Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Photoacoustics ; 38: 100606, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38665366

RESUMO

Background: The differentiation between benign and malignant breast tumors extends beyond morphological structures to encompass functional alterations within the nodules. The combination of photoacoustic (PA) imaging and radiomics unveils functional insights and intricate details that are imperceptible to the naked eye. Purpose: This study aims to assess the efficacy of PA imaging in breast cancer radiomics, focusing on the impact of peritumoral region size on radiomic model accuracy. Materials and methods: From January 2022 to November 2023, data were collected from 358 patients with breast nodules, diagnosed via PA/US examination and classified as BI-RADS 3-5. The study used the largest lesion dimension in PA images to define the region of interest, expanded by 2 mm, 5 mm, and 8 mm, for extracting radiomic features. Techniques from statistics and machine learning were applied for feature selection, and logistic regression classifiers were used to build radiomic models. These models integrated both intratumoral and peritumoral data, with logistic regressions identifying key predictive features. Results: The developed nomogram, combining 5 mm peritumoral data with intratumoral and clinical features, showed superior diagnostic performance, achieving an AUC of 0.950 in the training cohort and 0.899 in validation. This model outperformed those based solely on clinical features or other radiomic methods, with the 5 mm peritumoral region proving most effective in identifying malignant nodules. Conclusion: This research demonstrates the significant potential of PA imaging in breast cancer radiomics, especially the advantage of integrating 5 mm peritumoral with intratumoral features. This approach not only surpasses models based on clinical data but also underscores the importance of comprehensive radiomic analysis in accurately characterizing breast nodules.

2.
Curr Oncol ; 30(9): 8464-8476, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37754531

RESUMO

The present study aimed to investigate the influence of the mutation abundance of the epidermal growth factor receptor (EGFR) and its co-mutation with TP53 on the therapeutic efficacy of tyrosine kinase inhibitor (TKI) treatment in patients with metastatic lung adenocarcinoma (LUAD). In total, 130 patients (January 2018-September 2022) with metastatic LUAD from the Second Affiliated Hospital of Zhejiang University were included. Kaplan-Meier analysis was performed to measure the duration of drug application (DDA) and the log-rank test was used to compare differences. Univariate and multivariate analyses of Cox proportional hazard regression models were used to evaluate the association between the relevant clinicopathological factors and DDA. Hazard ratios with 95% confidence intervals were also calculated. Among the 130 patients who were treated with first-generation EGFR-TKIs, 86 showed high-EGFR mutation abundance (>22.0%) and 44 showed low-EGFR mutation abundance (≤22.0%). Patients in the high-EGFR group had a greater DDA than those in the low-EGFR group (p < 0.05). The results of the subgroup analysis were consistent with those of the total mutation population (exon19: >18.5% vs. ≤18.5%, 14 months vs. 10 months, p = 0.049; exon21: >22.0% vs. ≤22.0%, 15 months vs. 9 months, p = 0.005). In addition, the mutation abundance of TP53 was negatively correlated with the DDA (p < 0.05). Patients in the combination group had a better DDA than those in the monotherapy group (p < 0.05). Subgroup analysis showed that, among the low mutation abundance of the EGFR exon 21 or 19 cohort, the combination group had a better DDA than the monotherapy group (p < 0.05). An EGFR mutation abundance greater than 22.0% was a positive predictor of DDA in patients with metastatic LUAD. However, a TP53 mutation abundance higher than 32.5% could reverse this situation. Finally, first-line treatment with EGFR-TKIs plus chemotherapy is a potential treatment strategy for patients with low-abundance EGFR mutations.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Receptores ErbB/genética , Mutação , Proteína Supressora de Tumor p53/genética
3.
J Leukoc Biol ; 113(5): 504-517, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36826998

RESUMO

Acute myeloid leukemia is a heterogeneous hematologic malignancy with high mortality in the world. NPM1 gene mutations are a frequent occurrence in acute myeloid leukemia, leading to abnormal autophagy, while the mechanism of NPM1 mutation-driven acute myeloid leukemia pathogenesis remains to be fully elucidated. GEO microarrays were used to screen for dysregulated autophagy-related genes in NPM1-mutant acute myeloid leukemia and analysis of RASGRP3 expression and prognosis. Next, we explored the potential molecular mechanisms relationship between RASGRP3 and NPM1 through utilizing immunoprecipitation, Western blot, and cycloheximide assay. Further, CCK8, EdU staining, immunofluorescence, and Western blot were performed to explore the effect of RASGRP3 on cell proliferation and apoptosis in NPM1-mutated acute myeloid leukemia. Finally, Western blot was used to study the mechanism of action of RASGRP3. RASGRP3 expression was upregulated in NPM1-mutated acute myeloid leukemia. Mislocalized NPM1-mA in the cytoplasm could bind to E3 ubiquitin-protein ligase MID1 to block degradation of the RASGRP3 protein. RASGRP3 could also activate the EGFR-STAT3 axis to promote proliferation and autophagy in acute myeloid leukemia. In conclusion, our results identified RASGRP3 as a proto-oncogene in NPM1-mutated acute myeloid leukemia. The RASGRP3-EGFR/STAT3 axis may be a promising therapeutic target for this unique leukemic subtype.


Assuntos
Leucemia Mieloide Aguda , Proteínas Nucleares , Humanos , Autofagia/genética , Proliferação de Células , Receptores ErbB/genética , Receptores ErbB/metabolismo , Leucemia Mieloide Aguda/genética , Mutação , Proteínas Nucleares/metabolismo , Nucleofosmina , Estabilidade Proteica , Ubiquitina-Proteína Ligases/metabolismo , Fatores ras de Troca de Nucleotídeo Guanina/metabolismo
4.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5900-5907, 2022 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-36472009

RESUMO

This study was designed to determine the inhibitory effect of astragaloside Ⅳ(AS-Ⅳ), a principal bioactive component extracted from the Chinese medicinal Astragali Radix, on the inflammatory response of vascular endothelial cells induced by angiotensin Ⅱ(Ang Ⅱ), the most major pathogenic factor for cardiovascular diseases, and to clarify the role of calcium(Ca~(2+))/phosphatidylinosi-tol-3-kinase(PI3K)/protein kinase B(Akt)/endothelial nitric oxide synthase(eNOS)/nitric oxide(NO) pathway in the process. To be specific, human umbilical vein endothelial cells(HUVECs) were cultured in the presence of AS-Ⅳ with or without the specific inhibitor of NO synthase(NG-monomethyl-L-arginine, L-NMMA), inhibitor of PI3K/Akt signaling pathway(LY294002), or Ca~(2+)-chelating agent(ethylene glycol tetraacetic acid, EGTA) prior to Ang Ⅱ stimulation. The inhibitory effect of AS-Ⅳ on Ang Ⅱ-induced inflammatory response and the involved mechanism was determined with enzyme-linked immunosorbent assay(ELISA), cell-based ELISA assay, Western blot, and monocyte adhesion assay which determined the fluorescently labeled human monocytic cell line(THP-1) adhered to Ang Ⅱ-stimulated endothelial cells. AS-Ⅳ increased the production of NO by HUVECs in a dose-and time-dependent manner(P<0.05) and raised the level of phosphorylated eNOS(P<0.05). The above AS-Ⅳ-induced changes were abolished by pretreatment with L-NMMA, LY294002, or EGTA. Compared with the control group, Ang Ⅱ obviously enhanced the production and release of cytokines(tumor necrosis factor-α, interleukin-6), chemokines(monocyte chemoattractant protein-1) and adhesion molecules(intercellular adhesion molecule-1, vascular cellular adhesion molecule-1), and the number of monocytes adhered to HUVECs(P<0.05), which were accompanied by the enhanced levels of phosphorylated inhibitor of nuclear factor-κBα protein and activities of nuclear factor-κB(NF-κB)(P<0.05). This study also demonstrated that Ang Ⅱ-induced inflammatory response was inhibited by pretreatment with AS-Ⅳ(P<0.05). In addition, the inhibitory effect of AS-Ⅳ was abrogated by pretreatment with L-NMMA, LY294002, or EGTA(P<0.05). This study provides a direct link between AS-Ⅳ and Ca~(2+)/PI3K/Akt/eNOS/NO pathway in AS-Ⅳ-mediated anti-inflammatory actions in endothelial cells exposed to Ang Ⅱ. The results indicate that AS-Ⅳ attenuates endothelial cell-mediated inflammatory response induced by Ang Ⅱ via the activation of Ca~(2+)/PI3K/Akt/eNOS/NO signaling pathway.


Assuntos
Angiotensina II , Proteínas Proto-Oncogênicas c-akt , Humanos , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , ômega-N-Metilarginina/metabolismo , ômega-N-Metilarginina/farmacologia , Ácido Egtázico/metabolismo , Ácido Egtázico/farmacologia , Células Endoteliais da Veia Umbilical Humana , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Células Cultivadas
5.
Genes (Basel) ; 13(8)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-36011360

RESUMO

The type-B authentic response regulators (type-B ARRs) are positive regulators of cytokinin signaling and involved in plant growth and stress responses. In this study, we used bioinformatics, RNA-seq, and qPCR to study the phylogenetic and expression pattern of 35 type-B ARRs in Brassica napus. The BnARRs experienced gene expansion and loss during genome polyploidization and were classified into seven groups. Whole-genome duplication (WGD) and segmental duplication were the main forces driving type-B ARR expansion in B. napus. Several BnARRs with specific expression patterns during rapeseed development were identified, including BnARR12/14/18/23/33. Moreover, we found the type-B BnARRs were involved in rapeseed development and stress responses, through participating in cytokinin and ABA signaling pathways. This study revealed the origin, evolutionary history, and expression pattern of type-B ARRs in B. napus and will be helpful to the functional characterization of BnARRs.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica rapa/genética , Citocininas , Duplicação Gênica , Genes de Plantas , Genes Reguladores , Genoma de Planta/genética , Filogenia
6.
Front Plant Sci ; 12: 781236, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956277

RESUMO

Secondary metabolites (SMs) found in medicinal plants are one of main sources of drugs, cosmetics, and health products. With the increase in demand for these bioactive compounds, improving the content and yield of SMs in medicinal plants has become increasingly important. The content and distribution of SMs in medicinal plants are closely related to environmental factors, especially light. In recent years, artificial light sources have been used in controlled environments for the production and conservation of medicinal germplasm. Therefore, it is essential to elucidate how light affects the accumulation of SMs in different plant species. Here, we systematically summarize recent advances in our understanding of the regulatory roles of light quality, light intensity, and photoperiod in the biosynthesis of three main types of SMs (polyphenols, alkaloids, and terpenoids), and the underlying mechanisms. This article provides a detailed overview of the role of light signaling pathways in SM biosynthesis, which will further promote the application of artificial light sources in medicinal plant production.

7.
J Fungi (Basel) ; 7(10)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34682246

RESUMO

Sclerotinia sclerotiorum is one of the most devastating pathogens in Brassica napus and causes huge economic loss worldwide. Though around one hundred putative effectors have been predicted in Sclerotinia sclerotiorum genome, their functions are largely unknown. In this study, we cloned and characterized a novel effector, SsERP1 (ethylene pathway repressor protein 1), in Sclerotinia sclerotiorum. SsERP1 is a secretory protein highly expressed at the early stages of Sclerotinia sclerotiorum infection. Ectopic overexpression of SsERP1 in plant leaves promoted Sclerotinia sclerotiorum infection, and the knockout mutants of SsERP1 showed reduced pathogenicity but retained normal mycelial growth and sclerotium formation, suggesting that SsERP1 specifically contributes to the pathogenesis of Sclerotinia sclerotiorum. Transcriptome analysis indicated that SsERP1 promotes Sclerotinia sclerotiorum infection by inhibiting plant ethylene signaling pathway. Moreover, we showed that knocking down SsERP1 by in vitro synthesized double-strand RNAs was able to effectively inhibit Sclerotinia sclerotiorum infection, which verifies the function of SsERP1 in Sclerotinia sclerotiorum pathogenesis and further suggests a potential strategy for Sclerotinia disease control.

8.
BMC Plant Biol ; 21(1): 140, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33726676

RESUMO

BACKGROUND: Genomic imprinting results in the expression of parent-of-origin-specific alleles in the offspring. Brassica napus is an oil crop with research values in polyploidization. Identification of imprinted genes in B. napus will enrich the knowledge of genomic imprinting in dicotyledon plants. RESULTS: In this study, we performed reciprocal crosses between B. napus L. cultivars Yangyou 6 (Y6) and Zhongshuang 11 (ZS11) to collect endosperm at 20 and 25 days after pollination (DAP) for RNA-seq. In total, we identified 297 imprinted genes, including 283 maternal expressed genes (MEGs) and 14 paternal expressed genes (PEGs) according to the SNPs between Y6 and ZS11. Only 36 genes (35 MEGs and 1 PEG) were continuously imprinted in 20 and 25 DAP endosperm. We found 15, 2, 5, 3, 10, and 25 imprinted genes in this study were also imprinted in Arabidopsis, rice, castor bean, maize, B. rapa, and other B. napus lines, respectively. Only 26 imprinted genes were specifically expressed in endosperm, while other genes were also expressed in root, stem, leaf and flower bud of B. napus. A total of 109 imprinted genes were clustered on rapeseed chromosomes. We found the LTR/Copia transposable elements (TEs) were most enriched in both upstream and downstream of the imprinted genes, and the TEs enriched around imprinted genes were more than non-imprinted genes. Moreover, the expression of 5 AGLs and 6 pectin-related genes in hybrid endosperm were significantly changed comparing with that in parent endosperm. CONCLUSION: This research provided a comprehensive identification of imprinted genes in B. napus, and enriched the gene imprinting in dicotyledon plants, which would be useful in further researches on how gene imprinting regulates seed development.


Assuntos
Brassica napus/genética , Brassica napus/metabolismo , Quimera , Endosperma/genética , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Impressão Genômica , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Genes de Plantas
9.
BMC Complement Altern Med ; 19(1): 198, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375092

RESUMO

BACKGROUND: Endothelial cell inflammation is a central event in the pathogenesis of numerous cardiovascular diseases, including sepsis and atherosclerosis. Triptolide, a principal bioactive ingredient of Traditional Chinese Medicine Tripterygium wilfordii Hook.F., displays anti-inflammatory actions in vivo. However, the mechanisms underlying these beneficial effects remain undetermined. The present study investigated the effects and possible mechanisms of triptolide on lipopolysaccharide (LPS)-induced inflammatory responses in human umbilical vein endothelial cells (HUVECs). METHODS: The effects of triptolide on the LPS-induced production and expression of inflammatory molecules, monocyte adhesion and activation of nuclear factor (NF)-κB pathway were examined in cultured HUVECs. RESULTS: In cultured HUVECs, pre-treatment with triptolide dose-dependently attenuated LPS-induced cytokine and chemokine production, adhesion molecule expression and monocyte adhesion. Mechanistically, triptolide was found to dose-dependently inhibit the LPS-induced increases in the DNA binding activity of NF-κB p65 associated with attenuating IκBα phosphorylation and its degradation. Additionally, the present study revealed that triptolide inhibited LPS-triggered NF-κB transcriptional activation in a dose-dependent manner. CONCLUSIONS: The results of the present study indicated that triptolide suppresses the inflammatory response of endothelial cells possibly via inhibition of NF-κB activation.


Assuntos
Anti-Inflamatórios/farmacologia , Diterpenos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , NF-kappa B/imunologia , Fenantrenos/farmacologia , Tripterygium/química , Compostos de Epóxi/farmacologia , Células Endoteliais da Veia Umbilical Humana/imunologia , Humanos , Lipopolissacarídeos/efeitos adversos , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Inibidor de NF-kappaB alfa/genética , Inibidor de NF-kappaB alfa/imunologia , NF-kappa B/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
10.
Front Pediatr ; 7: 279, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31355166

RESUMO

Biliary atresia (BA) is a destructive pediatric liver disease and CD4+T cell activation is demonstrated to play an important role in BA. However, a comprehensive scenario regarding the involvement of CD4+T cell subsets to the development of BA remains unclear. Here, we aim to explore the infiltration of CD4+T cell subsets and their clinical significance in BA. In the present study, thirty BA liver samples were collected during surgery and were divided into good (BA1, n = 16) and poor prognosis (BA2, n = 14), with samples from choledochal cyst patients (n = 8) as control. By using multiplex immunohistochemistry, we evaluated the infiltration level of CD4+T cell subsets in the portal areas. RT-qPCR and flow cytometry were further applied to explore detailed features of Treg subsets. We revealed that hepatic infiltrating Th1, Th2, Th17, and ICOS+Treg cells were significantly increased in BA patients compared to controls and were negatively associated with prognosis, while high infiltrating ICOS-Tregs showed a favorable outcome. Phenotypic analysis indicated that, in contrast to ICOS+Tregs, ICOS-Tregs were mainly CD45RAhiCD45ROlow, and preferentially expressed more CD73. Besides, RT-qPCR revealed elevated expression of CD25, CD73, TGF-ß, and BCL-2 genes in ICOS-Tregs. Finally, functional assay confirmed that ICOS-Tregs had a higher suppressive capacity to cytokine secretion and were more resistant to apoptosis in vitro. Collectively, we demonstrate that a mixed immune response is involved in BA pathogenesis, and the globally enhanced effector CD4+T cell response is associated with unfavorable prognosis, highly suppressive ICOS-Tregs is a protective factor and may serve an important reference to predict prognosis.

11.
Artigo em Inglês | MEDLINE | ID: mdl-30800167

RESUMO

Guizhi Gancao Decoction (GGD) is a well-known traditional Chinese herbal medicine for the treatment of various cardiovascular diseases, such as myocardial ischemia-reperfusion (I/R) injury and arrhythmia. However, the mechanism by which GGD contributes to the amelioration of cardiac injury remains unclear. The aim of this study was to investigate the potential protective role of GGD against myocardial I/R injury and its possible mechanism. Consistent with the effect of the positive drug (Trimetazidine, TMZ), we subsequently validated that GGD could ameliorate myocardial I/R injury as evidenced by histopathological examination and triphenyltetrazolium chloride (TTC) staining. Moreover, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay demonstrated that GGD suppressed myocardial apoptosis, which may be related to the upregulation of Bcl-2, PPARα, and PPARγ and downregulation of Bax, caspase-3, and caspase-9. Pretreatment with GGD attenuated the levels of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin- (IL-) 6, and IL-1ß in serum by inhibiting Toll-like receptor 4 (TLR4)/NF-κB signaling pathway. These results indicated that GGD exhibits cardioprotective effects on myocardial I/R injury through inhibition of the TLR4/NF-κB signaling pathway, which led to reduced inflammatory response and the subsequent cardiomyocyte apoptosis.

12.
BMC Genomics ; 19(1): 586, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30081834

RESUMO

BACKGROUND: Allopolyploids require rapid genetic and epigenetic modifications to reconcile two or more sets of divergent genomes. To better understand the fate of duplicate genes following genomic mergers and doubling during allopolyploid formation, in this study, we explored the global gene expression patterns in resynthesized allotetraploid Brassica napus (AACC) and its diploid parents B. rapa (AA) and B. oleracea (CC) using RNA sequencing of leaf transcriptomes. RESULTS: We found that allopolyploid B. napus formation was accompanied by extensive changes (approximately one-third of the expressed genes) in the parental gene expression patterns ('transcriptome shock'). Interestingly, the majority (85%) of differentially expressed genes (DEGs) were downregulated in the allotetraploid. Moreover, the homoeolog expression bias (relative contribution of homoeologs to the transcriptome) and expression level dominance (total expression level of both homoeologs) were thoroughly investigated by monitoring the expression of 23,766 B. oleracea-B. rapa orthologous gene pairs. Approximately 36.5% of the expressed gene pairs displayed expression bias with a slight preference toward the A-genome. In addition, 39.6, 4.9 and 9.0% of the expressed gene pairs exhibited expression level dominance (ELD), additivity expression and transgressive expression, respectively. The genome-wide ELD was also biased toward the A-genome in the resynthesized B. napus. To explain the ELD phenomenon, we compared the individual homoeolog expression levels relative to those of the diploid parents and found that ELD in the direction of the higher-expression parent can be explained by the downregulation of homoeologs from the dominant parent or upregulation of homoeologs from the nondominant parent; however, ELD in the direction of the lower-expression parent can be explained only by the downregulation of the nondominant parent or both homoeologs. Furthermore, Gene Ontology (GO) enrichment analysis suggested that the alteration in the gene expression patterns could be a prominent cause of the phenotypic variation between the newly formed B. napus and its parental species. CONCLUSIONS: Collectively, our data provide insight into the rapid repatterning of gene expression at the beginning of Brassica allopolyploidization and enhance our knowledge of allopolyploidization processes.


Assuntos
Brassica napus/genética , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Brassica napus/metabolismo , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Poliploidia , Análise de Sequência de RNA/métodos , Sequenciamento Completo do Genoma/métodos
13.
Curr Cancer Drug Targets ; 16(9): 807-817, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26845432

RESUMO

BACKGROUND: Multiple myeloma (MM), a clonal B cell malignancy characterized by the proliferation of plasma cells within the bone marrow, is still an incurable disease, and therefore, finding new therapeutic targets is urgently required. Although microRNA-137 (miR-137), which is involved in a variety of cellular processes, has been reported to be under-expressed in many types of solid tumors, its role in MM is less known. METHODS: In this study, the target gene and the potential effect of miR-137 in MM were investigated. . RESULTS: The results showed significantly down regulated expression of miR-137 in MM cell lines and in the CD138+ bone marrow mononuclear cells of MM patients. A dual luciferase reporter gene analysis revealed that MITF is a direct target of miR-137. The overexpression of miR-137 or transfection of MITF-shRNA had no significant effect on the expression of serine/ threonine protein kinase (AKT), but the expression of MITF, c-MET, p-AKT, and its phosphorylated substrate protein decreased significantly, which was accompanied by an increase in p53 expression. In addition, the overexpression of miR-137 or MITF-shRNA significantly improved the 36-hour inhibition rate and apoptosis rate in multiple myeloma cells treated with dexamethasone. The overexpression of MITF could counteract the biological effect of miR-137 in multiple myeloma cells. CONCLUSION: We conclude that MITF is a direct target of miR-137. The miR-137 can improve the dexamethasone sensitivity in multiple myeloma cells by reducing the c-MET expression and further decreasing the AKT phosphorylation via targeting MITF.


Assuntos
Dexametasona/farmacologia , MicroRNAs/genética , Fator de Transcrição Associado à Microftalmia/genética , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Fator de Transcrição Associado à Microftalmia/metabolismo , Mieloma Múltiplo/patologia , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , RNA Interferente Pequeno
14.
Molecules ; 20(12): 21204-13, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26633322

RESUMO

Breeding of yellow-seeded rapeseed (Brassica napus) is preferred over black-seeded rapeseed for the desirable properties of the former. This study evaluated the metabolites and nutritive values of black-seeded rapeseed meal and yellow-seeded meal from the progeny of a B. napus-Sinapis alba hybrid. Yellow-seed meal presented higher protein (35.46% vs. 30.29%), higher sucrose (7.85% vs. 7.29%), less dietary fiber (26.19% vs. 34.63%) and crude fiber (4.56% vs. 8.86%), and less glucosinolates (22.18 vs. 28.19 µmol/g) than black-seeded one. Amounts of ash (3.65% vs. 4.55%), phytic acid (4.98% vs. 5.60%), and total polyphenols (2.67% vs. 2.82%) were decreased slightly in yellow-seeded meal compared with black-seeded meal. Yellow-seeded meal contained more essential amino acids than black-seeded meal. Levels of the mineral elements Fe, Mn, and Zn in yellow-seeded meal were higher than black-seeded meal. By contrast, levels of P, Ca, and Mg were lower in yellow-seeded meal. Moreover, yellow-seeded meal showed lower flavonol (kaempferol, quercetin, isorhamnetin, and their derivatives) content than black-seeded meal. Comparison of metabolites between yellow and black rapeseed confirmed the improved nutritional value of meal from yellow-seeded B. napus, and this would be helpful to the breeding and improvement of rapeseed for animal feeding.


Assuntos
Brassica napus/metabolismo , Dieta , Polifenóis/metabolismo , Sementes/classificação , Sementes/metabolismo , Sinapis/metabolismo , Valor Nutritivo
15.
Exp Ther Med ; 10(3): 1025-1028, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26622433

RESUMO

Systemic Epstein-Barr virus (EBV)-positive T-cell lymphoproliferative disease (EBV+ T-LPD) occurs mainly in Asia and South America and is extremely rare in adults. The disease is characterized by a clonal proliferation of EBV-infected T cells with a cytotoxic immunophenotype and is associated with a poor clinical outcome and can be life-threatening. The majority of the patients have evidence of systemic disease, often with lymph node, liver and spleen involvement. The present study describes a case of adult systemic EBV+ T-LPD with high fever, systemic lymphadenopathy, hepatosplenomegaly, nose-pharynx neoplasm, pancytopenia, EB virus infection and proliferative bone marrow, with the aim of improving the understanding of the condition.

16.
BMC Plant Biol ; 15: 22, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25623840

RESUMO

BACKGROUND: Brassica includes many successfully cultivated crop species of polyploid origin, either by ancestral genome triplication or by hybridization between two diploid progenitors, displaying complex repetitive sequences and transposons. The U's triangle, which consists of three diploids and three amphidiploids, is optimal for the analysis of complicated genomes after polyploidization. Next-generation sequencing enables the transcriptome profiling of polyploids on a global scale. RESULTS: We examined the gene expression patterns of three diploids (Brassica rapa, B. nigra, and B. oleracea) and three amphidiploids (B. napus, B. juncea, and B. carinata) via digital gene expression analysis. In total, the libraries generated between 5.7 and 6.1 million raw reads, and the clean tags of each library were mapped to 18547-21995 genes of B. rapa genome. The unambiguous tag-mapped genes in the libraries were compared. Moreover, the majority of differentially expressed genes (DEGs) were explored among diploids as well as between diploids and amphidiploids. Gene ontological analysis was performed to functionally categorize these DEGs into different classes. The Kyoto Encyclopedia of Genes and Genomes analysis was performed to assign these DEGs into approximately 120 pathways, among which the metabolic pathway, biosynthesis of secondary metabolites, and peroxisomal pathway were enriched. The non-additive genes in Brassica amphidiploids were analyzed, and the results indicated that orthologous genes in polyploids are frequently expressed in a non-additive pattern. Methyltransferase genes showed differential expression pattern in Brassica species. CONCLUSION: Our results provided an understanding of the transcriptome complexity of natural Brassica species. The gene expression changes in diploids and allopolyploids may help elucidate the morphological and physiological differences among Brassica species.


Assuntos
Brassica/genética , Diploide , Regulação da Expressão Gênica de Plantas , Poliploidia , Brassica/enzimologia , Análise por Conglomerados , Perfilação da Expressão Gênica , Biblioteca Gênica , Ontologia Genética , Genes de Plantas , Metiltransferases/genética , Metiltransferases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Ann Hematol ; 94(2): 201-10, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25242579

RESUMO

Nucleophosmin (NPM1) is a multifunctional protein that functions as a molecular chaperone, shuttling between the nucleolus and the cytoplasm. In up to one third of patients with acute myeloid leukemia, mutation of NPM1 results in the aberrant cytoplasmic accumulation of mutant protein and is thought to be responsible for leukemogenesis. Deguelin, a rotenoid isolated from several plant species, has been shown to be a strong anti-tumor agent. Human leukemia cell lines were used for in vitro studies. Drug efficacy was evaluated by apoptosis and differentiation assays, and associated molecular events were assessed by Western blot. Gene silencing was performed using small interfering RNA (siRNA). Deguelin exhibited strong cytotoxic activity in the cell line of OCI-AML3 and selectively down-regulated the NPM1 mutant protein, which was accompanied by up-regulation of the activity of caspase-6 and caspase-8 in high concentrations. Deguelin induced differentiation of OCI-AML3 cells at a nontoxic concentration which was associated with a decrease in expression of activated caspase-8, p53, p21, and the 30-kD form of CCAAT/enhancer binding protein α (C/EBPα), whereas no effects were found in OCIM2 cells expressing NPM-wt. Moreover, treatment with siRNA in the NPM mutant cell line OCI-AML3 decreased expression of p53, p21, pro-caspase-8, and the 30-kD form of C/EBPα, and it inhibited proliferation and induced differentiation of the OCI-AML3 cells. In conclusion, deguelin is a potent in vitro inhibitor of the mutant form of NPM1, which provides the molecular basis for its anti-leukemia activities in NPM1 mutant acute myeloid leukemia cells.


Assuntos
Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Rotenona/análogos & derivados , Doença Aguda , Apoptose/genética , Western Blotting , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Caspase 6/metabolismo , Caspase 8/metabolismo , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Relação Dose-Resposta a Droga , Citometria de Fluxo , Humanos , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Proteínas Nucleares/genética , Nucleofosmina , Interferência de RNA , Rotenona/farmacologia , Proteína Supressora de Tumor p53/metabolismo
18.
Clin Vaccine Immunol ; 20(7): 1008-15, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23637043

RESUMO

To test the hypothesis that ablation of transient receptor potential vanilloid type 1 (TRPV1) channels leads to exacerbated inflammatory responses and organ damage during endotoxic shock, lipopolysaccharide (LPS; 5 million endotoxin units/kg of body weight) was injected intraperitoneally (i.p.) into wild-type (WT) and TRPV1-null mutant (TRPV1(-/-)) mice. Mean arterial pressure and heart rate, determined by radiotelemetry, were severely depressed after LPS injection into WT and TRPV1(-/-) mice, with no distinction between the two strains. At 24 h after LPS injection, renal glomerular hypercellularity and hepatocellular injury were observed in both strains, accompanying further elevated serum levels of creatinine and alanine aminotransferase in TRPV1(-/-) mice compared to those in WT mice. At 6 or 24 h after LPS injection, neutrophil recruitment into kidneys and livers, serum cytokine (tumor necrosis factor alpha [TNF-α], interleukin 1ß [IL-1ß], IL-6) and renal chemokine (KC, macrophage inflammatory protein 2 [MIP-2]) levels, and renal VCAM-1 and ICAM-1 expression were greater in TRPV1(-/-) mice than WT mice. In addition, increased plasma calcitonin gene-related peptide (CGRP) levels observed in WT mice 6 h after LPS injection were absent in TRPV1(-/-) mice. Thus, TRPV1 ablation aggravates inflammatory responses, including neutrophil infiltration, proinflammatory cytokine production, and adhesion molecule expression, leading to intensified organ damage during endotoxic shock in the absence of worsened circulatory failure. The data indicate that TRPV1 activation may attenuate endotoxin-induced organ damage, possibly via its anti-inflammatory action rather than alteration of hemodynamics.


Assuntos
Lipopolissacarídeos/toxicidade , Choque Séptico/patologia , Canais de Cátion TRPV/metabolismo , Animais , Hepatite/patologia , Histocitoquímica , Injeções Intraperitoneais , Lipopolissacarídeos/administração & dosagem , Camundongos , Camundongos Knockout , Nefrite/patologia
19.
Curr Microbiol ; 67(4): 431-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23680974

RESUMO

Patchouli alcohol (PA) is a kind of methanol extracted from traditional Chinese medicine Pogostemonis Herba. Our research aimed to observe the anti-influenza virus role of PA in vitro. 16HBE (human respiratory epithelial cell) was infected by H1N1 (A/FM1/1/47) to set the cell model. Then the 16HBE was co-cultivated with three kinds of immune cells: dendritic cells, macrophages, and monocytes, PA (the concentration is 10 µg/mL) was added as a treatment intervention for 24 h. The immune cells and the supernate were collected for RT-PCR and ELISA detection related to RLH (RIG-1-like helicases) pathway. Results showed that the IL-4 and IFN-γ in supernate were increased after H1N1 infection, and the PA treatment suppressed the expression of cytokines and the mRNA of RLH pathway. PA anti-influenza virus may through regulate the RLH singal pathway.


Assuntos
Antivirais/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Fatores Imunológicos/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Influenza Humana/imunologia , RNA Helicases/imunologia , Sesquiterpenos/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/tratamento farmacológico , Influenza Humana/enzimologia , Influenza Humana/virologia , Interferon gama/genética , Interferon gama/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , RNA Helicases/genética , Transdução de Sinais/efeitos dos fármacos
20.
BMC Genomics ; 14: 72, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23369045

RESUMO

BACKGROUND: Polyploidy is an important evolutionary mechanism in flowering plants that often induces immediate extensive changes in gene expression through genomic merging and doubling. Brassica napus L. is one of the most economically important polyploid oil crops and has been broadly studied as an example of polyploid crop. RNA-seq is a recently developed technique for transcriptome study, which could be in choice for profiling gene expression pattern in polyploids. RESULTS: We examined the global gene expression patterns of the first four generations of resynthesized B. napus (F1-F4), its diploid progenitors B. rapa and B. oleracea, and natural B. napus using digital gene expression analysis. Almost 42 million clean tags were generated using Illumina technology to produce the expression data for 25959 genes, which account for 63% of the annotated B. rapa genome. More than 56% of the genes were transcribed from both strands, which indicate the importance of RNA-mediated gene regulation in polyploidization. Tag mapping of the B. rapa genome generated 19023, 18547, 24383, 20659, 18881, 20692, and 19955 annotated genes for the B. rapa, B. oleracea, F1-F4 of synthesized B. napus, and natural B. napus libraries, respectively. The unambiguous tag-mapped genes in the libraries were functionally categorized via gene ontological analysis. Thousands of differentially expressed genes (DEGs) were identified and revealed the substantial changes in F1-F4. Among the 20 most DEGs are DNA binding/transcription factor, cyclin-dependent protein kinase, epoxycarotenoid dioxygenase, and glycine-rich protein. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the DEGs suggested approximately 120 biological pathways. CONCLUSIONS: The systematic deep sequencing analysis provided a comprehensive understanding of the transcriptome complexity of early generations of synthesized B. napus. This information broadens our understanding of the mechanisms of B. napus polyploidization and contributes to molecular and genetic research by enriching the Brassica database.


Assuntos
Brassica napus/genética , Poliploidia , Transcriptoma , Mapeamento Cromossômico , Diploide , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA