Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Biomed Pharmacother ; 175: 116643, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38696988

RESUMO

Accumulated alterations in metabolic control provide energy and anabolic demands for enhanced cancer cell proliferation. Exemplified by the Warburg effect, changes in glucose metabolism during cancer progression are widely recognized as a characteristic of metabolic disorders. Since telomerases are a vital factor in maintaining DNA integrity and stability, any damage threatening telomerases could have a severe impact on DNA and, subsequently, whole-cell homeostasis. However, it remains unclear whether the regulation of glucose metabolism in cancer is connected to the regulation of telomerase. In this review, we present the latest insights into the crosstalk between telomerase function and glucose metabolism in cancer cells. However, at this moment this subject is not well investigated that the association is mostly indirectly regulations and few explicit regulating pathways were identified between telomerase and glucose metabolism. Therefore, the information presented in this review can provide a scientific basis for further research on the detail mechanism and the clinical application of cancer therapy, which could be valuable in improving the effectiveness of chemotherapy.

2.
J Nanobiotechnology ; 22(1): 247, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741123

RESUMO

Tyrosine kinase inhibitors have been the standard treatment for patients with Philadelphia chromosome-positive (Ph+) leukemia. However, a series of issues, including drug resistance, relapse and intolerance, are still an unmet medical need. Here, we report the targeted siRNA-based lipid nanoparticles in Ph+ leukemic cell lines for gene therapy of Ph+ leukemia, which specifically targets a recently identified NEDD8 E3 ligase RAPSYN in Ph+ leukemic cells to disrupt the neddylation of oncogenic BCR-ABL. To achieve the specificity for Ph+ leukemia therapy, a single-chain fragment variable region (scFv) of anti-CD79B monoclonal antibody was covalently conjugated on the surface of OA2-siRAPSYN lipid nanoparticles to generate the targeted lipid nanoparticles (scFv-OA2-siRAPSYN). Through effectively silencing RAPSYN gene in leukemic cell lines by the nanoparticles, BCR-ABL was remarkably degraded accompanied by the inhibition of proliferation and the promotion of apoptosis. The specific targeting, therapeutic effects and systemic safety were further evaluated and demonstrated in cell line-derived mouse models. The present study has not only addressed the clinical need of Ph+ leukemia, but also enabled gene therapy against a less druggable target.


Assuntos
Proteínas de Fusão bcr-abl , Nanopartículas , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Nanopartículas/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Inativação Gênica , RNA Interferente Pequeno , Proteína NEDD8/metabolismo , Proteína NEDD8/genética , Camundongos Endogâmicos BALB C , Apoptose/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/terapia , Terapia Genética/métodos , Proliferação de Células/efeitos dos fármacos , Feminino
3.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612943

RESUMO

Clear cell renal carcinoma (ccRCC), the most common subtype of renal cell carcinoma, has the high heterogeneity of a highly complex tumor microenvironment. Existing clinical intervention strategies, such as target therapy and immunotherapy, have failed to achieve good therapeutic effects. In this article, single-cell transcriptome sequencing (scRNA-seq) data from six patients downloaded from the GEO database were adopted to describe the tumor microenvironment (TME) of ccRCC, including its T cells, tumor-associated macrophages (TAMs), endothelial cells (ECs), and cancer-associated fibroblasts (CAFs). Based on the differential typing of the TME, we identified tumor cell-specific regulatory programs that are mediated by three key transcription factors (TFs), whilst the TF EPAS1/HIF-2α was identified via drug virtual screening through our analysis of ccRCC's protein structure. Then, a combined deep graph neural network and machine learning algorithm were used to select anti-ccRCC compounds from bioactive compound libraries, including the FDA-approved drug library, natural product library, and human endogenous metabolite compound library. Finally, five compounds were obtained, including two FDA-approved drugs (flufenamic acid and fludarabine), one endogenous metabolite, one immunology/inflammation-related compound, and one inhibitor of DNA methyltransferase (N4-methylcytidine, a cytosine nucleoside analogue that, like zebularine, has the mechanism of inhibiting DNA methyltransferase). Based on the tumor microenvironment characteristics of ccRCC, five ccRCC-specific compounds were identified, which would give direction of the clinical treatment for ccRCC patients.


Assuntos
Carcinoma de Células Renais , Aprendizado Profundo , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Células Endoteliais , Algoritmos , Análise de Célula Única , Antimetabólitos , Metilases de Modificação do DNA , Descoberta de Drogas , Neoplasias Renais/tratamento farmacológico , DNA , Microambiente Tumoral
4.
Gynecol Endocrinol ; 40(1): 2332411, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38537663

RESUMO

OBJECTIVES: The objective of this study was to investigate the glycolytic activity of adenomyosis, which is characterized by malignant biological behaviors including abnormal cell proliferation, migration, invasion, cell regulation, and epithelial-mesenchymal transition. METHODS: From January 2021 to August 2022, a total of 15 patients who underwent total hysterectomy for adenomyosis and 14 patients who had non-endometrial diseases, specifically with cervical squamous intraepithelial neoplasia and uterine myoma, were included in this study. Myometrium with ectopic endometrium from patients with adenomyosis while normal myometrium from patients in the control group were collected. All samples were confirmed by a histopathological examination. The samples were analyzed by liquid chromatography-mass spectrometry (LC-MS), real-time quantitative PCR, NAD+/NADH assay kit as well as the glucose and lactate assay kits. RESULTS: Endometrial stroma and glands could be observed within the myometrium of patients in the adenomyosis group. We found that the mRNA expressions of HK1, PFKFB3, glyceraldehyde-3-phospate dehydrogenase (GAPDH), PKM2, and PDHA as well as the protein expressions of PFKFB3 were elevated in ectopic endometrial tissues of the adenomyosis group as compared to normal myometrium of the control group. The level of fructose 1,6-diphosphate was increased while NAD + and NAD+/NADH ratio were decreased compared with the control group. Besides, increased glucose consumption and lactate production were observed in myometrium with ectopic endometrium. CONCLUSIONS: We concluded that altered glycolytic phenotype of the myometrium with ectopic endometrium in women with adenomyosis may contribute the development of adenomyosis.


Assuntos
Adenomiose , Humanos , Feminino , Adenomiose/patologia , Miométrio/metabolismo , NAD/metabolismo , Endométrio/metabolismo , Glucose/metabolismo , Lactatos/metabolismo
5.
Redox Biol ; 71: 103108, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38457903

RESUMO

High-risk human papillomaviruses (HPVs) are the causative agents of cervical cancer. Here, we report that HPV16 E6E7 promotes cervical cancer cell proliferation by activating the pentose phosphate pathway (PPP). We found that HPV16 E6 activates the PPP primarily by increasing glucose-6-phosphate dehydrogenase (G6PD) enzyme activity. Mechanistically, HPV16 E6 promoted G6PD dimer formation by inhibiting its lactylation. Importantly, we suggest that G6PD K45 was lactylated during G6PD-mediated antioxidant stress. In primary human keratinocytes and an HPV-negative cervical cancer C33A cells line ectopically expressing HPV16 E6, the transduction of G6PD K45A (unable to be lactylated) increased GSH and NADPH levels and, correspondingly, decreasing ROS levels. Conversely, the re-expression of G6PD K45T (mimicking constitutive lactylation) in HPV16-positive SiHa cells line inhibited cell proliferation. In vivo, the inhibition of G6PD enzyme activity with 6-aminonicotinamide (6-An) or the re-expression of G6PD K45T inhibited tumor proliferation. In conclusion, we have revealed a novel mechanism of HPV oncoprotein-mediated malignant transformation. These findings might provide effective strategies for treating cervical and HPV-associated cancers.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo do Útero/metabolismo , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Via de Pentose Fosfato , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Proliferação de Células
6.
Int Immunopharmacol ; 131: 111831, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38489969

RESUMO

BACKGROUND: Fibrin(ogen) deposition in the central nervous system (CNS) contributes to neuropathological injury; however, its role in ischemic stroke is unknown. In this study, we identified fibrinogen as a novel proinflammatory regulator of post-stroke neuroinflammation and revealed the neuro-protection effect of fibrin-derived γ377-395peptide in stroke. METHODS: Fibrinogen depletion and fibrinogen-derived γ377-395peptide treatment were performed 2 h after establishing a permanent middle cerebral artery occlusion (pMCAO) model. The infarction volume, neurological score, fibrin(ogen) deposition, and inflammatory response were evaluated 24 h after occlusion. Both in vivo and in vitro studies were conducted to assess the therapeutic potential of the γ377-395peptide in blocking the interactions between fibrin(ogen) and neutrophils. RESULTS: Fibrin(ogen) deposited in the infarct core promoted post-stroke inflammation and exacerbated neurological deficits in the acute phase after stroke onset. Reducing fibrinogen deposition resulted in a decrease in infarction volume, improved neurological scores, and reduced inflammation in the brain. Additionally, the presence of neutrophil accumulation near fibrin(ogen) deposits was observed in ischemic lesions, and the engagement of fibrin(ogen) by integrin receptor αMß2 promoted neutrophil activation and post-stroke inflammation. Finally, inhibiting fibrin(ogen)-mediated neutrophil activation using a fibrinogen-derived γ377-395peptide significantly attenuated neurological deficits. CONCLUSIONS: Fibrin(ogen) is a crucial regulator of post-stroke inflammation and contributes to secondary brain injury. The inflammation induced by fibrin(ogen) is primarily driven by neutrophils during acute ischemic stroke and can be ameliorated using the fibrin-derived γ377-395peptide. Targeting the fibrin(ogen)-mediated neuropathological process represents a promising approach for neuroprotective therapy after stroke while preserving its beneficial coagulation function.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Doenças Neuroinflamatórias , Inflamação/tratamento farmacológico , Inflamação/patologia , Fibrinogênio , Peptídeos , Fibrina , Acidente Vascular Cerebral/tratamento farmacológico , Infarto
7.
J Exp Clin Cancer Res ; 43(1): 36, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38291438

RESUMO

BACKGROUND: Discoidin, CUB, and LCCL domain-containing type I (DCBLD1) is identified as an oncogene involved in multiple regulation of tumor progression, but specific mechanisms remain unclear in cervical cancer. Lactate-mediated lactylation modulates protein function. Whether DCBLD1 can be modified by lactylation and the function of DCBLD1 lactylation are unknown. Therefore, this study aims to investigate the lactylation of DCBLD1 and identify its specific lactylation sites. Herein, we elucidated the mechanism by which lactylation modification stabilizes the DCBLD1 protein. Furthermore, we investigated DCBLD1 overexpression activating pentose phosphate pathway (PPP) to promote the progression of cervical cancer. METHODS: DCBLD1 expression was examined in human cervical cancer cells and adjacent non-tumorous tissues using quantitative reverse transcription-polymerase chain reaction, western blotting, and immunohistochemistry. In vitro and in vivo studies were conducted to investigate the impact of DCBLD1 on the progression of cervical cancer. Untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics studies were used to characterize DCBLD1-induced metabolite alterations. Western blot, immunofuorescence and transmission electron microscopy were performed to detect DCBLD1 degradation of G6PD by activating autophagy. Chromatin immunoprecipitation, dual luciferase reporter assay for detecting the mechanism by which lactate increases DCBLD1 transcription. LC-MS/MS was employed to verify specific modification sites within the DCBLD1 protein. RESULTS: We found that lactate increased DCBLD1 expression, activating the PPP to facilitate the proliferation and metastasis of cervical cancer cells. DCBLD1 primarily stimulated PPP by upregulating glucose-6-phosphate dehydrogenase (G6PD) expression and enzyme activity. The mechanism involved the increased enrichment of HIF-1α in the DCBLD1 promoter region, enhancing the DCBLD1 mRNA expression. Additionally, lactate-induced DCBLD1 lactylation stabilized DCBLD1 expression. We identified DCBLD1 as a lactylation substrate, with a predominant lactylation site at K172. DCBLD1 overexpression inhibited G6PD autophagic degradation, activating PPP to promote cervical cancer progression. In vivo, 6-An mediated inhibition of G6PD enzyme activity, inhibiting tumor proliferation. CONCLUSIONS: Our findings revealed a novel post-translational modification type of DCBDL1, emphasizing the significance of lactylation-driven DCBDL1-mediated PPP in promoting the progression of cervical cancer.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Cromatografia Líquida , Lactatos , Via de Pentose Fosfato , Espectrometria de Massas em Tandem , Neoplasias do Colo do Útero/genética
8.
Cell Death Dis ; 15(1): 90, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278800

RESUMO

Abnormal activation of telomerase occurs in most cancer types, which facilitates escaping from cell senescence. As the key component of telomerase, telomerase reverse transcriptase (TERT) is regulated by various regulation pathways. TERT gene changing in its promoter and phosphorylation respectively leads to TERT ectopic expression at the transcription and protein levels. The co-interacting factors play an important role in the regulation of TERT in different cancer types. In this review, we focus on the regulators of TERT and these downstream functions in cancer regulation. Determining the specific regulatory mechanism will help to facilitate the development of a cancer treatment strategy that targets telomerase and cancer cell senescence. As the most important catalytic subunit component of telomerase, TERT is rapidly regulated by transcriptional factors and PTM-related activation. These changes directly influence TERT-related telomere maintenance by regulating telomerase activity in telomerase-positive cancer cells, telomerase assembly with telomere-binding proteins, and recruiting telomerase to the telomere. Besides, there are also non-canonical functions that are influenced by TERT, including the basic biological functions of cancer cells, such as proliferation, apoptosis, cell cycle regulation, initiating cell formation, EMT, and cell invasion. Other downstream effects are the results of the influence of transcriptional factors by TERT. Currently, some small molecular inhibitors of TERT and TERT vaccine are under research as a clinical therapeutic target. Purposeful work is in progress.


Assuntos
Neoplasias , Telomerase , Telomerase/genética , Telomerase/metabolismo , Senescência Celular , Fosforilação , Telômero/genética , Telômero/metabolismo , Neoplasias/genética , Neoplasias/metabolismo
9.
Mol Biomed ; 5(1): 3, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38172378

RESUMO

The disruptor of telomeric silencing 1-like (DOT1L), a specific histone methyltransferase that catalyzed methylation of histone H3 on lysine 79, was associated with the pathogenesis of many diseases, but its role in peritoneal fibrosis remained unexplored. Here, we examined the role of DOT1L in the expression and activation of protein tyrosine kinases and development of peritoneal fibrosis. We found that a significant rise of DOT1L expression in the fibrotic peritoneum tissues from long-term PD patients and mice. Inhibition of DOT1L significantly attenuated the profibrotic phenotypic differentiation of mesothelial cells and macrophages, and alleviated peritoneal fibrosis. Mechanistically, RNA sequencing and proteomic analysis indicated that DOT1L was mainly involved in the processes of protein tyrosine kinase binding and extracellular matrix structural constituent in the peritoneum. Chromatin immunoprecipitation (ChIP) showed that intranuclear DOT1L guided H3K79me2 to upregulate EGFR in mesothelial cells and JAK3 in macrophages. Immunoprecipitation and immunofluorescence showed that extranuclear DOT1L could interact with EGFR and JAK3, and maintain the activated signaling pathways. In summary, DOT1L promoted the expression and activation of tyrosine kinases (EGFR in mesothelial cells and JAK3 in macrophages), promoting cells differentiate into profibrotic phenotype and thus peritoneal fibrosis. We provide the novel mechanism of dialysis-related peritoneal fibrosis (PF) and the new targets for clinical drug development. DOT1L inhibitor had the PF therapeutic potential.


Assuntos
Histona-Lisina N-Metiltransferase , Fibrose Peritoneal , Animais , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Fibrose Peritoneal/patologia , Fibrose Peritoneal/metabolismo , Fibrose Peritoneal/genética , Humanos , Camundongos , Masculino , Regulação para Cima/efeitos dos fármacos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Janus Quinase 3/metabolismo , Janus Quinase 3/genética , Camundongos Endogâmicos C57BL , Feminino , Transdução de Sinais/efeitos dos fármacos
10.
J Cancer ; 15(1): 204-217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164282

RESUMO

Prostate cancer (PCa) is the most common tumor of the male genitourinary system. It will eventually progress to fatal metastatic castration-resistant prostate cancer, for which treatment options are limited. Adipose tissues are distributed in various parts of the body. They have different morphological structures and functional characteristics and are associated with the development of various tumors. Periprostatic adipose tissue (PPAT) is the closest white visceral adipose tissue to the prostate and is part of the PCa tumor microenvironment. Studies have shown that PPAT is involved in PCa development, progression, invasion, and metastasis through the secretion of multiple active molecules. Factors such as obesity, diet, exercise, and organochlorine pesticides can affect the development of PCa indirectly or directly through PPAT. Based on the mechanism of PPAT's involvement in regulating PCa, this review summarized various diagnostic and therapeutic approaches for PCa with potential applications to assess the progression of patients' disease and improve clinical outcomes.

11.
Mol Carcinog ; 63(2): 339-355, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37988232

RESUMO

Over 99% of precancerous cervical lesions are associated with human papillomavirus (HPV) infection, with HPV types 16 and 18 (especially type 16) found in over 70% of cervical cancer cases globally. E6, a critical HPV gene, triggers malignant proliferation by degrading p53; however, this mechanism alone cannot fully explain the oncogenic effects of HPV16 E6. Therefore, we aimed to investigate new targets of HPV oncogenic mechanisms. Our results revealed significant changes in nonoxidative pentose phosphate pathway (PPP) metabolites in HPV16-positive cells. However, the role of nonoxidative PPP in HPV-associated cell transformation and tumor development remained unexplored. In this study, we investigated the impact and mechanisms of HPV16 E6 on cervical cancer proliferation using the HPV-negative cervical cancer cell line (C33A). HPV16 E6 was found to promote cervical cancer cell proliferation both in vitro and in vivo, activating the nonoxidative PPP. Transketolase (TKT), a key enzyme in the nonoxidative PPP, is highly expressed in cervical cancer tissues and associated with poor prognosis. HPV16 E6 promotes cervical cancer cell proliferation by upregulating TKT activity through the activation of AKT. In addition, oxythiamine (OT), a TKT inhibitor, hindered tumor growth, with enhanced effects when combined with cisplatin (DDP). In conclusion, HPV16 E6 promotes cervical cancer proliferation by upregulating TKT activity through the activation of AKT. OT demonstrates the potential to inhibit HPV16-positive cervical cancer growth, and when combined with DDP, could further enhance the tumor-suppressive effect of DDP.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Papillomavirus Humano 16/metabolismo , Transcetolase/metabolismo , Neoplasias do Colo do Útero/genética , Infecções por Papillomavirus/genética , Proteínas Oncogênicas Virais/metabolismo , Proliferação de Células , Linhagem Celular Tumoral
12.
Clin Nutr ; 43(2): 332-345, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38142478

RESUMO

Lipids represent the essential components of membranes, serve as fuels for high-energy processes, and play crucial roles in signaling and cellular function. One of the key hallmarks of cancer is the reprogramming of metabolic pathways, especially abnormal lipid metabolism. Alterations in lipid uptake, lipid desaturation, de novo lipogenesis, lipid droplets, and fatty acid oxidation in cancer cells all contribute to cell survival in a changing microenvironment by regulating feedforward oncogenic signals, key oncogenic functions, oxidative and other stresses, immune responses, or intercellular communication. Peroxisome proliferator-activated receptors (PPARs) are transcription factors activated by fatty acids and act as core lipid sensors involved in the regulation of lipid homeostasis and cell fate. In addition to regulating whole-body energy homeostasis in physiological states, PPARs play a key role in lipid metabolism in cancer, which is receiving increasing research attention, especially the fundamental molecular mechanisms and cancer therapies targeting PPARs. In this review, we discuss how cancer cells alter metabolic patterns and regulate lipid metabolism to promote their own survival and progression through PPARs. Finally, we discuss potential therapeutic strategies for targeting PPARs in cancer based on recent studies from the last five years.


Assuntos
Neoplasias , Receptores Ativados por Proliferador de Peroxissomo , Humanos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fatores de Transcrição/metabolismo , Ácidos Graxos/metabolismo , Diferenciação Celular
13.
Front Endocrinol (Lausanne) ; 14: 1274239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37867526

RESUMO

Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors originating from chromaffin cells, holding significant clinical importance due to their capacity for excessive catecholamine secretion and associated cardiovascular complications. Roughly 80% of cases are associated with genetic mutations. Based on the functionality of these mutated genes, PPGLs can be categorized into distinct molecular clusters: the pseudohypoxia signaling cluster (Cluster-1), the kinase signaling cluster (Cluster-2), and the WNT signaling cluster (Cluster-3). A pivotal factor in the pathogenesis of PPGLs is hypoxia-inducible factor-2α (HIF2α), which becomes upregulated even under normoxic conditions, activating downstream transcriptional processes associated with pseudohypoxia. This adaptation provides tumor cells with a growth advantage and enhances their ability to thrive in adverse microenvironments. Moreover, pseudohypoxia disrupts immune cell communication, leading to the development of an immunosuppressive tumor microenvironment. Within Cluster-1a, metabolic perturbations are particularly pronounced. Mutations in enzymes associated with the tricarboxylic acid (TCA) cycle, such as succinate dehydrogenase (SDHx), fumarate hydratase (FH), isocitrate dehydrogenase (IDH), and malate dehydrogenase type 2 (MDH2), result in the accumulation of critical oncogenic metabolic intermediates. Notable among these intermediates are succinate, fumarate, and 2-hydroxyglutarate (2-HG), which promote activation of the HIFs signaling pathway through various mechanisms, thus inducing pseudohypoxia and facilitating tumorigenesis. SDHx mutations are prevalent in PPGLs, disrupting mitochondrial function and causing succinate accumulation, which competitively inhibits α-ketoglutarate-dependent dioxygenases. Consequently, this leads to global hypermethylation, epigenetic changes, and activation of HIFs. In FH-deficient cells, fumarate accumulation leads to protein succination, impacting cell function. FH mutations also trigger metabolic reprogramming towards glycolysis and lactate synthesis. IDH1/2 mutations generate D-2HG, inhibiting α-ketoglutarate-dependent dioxygenases and stabilizing HIFs. Similarly, MDH2 mutations are associated with HIF stability and pseudohypoxic response. Understanding the intricate relationship between metabolic enzyme mutations in the TCA cycle and pseudohypoxic signaling is crucial for unraveling the pathogenesis of PPGLs and developing targeted therapies. This knowledge enhances our comprehension of the pivotal role of cellular metabolism in PPGLs and holds implications for potential therapeutic advancements.


Assuntos
Neoplasias das Glândulas Suprarrenais , Dioxigenases , Paraganglioma , Feocromocitoma , Humanos , Feocromocitoma/patologia , Ciclo do Ácido Cítrico/genética , Ácidos Cetoglutáricos , Paraganglioma/patologia , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/metabolismo , Mutação , Succinatos , Ácido Succínico , Transdução de Sinais/genética , Fumaratos/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Microambiente Tumoral
14.
Front Nutr ; 10: 1157352, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680899

RESUMO

Senescence is an inevitable biological process. Disturbances in glucose and lipid metabolism are essential features of cellular senescence. Given the important roles of these types of metabolism, we review the evidence for how key metabolic enzymes influence senescence and how senescence-related secretory phenotypes, autophagy, apoptosis, insulin signaling pathways, and environmental factors modulate glucose and lipid homeostasis. We also discuss the metabolic alterations in abnormal senescence diseases and anti-cancer therapies that target senescence through metabolic interventions. Our work offers insights for developing pharmacological strategies to combat senescence and cancer.

16.
Front Genet ; 14: 1207233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533434

RESUMO

Introduction: Clear cell renal cell carcinoma (ccRCC) is associated with unfavorable clinical outcomes. To identify viable therapeutic targets, a comprehensive understanding of intratumoral heterogeneity is crucial. In this study, we conducted bioinformatic analysis to scrutinize single-cell RNA sequencing data of ccRCC tumor and para-tumor samples, aiming to elucidate the intratumoral heterogeneity in the ccRCC tumor microenvironment (TME). Methods: A total of 51,780 single cells from seven ccRCC tumors and five para-tumor samples were identified and grouped into 11 cell lineages using bioinformatic analysis. These lineages included tumor cells, myeloid cells, T-cells, fibroblasts, and endothelial cells, indicating a high degree of heterogeneity in the TME. Copy number variation (CNV) analysis was performed to compare CNV frequencies between tumor and normal cells. The myeloid cell population was further re-clustered into three major subgroups: monocytes, macrophages, and dendritic cells. Differential expression analysis, gene ontology, and gene set enrichment analysis were employed to assess inter-cluster and intra-cluster functional heterogeneity within the ccRCC TME. Results: Our findings revealed that immune cells in the TME predominantly adopted an inflammatory suppression state, promoting tumor cell growth and immune evasion. Additionally, tumor cells exhibited higher CNV frequencies compared to normal cells. The myeloid cell subgroups demonstrated distinct functional properties, with monocytes, macrophages, and dendritic cells displaying diverse roles in the TME. Certain immune cells exhibited pro-tumor and immunosuppressive effects, while others demonstrated antitumor and immunostimulatory properties. Conclusion: This study contributes to the understanding of intratumoral heterogeneity in the ccRCC TME and provides potential therapeutic targets for ccRCC treatment. The findings emphasize the importance of considering the diverse functional roles of immune cells in the TME for effective therapeutic interventions.

17.
Artigo em Inglês | MEDLINE | ID: mdl-37640252

RESUMO

OBJECTIVE: In this study, the long term durability of fenestrations after in situ fenestration (ISF) of five commercial thoracic aortic stent grafts was evaluated in an in vitro experiment after a simulated 10 year period. METHODS: Five different thoracic aortic stent grafts (Relay, Valiant, Hercules, TAG, and Ankura, with a diameter of 34 mm) received both needle and laser ISF in vitro. A Viabahn (11 × 50 mm) was released in each fenestration as a bridging stent graft. Long term fatigue tests (simulating 10 years) of each of the fenestrated stent grafts were then conducted in a flow fatigue test system. The area, shape, margin, and the long and short axis of all the fenestrations were evaluated with light microscopy before and after the fatigue test. The leakage from the fenestration junction before and after the long term fatigue was also measured. RESULTS: The experimental results showed no obvious difference between needle and laser fenestrations. The long axes of all the fenestrations remained unchanged, while the short axes increased after the fatigue test, which was significant in Relay, Valiant, and Hercules polyethylene terephthalate stent grafts. The shape scores of fenestrations improved after the fatigue test in Valiant and Hercules, remained unchanged in Relay and Ankura, and worsened in the TAG. After the fatigue cycling, the average leakage from the fenestration junction decreased in all the stent grafts, and the Ankura had the maximum decline rate. CONCLUSION: The ISF technique was durable over a simulated 10 year period. The fenestrations were positively remodelled to be more circular, and the leakage from the junction decreased after long term fatigue testing.

18.
Int J Nanomedicine ; 18: 3913-3935, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37489141

RESUMO

Anesthetics, which include both local and general varieties, are a unique class of drugs widely utilized in clinical surgery to alleviate pain and promote relaxation in patients. Although numerous anesthetics and their traditional formulations are available in the market, only a select few exhibit excellent anesthetic properties that meet clinical requirements. The main challenges are the potential toxic and adverse effects of anesthetics, as well as the presence of the blood-brain barrier (BBB), which makes it difficult for most general anesthetics to effectively penetrate to the brain. Loading anesthetics onto nanocarriers as anesthetic nanomedicines might address these challenges and improve anesthesia effectiveness, reduce toxic and adverse effects, while significantly enhance the efficiency of general anesthetics passing through the BBB. Consequently, anesthetic nanomedicines play a crucial role in the field of anesthesia. Despite their significance, research on anesthetic nanomedicines is still in its infancy, especially when compared to other types of nanomedicines in terms of depth and breadth. Although local anesthetic nanomedicines have received considerable attention and essentially meet clinical needs, there are few reported instances of nanomedicines for general anesthetics. Given the extensive usage of anesthetics and the many of them need for improved performance, emerging anesthetic nanomedicines face both unparalleled opportunities and considerable challenges in terms of theory and technology. Thus, a comprehensive summary with systematic analyses of anesthetic nanomedicines is urgently required. This review provides a comprehensive summary of the classification, properties, and research status of anesthetic nanomedicines, along with an exploration of their opportunities and challenges. In addition, future research directions and development prospects are discussed. It is hoped that researchers from diverse disciplines will collaborate to study anesthetic nanomedicines and develop them as a valuable anesthetic dosage form for clinical surgery.


Assuntos
Anestesia , Anestésicos Gerais , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Nanomedicina , Anestésicos Locais , Encéfalo
19.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108305

RESUMO

HIV and HBV infection are both serious public health challenges. There are more than approximately 4 million patients coinfected with HIV and HBV worldwide, and approximately 5% to 15% of those infected with HIV are coinfected with HBV. Disease progression is more rapid in patients with coinfection, which significantly increases the likelihood of patients progressing from chronic hepatitis to cirrhosis, end-stage liver disease, and hepatocellular carcinoma. HIV treatment is complicated by drug interactions, antiretroviral (ARV) hepatotoxicity, and HBV-related immune reconditioning and inflammatory syndromes. Drug development is a highly costly and time-consuming procedure with traditional experimental methods. With the development of computer-aided drug design techniques, both machine learning and deep learning have been successfully used to facilitate rapid innovations in the virtual screening of candidate drugs. In this study, we proposed a graph neural network-based molecular feature extraction model by integrating one optimal supervised learner to replace the output layer of the GNN to accurately predict the potential multitargets of HIV-1/HBV coinfections. The experimental results strongly suggested that DMPNN + GBDT may greatly improve the accuracy of binary-target predictions and efficiently identify the potential multiple targets of HIV-1 and HBV simultaneously.


Assuntos
Coinfecção , Infecções por HIV , HIV-1 , Humanos , Vírus da Hepatite B , Coinfecção/tratamento farmacológico , Coinfecção/complicações , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Redes Neurais de Computação
20.
Mol Biotechnol ; 65(12): 2071-2085, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36943627

RESUMO

Breast cancer is one of the most common malignant tumors in women, and causes a large number of cancer-related deaths. The main cause of death of breast cancer patients is tumor recurrence and metastasis. Recent studies show that lncRNA (Long non-coding RNA) plays an important role in breast cancer. However, the overall biological activity and clinical consequences of the lncRNA MIR17HG in breast cancer remain unclear. Thus, we investigate how the MIR17HG/miR-454-3p network impacts breast cancer cell proliferation and migration. Given the TCGA and Oncomine databases, the researchers evaluated variations in MIR17HG expression for the survival rates of breast cancer patients. The influence of MIR17HG on cell proliferation, migration, cell cycle, and the mRNA expression level of miR-454-3p and FAM135A (family with sequence similarity 135 member A) is identified. Luciferase assay was used to detect the regulatory effect of miR-454-3p on the 3'UTR region of FAM135A, and rescue experiments demonstrated that MIR17HG can up-regulate FAM135A expression by competitively binding miR-454-3p. The effect of FAM135A on the cloning and invasion of MCF-7 cells was detected. MIR17HG expression is reduced in breast cancer tissues, and patients with greater levels of MIR17HG expression have a better prognosis. MIR17HG overexpression caused G2/M arrest in breast cancer cells according to a flow cytometry assay. FAM135A knockdown enhances breast cancer cell proliferation and clone creation, as well as two-dimensional and three-dimensional migratory capacities. Patients with high FAM135A expression in their breast cancer had a better prognosis. These novel findings indicate that MIR17HG may be a potential target for breast cancer. Our findings demonstrated that MIR17HG might suppress breast cancer cell proliferation and migration by sponge miR-454-3p through ceRNA(competing endogenous RNAs) mechanism, indicating that targeting MIR17HG may be a feasible therapeutic candidate for breast cancer.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias da Mama/genética , Apoptose/genética , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Proliferação de Células/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA