Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(12)2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38136627

RESUMO

Nrg1 (Neuregulin 1) type III, a susceptible gene of schizophrenia, exhibits a critical role in the central nervous system and is essential at each stage of Schwann's cell development. Nrg1 type III comprises double-pass transmembrane domains, with the N-terminal and C-terminal localizing inside the cells. The N-terminal transmembrane helix partially overlaps with the cysteine-rich domain (CRD). In this study, Nrg1 type III constructs with different tags were transformed into cultured cells to verify whether CRD destroyed the transmembrane helix formation. We took advantage of immunofluorescent and immunoprecipitation assays on whole cells and analyzed the N-terminal distribution. Astonishingly, we found that a novel form of Nrg1 type III, about 10% of Nrg1 type III, omitted the N-terminal transmembrane helix, with the N-terminal positioning outside the membrane. The results indicated that the novel single-pass transmembrane status was a minor form of Nrg1 type III caused by N-terminal processing, while the major form was a double-pass transmembrane status.


Assuntos
Neuregulina-1 , Esquizofrenia , Humanos , Neuregulina-1/genética , Esquizofrenia/genética
2.
Glycoconj J ; 34(2): 207-217, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27975161

RESUMO

The present study aimed to characterize the glucan from C. mollissima Blume fruits and its selenium derivative, then investigate their antitumor activity in vitro. A glucan, designated as CPA, was firstly isolated from the fruits of C. mollissima Blume. Structure analysis indicated that CPA was a linear 1,6-α-D-glucan with the average molecular weight about 2.0 × 103 kDa. The selenylation modification derivative of CPA (sCPA), exhibited a stronger antiproliferative effect on tumor cells than CPA in vitro. CPA and sCPA could induce HeLa cells apoptosis and decrease mitochondrial membrane potential. sCPA could also arrest HeLa cells in S phase, promote reactive oxygen species generation and activate caspase-3 activity in HeLa cells. These results manifest that CPA and sCPA inhibit the proliferation of HeLa cells via different mechanisms, which is meaningful for their potential use as antitumor drugs.


Assuntos
Antineoplásicos Fitogênicos , Fagaceae/química , Flores/química , Glucanos , Neoplasias/tratamento farmacológico , Selênio , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Glucanos/química , Glucanos/isolamento & purificação , Glucanos/farmacologia , Células HeLa , Humanos , Células MCF-7 , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Selênio/química , Selênio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA