focused tumor treatment upon photoirradiation. However, it is difficult to completely eradicate solid tumors using a conventional phototheranostic owing to the residual tumor cells outside the laser irradiation range. Herein, we fabricated a metallopolysaccharide-based smart nanotheranostic (Fe-dHA) via a nanoassembly-driven method, in which Fe3+ ions were coordinated to dopamine-modified biopolysaccharide hyaluronic acid (dHA). Taking advantage of the structural backbone and intrinsic dual-information-related functions of HA as well as the bi-functional Fe(III)-coordination centers, Fe-dHA can efficiently target tumor cells for phototheranostic. Additionally, it can be activated by endogenous overexpressed hyaluronidase to achieve sequential ferroptosis in tumor cells. The precise imaging and effective tumor inhibition using this metallopolysaccharide-based nanotheranostic were significantly demonstrated in vivo and in vitro. Thus, this rationally designed Fe-dHA provided a simple metallopolysaccharide strategy to develop an "all-in-one" smart nanotheranostic to synergize different therapeutic modalities for improving cancer therapy.


Assuntos
Ferroptose , Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Compostos Férricos , Humanos , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Fototerapia , Nanomedicina Teranóstica
5.
Molecules ; 27(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35335337

RESUMO

DNA methylation, as one of the major means of epigenesis change, makes a large difference in the spatial structure of chromatin, transposable element activity and, fundamentally, gene transcription. It has been confirmed that DNA methylation is closely related to innate immune responses. Decitabine, the most efficient available DNA methyltransferase inhibitor, has demonstrated exhilarating immune activation and antiviral effects on multiple viruses, including HIV, HBV, HCV, HPV and EHV1. This review considers the role of decitabine in regulating innate immune responses and antiviral ability. Understanding the complex transcriptional and immune regulation of decitabine could help to identify and validate therapeutic methods to reduce pathogen infection-associated morbidity, especially virus infection-induced morbidity and mortality.


Assuntos
Antivirais , Imunomodulação , Antivirais/farmacologia , Antivirais/uso terapêutico , Cognição , Decitabina/farmacologia , Imunidade Inata
6.
Mol Med ; 27(1): 110, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530730

RESUMO

Posttranslational modification (PTM) and regulation of protein stability are crucial to various biological processes. Histone deacetylase 6 (HDAC6), a unique histone deacetylase with two functional catalytic domains (DD1 and DD2) and a ZnF-UBP domain (ubiquitin binding domain, BUZ), regulates a number of biological processes, including gene expression, cell motility, immune response, and the degradation of misfolded proteins. In addition to the deacetylation of histones, other nonhistone proteins have been identified as substrates for HDAC6. Hsp90, a molecular chaperone that is a critical modulator of cell signaling, is one of the lysine deacetylase substrates of HDAC6. Intriguingly, as one of the best-characterized regulators of Hsp90 acetylation, HDAC6 is the client protein of Hsp90. In addition to regulating Hsp90 at the post-translational modification level, HDAC6 also regulates Hsp90 at the gene transcription level. HDAC6 mainly regulates the Hsp90-HSF1 complex through the ZnF-UBP domain, thereby promoting the HSF1 entry into the nucleus and activating gene transcription. The mutual interaction between HDAC6 and Hsp90 plays an important role in the regulation of protein stability, cell migration, apoptosis and other functions. Plenty of of studies have indicated that blocking HDAC6/Hsp90 has a vital regulatory role in multifarious diseases, mainly in cancers. Therefore, developing inhibitors or drugs against HDAC6/Hsp90 becomes a promising development direction. Herein, we review the current knowledge on molecular regulatory mechanisms based on the interaction of HDAC6 and Hsp90 and inhibition of HDAC6 and/or Hsp90 in oncogenesis and progression, antiviral and immune-related diseases and other vital biological processes.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Desacetilase 6 de Histona/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Animais , Desenvolvimento de Medicamentos , Descoberta de Drogas , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/genética , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/genética , Histonas/metabolismo , Humanos , Isoenzimas , Ligação Proteica , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
7.
Mol Neurobiol ; 58(10): 5052-5066, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34245441

RESUMO

Postoperative cognitive dysfunction (POCD; cognitive change associated with anesthesia and surgery) is one of the most serious long-term postoperative complications that occur in elderly patients. Dexmedetomidine (DEX) has been shown to be beneficial for improving outcomes of postoperative cognitive function. However, the exact mechanism underlying this role requires is yet to be found. The present study aims to determine the pathways involved in the protective effects of DEX against POCD in C57BL/6 J aged mice. DEX was administered after POCD modeling in C57BL/6 J aged mice. The cognitive function was evaluated after DEX treatment using novel object recognition, open field, and Y-maze tests. We also assessed its effects on neuron apoptosis and production of TNF-α and IL-1ß in mouse brain tissues as well as expression levels of DNA damage-related proteins p53, p21, and γH2AX. Interactions between early growth response 1 (EGR1) and p53, microRNA (miR)-381, and EGR1 were identified by ChIP and luciferase reporter assays, and gain- and loss-of-function experiments were performed to confirm the involvement of their interaction in POCD. DEX administration attenuated hippocampal neuron apoptosis, neuroinflammation, DNA damage, and cognitive impairment in aged mice. miR-381 targeted EGR1 and disrupted its interaction with p53, leading to a decline in hippocampal neuron apoptosis, DNA damage, neuroinflammation, and cognitive impairment. Furthermore, DEX administration resulted in the enhancement of miR-381 expression and the subsequent inhibition of EGR1/p53 to protect against cognitive impairment in aged mice. Overall, these results indicate that DEX may have a potential neuroprotective effect against POCD via the miR-381/EGR1/p53 signaling, shedding light on the mechanisms involved in neuroprotection in POCD.


Assuntos
Dexmedetomidina/uso terapêutico , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Hipocampo/metabolismo , MicroRNAs/metabolismo , Complicações Cognitivas Pós-Operatórias/tratamento farmacológico , Complicações Cognitivas Pós-Operatórias/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Dexmedetomidina/farmacologia , Proteína 1 de Resposta de Crescimento Precoce/antagonistas & inibidores , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Complicações Cognitivas Pós-Operatórias/psicologia , Proteína Supressora de Tumor p53/antagonistas & inibidores
8.
Int J Med Sci ; 18(12): 2561-2569, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104087

RESUMO

SARS-CoV-2 infection poses a global challenge to human health. Upon viral infection, host cells initiate the innate antiviral response, which primarily involves type I interferons (I-IFNs), to enable rapid elimination of the invading virus. Previous studies revealed that SARS-CoV-2 infection limits the expression of I-IFNs in vitro and in vivo, but the underlying mechanism remains incompletely elucidated. In the present study, we performed data mining and longitudinal data analysis using SARS-CoV-2-infected normal human bronchial epithelial (NHBE) cells and ferrets, and the results confirmed the strong inhibitory effect of SARS-CoV-2 on the induction of I-IFNs. Moreover, we identified genes that are negatively correlated with IFNB1 expression in vitro and in vivo based on Pearson correlation analysis. We found that SARS-CoV-2 activates numerous intrinsic pathways, such as the circadian rhythm, phosphatidylinositol signaling system, peroxisome, and TNF signaling pathways, to inhibit I-IFNs. These intrinsic inhibitory pathways jointly facilitate the successful immune evasion of SARS-CoV-2. Our study elucidates the underlying mechanism by which SARS-CoV-2 evades the host innate antiviral response in vitro and in vivo, providing theoretical evidence for targeting these immune evasion-associated pathways to combat SARS-CoV-2 infection.


Assuntos
COVID-19/imunologia , Interações Hospedeiro-Patógeno/imunologia , Interferon gama/metabolismo , SARS-CoV-2/imunologia , Animais , Brônquios/citologia , COVID-19/virologia , Linhagem Celular , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Células Epiteliais , Furões , Regulação da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/genética , Humanos , Imunidade Inata , Interferon gama/imunologia , RNA-Seq , Mucosa Respiratória/citologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
9.
Chem Biol Interact ; 338: 109371, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33582112

RESUMO

Hepatocellular carcinoma (HCC) is one of the most deadly malignancies worldwide. However, current therapeutic drugs for HCC are far from satisfactory. Thus, the development of new drugs is urgently needed. In this study, we identified a novel quinazoline derivative, 04NB-03, with potent anti-HCC activities both in vitro and in vivo. 04NB-03 effectively suppressed the viability and proliferation of HCC cells. It induced both cell cycle arrest at the G2/M phase and apoptosis in concentration- and time-dependent manners. Moreover, 04NB-03 treatment significantly reduced xenograft tumor growth without notable toxic effects. Mechanistically, 04NB-03 induced endogenous reactive oxygen species (ROS) accumulation in concentration- and time-dependent manners. Scavenging the ROS reversed 04NB-03-induced cell cycle arrest and apoptosis. Taken together, these results indicate that the quinazoline derivative, 04NB-03, inhibits the growth of HCC cells through the induction of cell cycle arrest and apoptosis in an ROS-dependent manner. 04NB-03 is, therefore, a potential small molecule candidate for the development of antitumor drugs targeting HCC.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Neoplasias Hepáticas/patologia , Quinazolinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus , Quinazolinas/química
10.
PLoS One ; 15(12): e0243883, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33332386

RESUMO

OBJECTIVE: To estimate the prevalence of disability and anxiety in Covid-19 survivors at discharge from hospital and analyze relative risk by exposures. DESIGN: Multi-center retrospective cohort study. SETTING: Twenty-eight hospitals located in eight provinces of China. METHODS: A total of 432 survivors with laboratory-confirmed SARS CoV-2 infection participated in this study. At discharge, we assessed instrumental activities of daily living (IADL) with Lawton's IADL scale, dependence in activities of daily living (ADL) with the Barthel Index, and anxiety with Zung's self-reported anxiety scale. Exposures included comorbidity, smoking, setting (Hubei vs. others), disease severity, symptoms, and length of hospital stay. Other risk factors considered were age, gender, and ethnicity (Han vs. Tibetan). RESULTS: Prevalence of at least one IADL problem was 36.81% (95% CI: 32.39-41.46). ADL dependence was present in 16.44% (95% CI: 13.23-20.23) and 28.70% (95% CI: 24.63-33.15) were screened positive for clinical anxiety. Adjusted risk ratio (RR) of IADL limitations (RR 2.48, 95% CI: 1.80-3.40), ADL dependence (RR 2.07, 95% CI 1.15-3.76), and probable clinical anxiety (RR 2.53, 95% CI 1.69-3.79) were consistently elevated in survivors with severe Covid-19. Age was an additional independent risk factor for IADL limitations and ADL dependence; and setting (Hubei) for IADL limitations and anxiety. Tibetan ethnicity was a protective factor for anxiety but a risk factor for IADL limitations. CONCLUSION: A significant proportion of Covid-19 survivors had disability and anxiety at discharge from hospital. Health systems need to be prepared for an additional burden resulting from rehabilitation needs of Covid-19 survivors.


Assuntos
Transtornos de Ansiedade , COVID-19 , Pessoas com Deficiência , SARS-CoV-2 , Sobreviventes , Atividades Cotidianas , Adulto , Fatores Etários , Idoso , Transtornos de Ansiedade/epidemiologia , Transtornos de Ansiedade/psicologia , COVID-19/mortalidade , COVID-19/psicologia , China/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Estudos Retrospectivos , Fatores de Risco
11.
Eur J Pharmacol ; 885: 173497, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32841641

RESUMO

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Owing to the limitations in the current therapeutic strategies for treating HCC, development of novel chemotherapeutic drugs is urgently needed. In the present study, we found that QQM, a newly-synthesized quinolinylmethyl substituted ethylenediamine compound, exhibited anti-HCC effects both in vitro and in vivo. QQM inhibited HCC cell growth and induced G0/G1-phase cell cycle arrest and apoptosis in a dose-dependent manner. Our results showed that QQM acted by significantly increasing intracellular reactive oxygen species in HCC cells, which led to cell apoptosis and growth inhibition. Furthermore, QQM treatment resulted in an accumulation of reactive nitric oxide (NO) in HCC cells, and introduction of a NO scavenger, carboxy-PTIO, largely attenuated QQM-induced cytotoxicity. Finally, we found that QQM inhibited growth and induced apoptosis of HCC xenograft tumors in vivo. Taken together, our results indicated that QQM exerted anti-HCC effects by inducing reactive oxygen species and NO accumulation in HCC cells. Thus, QQM exhibits the qualities of a novel, promising anti-tumor candidate for the treatment of HCC.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Etilenodiaminas/síntese química , Etilenodiaminas/farmacologia , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/metabolismo , Óxido Nítrico/metabolismo , Quinolinas/síntese química , Quinolinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Benzoatos/farmacologia , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Células Hep G2 , Humanos , Imidazóis/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Front Oncol ; 10: 1407, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850455

RESUMO

Brain and reproductive organ-expressed protein (BRE) is aberrantly expressed in multiple cancers; however, its expression pattern in human esophageal squamous cell carcinoma (ESCC) and its role in ESCC progression remain unclear. In this study, we aimed to investigate the expression pattern of BRE in human ESCC and its role in ESCC progression. BRE was overexpressed in ESCC tissues compared with that in the adjacent non-tumor tissues. Forced expression of BRE was sufficient to enhance ESCC cell growth by promoting cell cycle progression and anti-apoptosis. Silencing of BRE suppressed these malignant phenotypes of ESCC cells. Mechanistic evaluation revealed that BRE overexpression activated the phosphorylation of AKT, and inhibition of the AKT pathway by MK2206 decreased the BRE-induced cell growth and apoptotic resistance in ESCC cells, highlighting the critical role of AKT signaling in mediating the effects of BRE. Moreover, the effects of BRE on ESCC cell growth and AKT activation were verified in a xenograft model in vivo. The present results show that BRE is overexpressed in ESCC tissues and contributes to the growth of ESCC cells by activating AKT signaling both in vitro and in vivo and provide insight into the role of BRE in AKT signaling and ESCC pathogenesis.

13.
Virol J ; 17(1): 41, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32192525

RESUMO

BACKGROUND: Herpes simplex virus 1, an enveloped DNA virus belonging to the Herpesviridae family, spreads to neurons and causes pathological changes in the central nervous system. The purpose of this study was to investigate the potency and mechanism of antiviral activity of Aspergillipeptide D, a cyclic pentapeptide isolated from a culture broth of marine gorgonian-derived fungus Aspergillus sp. SCSIO 41501, At present, there are many studies on the anti-tumor, anti-clotting, anti-oxidant and immunoinflammatory effects of Aspergillipeptide D, but little research has been done on the anti-HSV-1 activity of Aspergillipeptide D. METHODS: The anti-HSV-1 activity of Aspergillipeptide D was evaluated by plaque reduction assay. The mechanism of action against HSV-1 was determined from the effective stage. Then we assayed the viral DNA replication, viral RNA synthesis and protein expression, respectively. We also identified the proteins that interact with gB by mass spectrometry, and assayed the effect of Aspergillipeptide D on the interaction between the virus gB protein and cell proteins. RESULTS: Plaque reduction experiments showed that Aspergillipeptide D did not affect HSV-1 early infection events, including viral inactivation, attachment and penetration. Interestingly, Aspergillipeptide D dramatically reduced both the gene and protein levels of viral late protein gB, and suppressed its location in the endoplasmic reticulum and Golgi apparatus. In contrast, overexpression of gB restored viral production. Finally, proteomic analysis revealed that the numbers of cellular proteins that interacted with gB protein was largely decreased by Aspergillipeptide D. These results suggested that Aspergillipeptide D inhibited gB function to affect HSV-1 intercellular spread. CONCLUSIONS: Our results indicated that Aspergillipeptide D might be a potential candidate for HSV-1 therapy, especially for ACV-resistant strains.


Assuntos
Antivirais/farmacologia , Aspergillus/química , Herpesvirus Humano 1/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Animais , Antivirais/isolamento & purificação , Chlorocebus aethiops , Meios de Cultura , Herpesvirus Humano 1/fisiologia , Humanos , Inibidores da Síntese de Ácido Nucleico/isolamento & purificação , Inibidores da Síntese de Ácido Nucleico/farmacologia , Peptídeos Cíclicos/isolamento & purificação , Proteômica , RNA Viral/biossíntese , Células Vero , Inativação de Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
14.
Proc Natl Acad Sci U S A ; 116(41): 20296-20302, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548389

RESUMO

Photodynamic therapy (PDT) is a treatment procedure that relies on cytotoxic reactive oxygen species (ROS) generated by the light activation of a photosensitizer. The photophysical and biological properties of photosensitizers are vital for the therapeutic outcome of PDT. In this work a 2D rhomboidal metallacycle and a 3D octahedral metallacage were designed and synthesized via the coordination-driven self-assembly of a Ru(II)-based photosensitizer and complementary Pt(II)-based building blocks. The metallacage showed deep-red luminescence, a large 2-photon absorption cross-section, and highly efficient ROS generation. The metallacage was encapsulated into an amphiphilic block copolymer to form nanoparticles to encourage cell uptake and localization. Upon internalization into cells, the nanoparticles selectively accumulate in the lysosomes, a favorable location for PDT. The nanoparticles are almost nontoxic in the dark, and can efficiently destroy tumor cells via the generation of ROS in the lysosomes under 2-photon near-infrared light irradiation. The superb PDT efficacy of the metallacage-containing nanoparticles was further validated by studies on 3D multicellular spheroids (MCS) and in vivo studies on A549 tumor-bearing mice.


Assuntos
Nanopartículas Metálicas , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Compostos de Platina , Compostos de Rutênio , Células A549 , Animais , Desenvolvimento de Medicamentos , Humanos , Lisossomos , Camundongos , Neoplasias Experimentais/tratamento farmacológico , Fármacos Fotossensibilizantes/química
15.
Biochem Pharmacol ; 166: 82-92, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31071330

RESUMO

Inflammatory events are tightly associated with the death caused by Herpes simplex virus 1 (HSV-1) infection of the brain. Heat shock protein 90 (Hsp90) is a molecular chaperone that is stimulated in response to many stressful conditions (e.g., inflammation and hypoxia) and Hsp90 inhibitors are suggested to be potent inhibitors of the inflammatory response. The aim of this study was to investigate the effect of Hsp90 inhibitor AT-533 on HSV-1-induced inflammation. AT-533 at a non-antiviral concentration was found to show a prominent inhibitory effect on the production of cytokines induced by HSV-1 infection, such as tumor necrosis factor α (TNF-α), interleukin 6 (IL-6) and interleukin 1ß (IL-1ß). Mechanically, HSV-1 early infection induced inflammation through NF-κB signaling and NLRP3 inflammasome activation, as illustrated by the nuclear translocation of NF-κB and the enhanced cleavage of caspase-1. Besides, HSV-1 enhanced the interaction between NLRP3 and Hsp90. Moreover, AT-533 reduced the nuclear translocation of NF-κB and inflammasome activation via inhibiting the chaperone function of Hsp90. Furthermore, AT-533 inhibited the cleavage of pro-IL-1ß to mature IL-1ß in a NLRP3-independent manner. In summary, AT-533 may be a promising therapeutic strategy in HSV-1-infected inflammation management.


Assuntos
Antivirais/uso terapêutico , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/deficiência , Animais , Antivirais/farmacologia , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Camundongos Knockout , Células RAW 264.7 , Células Vero
16.
ACS Appl Mater Interfaces ; 10(12): 10490-10500, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29490139

RESUMO

Alginates (nickel alginate, NiA; copper alginate, CuA; zinc alginate, ZnA) and 3-aminopropyltriethoxysilane (APTES) were alternately deposited on a magnesium hydroxide (MH) surface by the spray-drying-assisted layer-by-layer assembly technique, fabricating some efficient and environmentally benign flame retardants (M-FR, including Ni-FR, Cu-FR, and Zn-FR). The morphology, chemical compositions, and structures of M-FR were investigated. With 50 wt % loading, compared with EVA28+MH, the peak heat release rate, smoke production rate, and CO production rate of EVA28+Ni-FR decreased by 50.78%, 61.76%, and 66.67%, respectively. The metals or metal oxide nanoparticles arising from alginates could catalyze the pyrolysis intermediates of EVA into graphene and amorphous carbon, which could bind the inorganic compounds (the decomposition products of MH and APTES) together and form some more protective barriers. For each M-FR, the flame retardant and smoke suppression efficiency were different, which were caused by the diverse carbonization and graphitization behaviors of three alginates. ZnA generated some ZnO aggregations and could not catalyze the graphitization of intermediates. For CuA, the catalytic graphitization was limited by the tightly binding graphene layer. As for NiA, the configuration of the Ni atom could not provide strong binding of Ni substrate and carbon. The liquid-like Ni nanoparticles could restructure and get out from firm graphene shells, so the catalytic graphitization of NiA was efficient and sustainable. This work displayed the catalytic graphitization mechanism of alginates while exploring a simple and novel strategy for fabricating efficient green flame retardants.

17.
Arch Virol ; 162(11): 3269-3282, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28780632

RESUMO

The emergence of antiviral drug-resistant mutants is the most important issue in current antiviral therapy. As obligate parasites, viruses require host factors for efficient replication. An ideal therapeutic target to prevent drug-resistance development is represented by host factors that are crucial for the viral life cycle. Recent studies have indicated that heat shock protein 90 (HSP90) is a crucial host factor that is required by many viruses for multiple phases of their life cycle including viral entry, nuclear import, transcription, and replication. In this review, we summarize the most recent advances regarding HSP90 function, mechanisms of action, and molecular pathways that are associated with viral infection, and provide a comprehensive understanding of the role of HSP90 in the immune response and exosome-mediated viral transmission. In addition, several HSP90 inhibitors have entered clinical trials for specific cancers that are associated with viral infection, which further implies a crucial role for HSP90 in the malignant transformation of virus-infected cells; as such, HSP90 inhibitors exhibit excellent therapeutic potential. Finally, we describe the challenge of developing HSP90 inhibitors as anti-viral drugs.


Assuntos
Antivirais/farmacologia , Proteínas de Choque Térmico HSP90/metabolismo , Viroses/tratamento farmacológico , Viroses/metabolismo , Animais , Humanos , Viroses/virologia , Replicação Viral/efeitos dos fármacos
18.
Stem Cells ; 35(7): 1760-1772, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28436570

RESUMO

Bre is a conserved cellular protein expressed in various tissues. Its major function includes DNA damage repair and anti-apoptosis. Recent studies indicate that Bre is potentially involved in stem cell differentiation although pathophysiological significance along with the molecular mechanisms is still unclear. Here, we report that Bre protein was substantially expressed in the bone tissue and its expression was highly upregulated during the osteogenic differentiation. To test a hypothesis that Bre plays functional roles in the process of osteogenic differentiation, we examined the expression of Bre in an osteoporosis mouse model. Compared with the normal bone tissue, Bre expression in osteoporotic bone was also significantly reduced. Moreover, knockdown of Bre in the mouse bone marrow mesenchymal cells significantly reduced the expression of osteogenic marker genes, the alkaline phosphatase activity, and the mineralization capacity, while overexpression of Bre greatly promoted the osteogenesis both in vitro and in vivo. Interestingly, we founded that knockdown of Bre led to activation of the p53 signaling pathways exhibited by increased p53, p21, and Mdm2. However, when we inhibited the p53 by siRNA silencing or pifithrin-α, the impaired osteogenesis caused by Bre knockdown was greatly restored. Finally, we found that Bre promoted the Mdm2-mediated p53 ubiquitination and degradation by physically interacting with p53. Taken together, our results revealed a novel function of Bre in osteoblast differentiation through modulating the stability of p53. Stem Cells 2017;35:1760-1772.


Assuntos
Osso e Ossos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Osteogênese/genética , Osteoporose/genética , Proteína Supressora de Tumor p53/genética , Animais , Benzotiazóis/farmacologia , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Osso e Ossos/patologia , Diferenciação Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Osteoporose/metabolismo , Osteoporose/patologia , Osteoporose/terapia , Cultura Primária de Células , Estabilidade Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Engenharia Tecidual , Alicerces Teciduais , Tolueno/análogos & derivados , Tolueno/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo
19.
Immunopharmacol Immunotoxicol ; 39(3): 107-116, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28276734

RESUMO

Inflammation is a defensive response against a multitude of harmful stimuli and stress conditions such as tissue injury, and is one of the most common pathological processes of human diseases. 6-Hydroxyrubiadin, an anthraquinone isolated from Rubia cordifolia L., exhibits several bioactive properties. The aim of this study was to evaluate whether 6-hydroxyrubiadin can reduce the production of pro-inflammatory cytokines and ameliorate acute lung injury (ALI) in a mouse model. In this study, we demonstrated that 6-hydroxyrubiadin suppressed lipopolysaccharide (LPS)-induced nuclear factor-kappa B activation as well as the phosphorylation of c-Jun N-terminal kinase in RAW 264.7 macrophages. In addition, we also showed that 6-hydroxyrubiadin inhibited the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and IL-6 in phorbol myristate acetate (PMA)-primed U937 and RAW 264.7 cells. Furthermore, 6-hydroxyrubiadin treatment reduced the production of these cytokines in vivo and attenuated the severity of LPS-induced ALI. Thus, these results suggested that 6-hydroxyrubiadin may be a potential therapeutic candidate for the treatment of inflammation and inflammatory diseases.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Antraquinonas/farmacologia , Lipopolissacarídeos/toxicidade , Rubia/química , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Antraquinonas/química , Citocinas/biossíntese , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Células RAW 264.7 , Células U937
20.
Eur J Pharmacol ; 794: 52-60, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27871911

RESUMO

Inflammation is a defensive response against various harmful stimuli and stress conditions, such as tissue injury and one of the most common pathological processes occurring in human diseases. Theaflavin-3,3'-digallate, one of the theaflavins present in black tea, exhibits several bioactive properties, including the ability to lower the incidence of coronary heart disease, a positive effect on the bone mineral density, and the ability to prevent cancer. The aim of this study was to evaluate whether theaflavin-3,3'-digallate could reduce the production of pro-inflammatory cytokines in vivo and in vitro and ameliorate acute lung injury (ALI) in a mouse model. In this study, we demonstrated that theaflavin-3,3'-digallate suppressed the lipopolysaccharide (LPS)-induced phosphorylation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase in RAW 264.7 macrophages. In addition, we also showed that theaflavin-3,3'-digallate inhibited the expression of tumor necrosis factor alpha, interleukin -1 beta, and interleukin 6 in phorbol myristate acetate -primed U937 and RAW 264.7 cells. Furthermore, theaflavin-3,3'-digallate treatment attenuated the severity of LPS-induced ALI in mice. These results suggested that theaflavin-3,3'-digallate might be a potential therapeutic candidate for the treatment of inflammation and inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Biflavonoides/farmacologia , Catequina/análogos & derivados , Lipopolissacarídeos/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Anti-Inflamatórios/uso terapêutico , Biflavonoides/uso terapêutico , Catequina/farmacologia , Catequina/uso terapêutico , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , NF-kappa B/metabolismo , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA