Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Aging (Albany NY) ; 13(17): 21155-21190, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34517344

RESUMO

In this study, we investigated the role of embryonic gene Cripto-1 (CR-1) in hepatocellular carcinoma (HCC) using hepatocyte-specific CR-1-overexpressing transgenic mice. The expression of truncated 1.7-kb CR-1 transcript (SF-CR-1) was significantly higher than the full-length 2.0-kb CR-1 transcript (FL-CR-1) in a majority of HCC tissues and cell lines. Moreover, CR-1 mRNA and protein levels were significantly higher in HCC tissues than adjacent normal liver tissues. Hepatocyte-specific over-expression of CR-1 in transgenic mice enhanced hepatocyte proliferation after 2/3 partial hepatectomy (2/3 PHx). CR-1 over-expression significantly increased in vivo xenograft tumor growth of HCC cells in nude mice and in vitro HCC cell proliferation, migration, and invasion. CR-1 over-expression in the transgenic mouse livers deregulated HCC-related signaling pathways such as AKT, Wnt/ß-catenin, Stat3, MAPK/ERK, JNK, TGF-ß and Notch, as well as expression of HCC-related genes such as CD5L, S100A8, S100A9, Timd4, Orm2, Orm3, PDK4, DMBT1, G0S2, Plk2, Plk3, Gsta1 and Gsta2. However, histological signs of precancerous lesions, hepatocyte dysplasia or HCC formation were not observed in the livers of 3-, 6- or 8-month-old hepatocyte-specific CR-1-overexpressing transgenic mice. These findings demonstrate that liver-specific CR-1 overexpression in transgenic mice deregulates signaling pathways and genes associated with HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Proteínas Ligadas por GPI/metabolismo , Hepatócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fígado/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Carcinogênese , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proliferação de Células , Fator de Crescimento Epidérmico/genética , Proteínas Ligadas por GPI/genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Neoplasias Hepáticas , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Nus , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Neoplasias Experimentais , Especificidade de Órgãos , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo , Transdução de Sinais , Regulação para Cima
2.
ACS Appl Mater Interfaces ; 12(29): 32312-32320, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32578972

RESUMO

The surface hydrophilicity of nanoparticles has a major impact on their biological fates. Ascertaining the correlation between nanoparticle surface hydrophilicity and their biological behaviors is particularly instructive for future nanomedicine design and their antitumor efficacy optimization. Herein, we designed a series of polymeric nanoparticles based on polyphosphoesters with well-controlled surface hydrophilicity in the molecular level and systemically evaluated their biological behaviors. The results demonstrated that high surface hydrophilicity preferred lower protein absorption, better stability, longer blood circulation, and higher tumor accumulation but lower cellular uptake. Upon encapsulation of drugs, nanoparticles with high hydrophilicity showed an excellent antitumor therapeutic efficacy in both primary and metastatic tumors as compared to the relatively hydrophobic ones. Further analyses revealed that the superior antitumor outcome was attributed to the balance of tumor accumulation and cellular uptake, demonstrating the particular importance of nanoparticle surface hydrophilicity regulation on the antitumor efficacy. Our work provides a potent guideline for a rational designation on the surface hydrophilicity of nanoparticles for cancer treatment optimization.


Assuntos
Antineoplásicos/farmacologia , Docetaxel/farmacologia , Sistemas de Liberação de Medicamentos , Melanoma Experimental/tratamento farmacológico , Nanomedicina , Nanopartículas/química , Polifosfatos/química , Animais , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Docetaxel/química , Ensaios de Seleção de Medicamentos Antitumorais , Interações Hidrofóbicas e Hidrofílicas , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Tamanho da Partícula , Polifosfatos/síntese química , Propriedades de Superfície
3.
Biomater Sci ; 7(7): 2740-2748, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30994642

RESUMO

The tumor hypoxic microenvironment (THME) has a profound impact on tumor progression, and modulation of the THME has become an essential strategy to promote photodynamic therapy (PDT). Here, an oxygen self-supplied nanodelivery system that is based on nanometal-organic frameworks (nMOFs) with embedded AuNPs (Au@ZIF-8) on the nMOF surface as a catalase (CAT)-like nanozyme and encapsulating Ce6 inside as a photosensitizer was found to mitigate tumor hypoxia and reinforce PDT. As soon as Au@ZIF-8 reaches the tumor site, the AuNP nanozyme can catalyze excessive H2O2 to produce O2 to alleviate tumor hypoxia, promoting the production of 1O2 with strong toxicity toward tumor cells under irradiation. Our study demonstrates that nMOFs embellished with a nanozyme have great potential for overcoming the THME for cancer therapeutics, which provides a facile strategy for accurate bioimaging and cancer therapy in vivo.


Assuntos
Catalase/metabolismo , Portadores de Fármacos/química , Ouro/química , Nanopartículas Metálicas/química , Compostos Organometálicos/química , Fotoquimioterapia/métodos , Animais , Materiais Biomiméticos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Clorofilídeos , Peróxido de Hidrogênio/metabolismo , Camundongos , Oxigênio/metabolismo , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/química , Porfirinas/farmacologia , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/efeitos da radiação , Hipóxia Tumoral/efeitos dos fármacos , Hipóxia Tumoral/efeitos da radiação , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos da radiação
4.
Biomater Sci ; 6(8): 2122-2129, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29901676

RESUMO

The development of delivery systems for small interfering RNA (siRNA) plays a key role in its clinical application. As the major delivery systems for siRNA, cationic polymer- or lipid-based vehicles are plagued by inherent issues. As proof of concept, a disulfide bond-containing amphiphilic Janus dendrimer (ssJD), which could be conveniently synthesized and readily scaled up with high reproducibility, was explored as a siRNA delivery system to circumvent these issues. The cationic hydrophilic head of this Janus dendrimer ensured strong and stable binding with negatively charged siRNA via electrostatic interactions, and the loaded siRNA was rapidly released from the obtained complexes under a redox environment. Therefore, after efficient internalization into tumor cells, redox-sensitive dendrimersome (RSDs)/siRNA exhibited significantly improved gene silencing efficacy.


Assuntos
Dendrímeros/química , Dissulfetos/química , Técnicas de Transferência de Genes , RNA Interferente Pequeno/genética , Tensoativos/química , Sobrevivência Celular/efeitos dos fármacos , Dendrímeros/síntese química , Dendrímeros/farmacocinética , Dissulfetos/síntese química , Dissulfetos/farmacocinética , Inativação Gênica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Oxirredução , RNA Interferente Pequeno/química , RNA Interferente Pequeno/farmacocinética , Eletricidade Estática , Tensoativos/síntese química , Tensoativos/farmacocinética , Células Tumorais Cultivadas
5.
Biomater Sci ; 6(4): 893-900, 2018 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-29512660

RESUMO

Sorafenib is a kinase inhibitor approved for the treatment of primary kidney cancer, advanced primary liver cancer, and radioactive iodine resistant advanced thyroid carcinoma. However, sorafenib usually causes serious side effects, which limit its antitumor effect. Nanoparticle based drug delivery systems have been widely used to enhance the therapeutic effects and reduce the side effects of this drug by the enhanced permeability and retention (EPR) effect. Herein, to improve the therapeutic effect of sorafenib, we developed poly(ethylene glycol)-b-poly(lactic acid-co-glycolic acid) (PEG-PLGA) based nanoparticles by a dialysis method for sorafenib encapsulation. After intravenous injection of the sorafenib loaded nanoparticles (NPsorafenib), the tumor growth of mice bearing B16-F10, MC38 and LLC tumor was significantly inhibited. Meanwhile, the dose of sorafenib was reduced to one ninth and the side effects on the hematopoietic system and immune system were abrogated. More importantly, the tumor growth inhibition effect of NPsorafenib was dramatically reduced in B16-F10 bearing Rag1-/- mice which are adaptive immune cell defective, indicating that the antitumor effects of NPsorafenib are dependent on the adaptive immune cells. These results emphasize the indispensable role of the adaptive immune system in nano-drug mediated antitumor effects and the adaptive immune system should be considered as an important factor for clinical applications.


Assuntos
Antineoplásicos/administração & dosagem , Imunidade Celular/efeitos dos fármacos , Nanopartículas/química , Neoplasias Experimentais/tratamento farmacológico , Niacinamida/análogos & derivados , Compostos de Fenilureia/administração & dosagem , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Proteínas de Homeodomínio/metabolismo , Linfócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Niacinamida/administração & dosagem , Niacinamida/efeitos adversos , Niacinamida/farmacocinética , Compostos de Fenilureia/efeitos adversos , Compostos de Fenilureia/farmacocinética , Poliésteres/química , Polietilenoglicóis/química , Sorafenibe
6.
Biomater Sci ; 5(8): 1612-1621, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28580971

RESUMO

Platinum-based chemotherapy as first-line treatment for lung cancers encounters insufficient selectivity, severe side effects and drug resistance in clinics. In this study, we developed an amphiphilic prodrug of cisplatin-poly(ethylene glycol)-block-polycaprolactone and demonstrated that the prodrug formed micellar nanoparticles, NPPt(IV), with an average diameter of ∼100 nm. NPPt(IV) released platinum in response to the intracellular acidic and reductive environment, and in turn induced significant anti-proliferative activity in lung cancer cells. More importantly, NPPt(IV) exhibited a prominent inhibitory effect on CD133+ lung cancer stem cells (CSCs) and suppressed tumor growth in vivo. Unlike cisplatin treatment which eventually enriches CSCs, NPPt(IV) treatment prevents the accumulation of CD133+ lung CSCs in tumors. Therefore, NPPt(IV) simutaneously targeting CSCs and non-CSCs might represent a superior strategy to improve conventional anticancer therapy directed predominantly to tumor bulk populations.


Assuntos
Cisplatino/metabolismo , Cisplatino/farmacologia , Neoplasias Pulmonares/patologia , Micelas , Células-Tronco Neoplásicas/efeitos dos fármacos , Pró-Fármacos/metabolismo , Antígeno AC133/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Liberação Controlada de Fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas/química , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Poliésteres/química , Polietilenoglicóis/química , Pró-Fármacos/química , Fatores de Tempo
7.
Nano Lett ; 17(6): 3822-3829, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28488871

RESUMO

Chemoimmunotherapy, which combines chemotherapeutics with immune-modulating agents, represents an appealing approach for improving cancer therapy. To optimize its therapeutic efficacy, differentially delivering multiple therapeutic drugs to target cells is desirable. Here we developed an immunostimulatory nanocarrier (denoted as BLZ-945SCNs/Pt) that could spatially target tumor-associated macrophages (TAMs) and tumor cells for cancer chemoimmunotherapy. BLZ-945SCNs/Pt undergo supersensitive structure collapse in the prevascular regions of tumor tissues and enable the simultaneous release of platinum (Pt)-prodrug conjugated small particles and BLZ-945, a small molecule inhibitor of colony stimulating factor 1 receptor (CSF-1R) of TAMs. The released BLZ-945 can be preferentially taken up by TAMs to cause TAMs depletion from tumor tissues, while the small particles carrying Pt-prodrug enable deep tumor penetration as well as intracellularly specific drug release to kill more cancer cells. Our studies demonstrate that BLZ-945SCNs/Pt outperform their monotherapy counterparts in multiple tumor models. The underlying mechanism studies suggest that the designer pH-sensitive codelivery nanocarrier not only induces apoptosis of tumor cells but also modulates the tumor immune environment to eventually augment the antitumor effect of CD8+ cytotoxic T cells through TAMs depletion.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Macrófagos/efeitos dos fármacos , Nanopartículas/química , Animais , Antineoplásicos/administração & dosagem , Apoptose , Benzotiazóis/administração & dosagem , Benzotiazóis/química , Linhagem Celular Tumoral , Terapia Combinada , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Imunoterapia/métodos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Ácidos Picolínicos/administração & dosagem , Ácidos Picolínicos/química , Platina/química , Polímeros/química , Pró-Fármacos/administração & dosagem , Pró-Fármacos/química , Propriedades de Superfície , Microambiente Tumoral
8.
Enzyme Microb Technol ; 95: 230-235, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27866620

RESUMO

Photothermal therapy (PTT) is a minimally invasive and effective cancer treatment method and has a great potential for innovating the conventional chemotherapy approaches. Copper sulfide (CuS) exhibits photostability, low cost, and high absorption in near infrared region, and is recognized as an ideal candidate for PTT. However, CuS, as a photothermal agent, is usually synthesized with traditional chemical approaches, which require high temperature, additional stabilization and hydrophilic modification. Herein, we report, for the first time, the preparation of CuS nanoparticles as a photothermal agent by a dissimilatory metal reducing bacterium Shewanella. oneidensis MR-1. The prepared nanoparticles are homogenously shaped, hydrophilic, small-sized (∼5nm) and highly stable. Furthermore, the biosynthesized CuS nanoparticles display a high photothermal conversion efficiency of 27.2% because of their strong absorption at 1100nm. The CuS nanoparticles could be effectively used as a PTT agent under the irradiation of 1064nm. This work provides a simple, eco-friendly and cost-effective approach for fabricating PTT agents.


Assuntos
Cobre/química , Cobre/metabolismo , Nanopartículas Metálicas/química , Shewanella/metabolismo , Sulfetos/química , Sulfetos/metabolismo , Linhagem Celular Tumoral , Cobre/farmacologia , Química Verde , Humanos , Hipertermia Induzida , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/ultraestrutura , Processos Fotoquímicos , Sulfetos/farmacologia
9.
Proc Natl Acad Sci U S A ; 113(40): 11100-11105, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27647900

RESUMO

The covalent linkage of supramolecular monomers provides a powerful strategy for constructing dynamic polymeric materials whose properties can be readily tuned either by the selection of monomers or the choice of functional linkers. In this strategy, the stabilities of the supramolecular monomers and the reactions used to link the monomers are crucial because such monomers are normally dynamic and can disassemble during the linking process, leading to mixture of products. Therefore, although noncovalent interactions have been widely introduced into metallacycle structures to prepare metallosupramolecular polymers, metallacycle-cored polymers linked by covalent bonds have been rarely reported. Herein, we used the mild, highly efficient amidation reaction between alkylamine and N-hydroxysuccinimide-activated carboxylic acid to link the pendent amino functional groups of a rhomboidal metallacycle 10 to give metallacycle-cored polymers P1 and P2, which further yielded nanoparticles at low concentration and transformed into network structures as the concentration increased. Moreover, these polymers exhibited enhanced emission and showed better quantum yields than metallacycle 10 in methanol and methanol/water (1/9, vol/vol) due to the aggregation-induced emission properties of a tetraphenylethene-based pyridyl donor, which serves as a precursor for metallacycle 10. The fluorescence properties of these polymers were further used in cell imaging, and they showed a significant enrichment in lung cells after i.v. injection. Considering the anticancer activity of rhomboidal Pt(II) metallacycles, this type of fluorescent metallacycle-cored polymers can have potential applications toward lung cancer treatment.


Assuntos
Rastreamento de Células/métodos , Meios de Contraste/química , Imagem Molecular/métodos , Nanopartículas/química , Fluorescência , Humanos , Polímeros/química , Água/química
10.
ACS Appl Mater Interfaces ; 8(30): 19312-20, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27404741

RESUMO

Conjugated polymers containing alternating donor/acceptor units have strong and sharp absorbance peaks in near-infrared (NIR) region, which could be suitable for photothermal therapy. However, these polymers as photothermal transducers are rarely reported because of their water insolubility, which limits their applications for cancer therapy. Herein, we report the donor-acceptor conjugated polymer PBIBDF-BT with alternating isoindigo derivative (BIBDF) and bithiophene (BT) units as a novel photothermal transducer, which exhibited strong near-infrared (NIR) absorbance due to its low band gap (1.52 eV). To stabilize the conjugated polymer physiological environments, we utilized an amphiphilic copolymer, poly(ethylene glycol)-block-poly(hexyl ethylene phosphate) (mPEG-b-PHEP), to stabilize PBIBDF-BT-based nanoparticles (PBIBDF-BT@NPPPE) through a single emulsion method. The obtained nanoparticles PBIBDF-BT@NPPPE showed great stability in physiological environments and excellent photostability. Moreover, the PBIBDF-BT@NPPPE exhibited high photothermal conversion efficiency, reaching 46.7%, which is relatively high compared with those of commonly used materials for photothermal therapy. Accordingly, in vivo and in vitro experiments demonstrated that PBIBDF-BT@NPPPE exhibits efficient photothermal anticancer efficacy. More importantly, PBIBDF-BT@NPPPE could simultaneously encapsulate other types of therapeutic agents though hydrophobic interactions with the PHEP core and achieve NIR-triggered intracellular drug release and a synergistic combination therapy of thermo-chemotherapy for the treatment of cancer.


Assuntos
Tratamento Farmacológico/métodos , Neoplasias/tratamento farmacológico , Polímeros/química , Tiofenos/administração & dosagem , Tiofenos/farmacologia , Linhagem Celular Tumoral , Liberação Controlada de Fármacos/efeitos dos fármacos , Liberação Controlada de Fármacos/efeitos da radiação , Humanos , Indóis/administração & dosagem , Indóis/química , Indóis/farmacologia , Nanopartículas/química , Fármacos Fotossensibilizantes/farmacologia , Tiofenos/química
11.
Biomaterials ; 94: 9-19, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27088406

RESUMO

Chemotherapy resistance has become a major challenge in the clinical treatment of lung cancer which is the leading cancer type for the estimated deaths. Recent studies have shown that nanoparticles as drug carriers can raise intracellular drug concentration by achieving effectively cellular uptake and rapid drug release, and therefore reverse the acquired chemoresistance of tumors. In this context, nanoparticles-based chemotherapy represents a promising strategy for treating malignancies with chemoresistance. In the present study, we developed cationic lipid assisted nanoparticles (CLAN) to deliver polylactide-cisplatin prodrugs to drug resistant lung cancer cells. The nanoparticles were formulated through self-assembly of a biodegradable poly(ethylene glycol)-block-poly(lactide) (PEG-PLA), a hydrophobic polylactide-cisplatin prodrug, and a cationic lipid. The cationic nanoparticles were proven to significantly improve cell uptake of cisplatin, leading to an increased DNA-Pt adduct and significantly promoted DNA damage in vitro. Moreover, our study reveals that cationic nanoparticles, although are slightly inferior in blood circulation and tumor accumulation, are more effective in blood vessel extravasation. The CLANs ultimately enhances the cellular drug availability and leads to the reversal of cisplatin resistance.


Assuntos
Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Lipídeos/química , Nanopartículas/química , Pró-Fármacos/farmacologia , Células A549 , Animais , Cátions , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/química , Cisplatino/farmacocinética , Ácidos Graxos Monoinsaturados/química , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/ultraestrutura , Poliésteres/química , Polietilenoglicóis/química , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Compostos de Amônio Quaternário/química , Distribuição Tecidual/efeitos dos fármacos
12.
Biomaterials ; 82: 48-59, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26751819

RESUMO

Cancer stem cells (CSCs), which hold a high capacity for self-renewal, play a central role in the development, metastasis, and recurrence of various malignancies. CSCs must be eradicated to cure instances of cancer; however, because they can reside far from tumor vessels, they are not easily targeted by drug agents carried by nanoparticle-based drug delivery systems. We herein demonstrate that promoting tumor penetration of nanoparticles by transforming growth factor ß (TGF-ß) signaling pathway inhibition facilitates CSC therapy. In our study, we observed that although nanoparticles carrying siRNA targeting the oncogene polo-like kinase 1 (Plk1) efficiently killed breast CSCs derived from MDA-MB-231 cells in vitro, this intervention enriched CSCs in the residual tumor tissue following systemic treatment. However, inhibition of the TGF-ß signaling pathway with LY364947, an inhibitor of TGF-ß type I receptor, promoted the penetration of nanoparticles in tumor tissue, significantly ameliorating the intratumoral distribution of nanoparticles in MDA-MB-231 xenografts and further leading to enhanced internalization of nanoparticles by CSCs. As a result, synergistic treatment with a nanoparticle drug delivery system and LY364947 inhibited tumor growth and reduced the proportion of CSCs in vivo. This study suggests that enhanced tumor penetration of drug-carrying nanoparticles can enhance CSCs clearance in vivo and consequently provide superior anti-tumor effects.


Assuntos
Nanocápsulas/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Pirazóis/administração & dosagem , Pirróis/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Fator de Crescimento Transformador beta/metabolismo , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células-Tronco Neoplásicas/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
13.
ACS Appl Mater Interfaces ; 7(47): 26315-25, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26552849

RESUMO

Multidrug resistance (MDR) has been recognized as a key factor contributing to the failure of chemotherapy for cancer in the clinic, often due to insufficient delivery of anticancer drugs to target cells. For addressing this issue, a redox-responsive polyphosphoester-based micellar nanomedicine, which can be triggered to release transported drugs in tumor cells, has been developed. The micelles are composed of diblock copolymers with a hydrophilic PEG block and a hydrophobic polyphosphoester (PPE) block bearing a disulfide bond in a side group. After incubating the redox-responsive micelles with drug-resistant tumor cells, the intracellular accumulation and retention of DOX were significantly enhanced. Moreover, after internalization by MDR cancer cells, the disulfide bond in the side group was cleaved by the high intracellular glutathione levels, resulting in a hydrophobic to hydrophilic transition of the PPE block and subsequent disassembly of the micelles. Thus, the encapsulated DOX was rapidly released, and abrogation of drug resistance in the cancer cells was observed in vitro. Moreover, the DOX-loaded redox-responsive micelles exhibited significantly enhanced inhibition of tumor growth in nude mice bearing MCF-7/ADR xenograft tumors via tail vein injection, indicating that such micelles have great potential in overcoming MDR for cancer therapy.


Assuntos
Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Ésteres/química , Micelas , Nanomedicina/métodos , Polifosfatos/química , Animais , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Difusão Dinâmica da Luz , Feminino , Citometria de Fluxo , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oxirredução , Espectroscopia de Prótons por Ressonância Magnética , Pirenos/química , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Biomaterials ; 35(2): 836-45, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24144908

RESUMO

Nanoparticle-mediated delivery of chemotherapies has demonstrated enhanced anti-cancer efficacy, mainly through the mechanisms of both passive and active targeting. Herein, we report other than these well-elucidated mechanisms, rationally designed nanoparticles can efficiently deliver drugs to cancer stem cells (CSCs), which in turn contributes significantly to the improved anti-cancer efficacy. We demonstrate that doxorubicin-tethered gold nanoparticles via a poly(ethylene glycol) spacer and an acid-labile hydrazone bond mediate potent doxorubicin delivery to breast CSCs, which reduces their mammosphere formation capacity and their cancer initiation activity, eliciting marked enhancement in tumor growth inhibition in murine models. The drug delivery mediated by the nanoparticles also markedly attenuates tumor growth during off-therapy stage by reducing breast CSCs in tumors, while the therapy with doxorubicin alone conversely evokes an enrichment of breast CSCs. Our findings suggest that with well-designed drug delivery system, the conventional chemotherapeutic agents are promising for cancer stem cell therapy.


Assuntos
Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Ouro/química , Nanopartículas/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Polietilenoglicóis/química
15.
Mediators Inflamm ; 2013: 479628, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24369446

RESUMO

Anesthetic isoflurane (ISO) has immunomodulatory effects. In the present study, we investigated whether a subanesthetic dose of ISO (0.7%) protected against zymosan (ZY) induced inflammatory responses in the murine lung and isolated neutrophils. At 1 and 6 hrs after ZY administration intraperitoneally, ISO was inhaled for 1 hr, and 24 hrs later, lung inflammation and injury were assessed. We found that ISO improved the survival rate of mice and mitigated lung injury as characterized by the histopathology, wet-to-dry weight ratio, protein leakage, and lung function index. ISO significantly attenuated ZY-induced lung neutrophil recruitment and inflammation. This was suggested by the downregulation of (a) endothelial adhesion molecule expression and myeloperoxidase (MPO) activity in lung tissue and polymorphonuclear neutrophils (b) chemokines, and (c) proinflammatory cytokines in BALF. Furthermore, ZY-induced nuclear translocation and DNA-binding activity of NF- κ B p65 were also reduced by ISO. ISO treatment inhibited iNOS expression and activity, as well as subsequent nitric oxide generation. Consistent with these in vivo observations, in vitro studies confirmed that ISO blocked NF- κ B and iNOS activation in primary mouse neutrophils challenged by ZY. These results provide evidence that 0.7% ISO ameliorates inflammatory responses in ZY-treated mouse lung and primary neutrophils.


Assuntos
Isoflurano/administração & dosagem , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/patologia , Neutrófilos/imunologia , Pneumonia/tratamento farmacológico , Zimosan/efeitos adversos , Transporte Ativo do Núcleo Celular , Animais , Gasometria , Líquido da Lavagem Broncoalveolar , Quimiocinas/metabolismo , Citocinas/metabolismo , Regulação para Baixo , Concentração de Íons de Hidrogênio , Inflamação/patologia , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/mortalidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Nitritos/metabolismo , Peroxidase/metabolismo , Fatores de Tempo
16.
Phytother Res ; 27(12): 1770-5, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23362211

RESUMO

Formononetin (FMNT) is an isoflavone found in many herbs including Trifolium pratense L., Spatholobus suberectus Dunn., and Astragalus mongholicus Bunge. The purpose of this study is to investigate pharmacological properties of FMNT on neurotoxicity induced by N-methyl-D-asparate (NMDA) in primary-cultured cortical neurons. The cell viability was significantly decreased after exposure to NMDA (200 µM) for 40 min. Pretreatment of FMNT (10 µM) for 12 h significantly attenuated the cell loss induced by NMDA exposure. Flow cytometry analysis revealed that treatment of FMNT attenuated the number of apoptotic cells, especially the early phase apoptotic cells, induced by NMDA exposure. Western blot analysis showed that FMNT regulated the expression of apoptosis-related proteins by increasing the levels of Bcl-2 and pro-caspase-3 and decreasing the levels of Bax and caspase-3. These findings demonstrate that FMNT is capable of protecting neurons from NMDA-evoked excitotoxic injury and has a potential perspective to the clinical treatment for neurodegenerative disorders in central nervous system.


Assuntos
Apoptose/efeitos dos fármacos , Isoflavonas/farmacologia , N-Metilaspartato/toxicidade , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/citologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
17.
Biomater Sci ; 1(11): 1143-1150, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32481937

RESUMO

Effective systemic therapy is often necessary to treat hepatocellular carcinoma (HCC). We synthesized a Gal-PPE nanogel consisting of a cross-linked polyphosphate core and galactosylated poly(ethylene glycol) arms for enhanced doxorubicin delivery to diethylnitrosamine-induced HCC in rats. The Gal-PPE nanogel exhibited high affinity to HepG2 cells in vitro, mediated by the asialoglycoprotein receptor. In vivo studies revealed that the Gal-PPE nanogel was taken up more efficiently by hepatocytes, in contrast to m-PPE nanogel. Consequently, doxorubicin delivery with Gal-PPE significantly inhibited the progress of HCC, reducing neoplastic liver nodules and prolonging the survival time of HCC rats more significantly. These results demonstrate the potential of Gal-PPE as a nanocarrier for improved HCC chemotherapy.

18.
ACS Nano ; 6(6): 4955-65, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22646867

RESUMO

The clinical success of therapeutics of small interfering RNA (siRNA) is still hindered by its delivery systems. Cationic polymer or lipid-based vehicles as the major delivery systems of siRNA cannot sufficiently satisfy siRNA therapeutic applications. It is hypothesized that cationic lipid-polymer hybrid nanoparticles may take advantage of both polymeric and lipid-based nanoparticles for siRNA delivery, while diminishing the shortcomings of both. In this study, cationic lipid-polymer hybrid nanoparticles were prepared by a single-step nanoprecipitation of a cationic lipid (N,N-bis(2-hydroxyethyl)-N-methyl-N-(2-cholesteryloxycarbonyl aminoethyl) ammonium bromide, BHEM-Chol) and amphiphilic polymers for systemic delivery of siRNA. The formed hybrid nanoparticles comprised a hydrophobic polylactide core, a hydrophilic poly(ethylene glycol) shell, and a cationic lipid monolayer at the interface of the core and the shell. Such hybrid nanoparticles exhibited excellent stability in serum and showed significantly improved biocompatibility compared to that of pure BHEM-Chol particles. The hybrid nanoparticles were capable of delivering siRNA into BT474 cells and facilitated the escape of loaded siRNA from the endosome into the cytoplasm. The hybrid nanoparticles carrying polo-like kinase 1 (Plk1)-specific siRNA (siPlk1) remarkably and specifically downregulated expression of the oncogene Plk1 and induced cancer cell apoptosis both in vitro and in vivo and significantly suppressed tumor growth following systemic administration. We demonstrate that this system is stable, nontoxic, highly efficient, and easy to scale up, bringing the clinical application of siRNA therapy one important step closer to reality.


Assuntos
Lipídeos/química , Nanocápsulas/química , Neoplasias Experimentais/genética , Neoplasias Experimentais/terapia , Polímeros/química , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , Animais , Cátions , Linhagem Celular Tumoral , Terapia Genética/métodos , Camundongos , Nanocápsulas/administração & dosagem , Resultado do Tratamento
19.
J Am Chem Soc ; 134(9): 4355-62, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22304702

RESUMO

We report a new strategy for differential delivery of antimicrobials to bacterial infection sites with a lipase-sensitive polymeric triple-layered nanogel (TLN) as the drug carrier. The TLN was synthesized by a convenient arm-first procedure using an amphiphilic diblock copolymer, namely, monomethoxy poly(ethylene glycol)-b-poly(ε-caprolactone), to initiate the ring-opening polymerization of the difunctional monomer 3-oxapentane-1,5-diyl bis(ethylene phosphate). The hydrophobic poly(ε-caprolactone) (PCL) segments collapsed and surrounded the polyphosphoester core, forming a hydrophobic and compact molecular fence in aqueous solution which prevented antibiotic release from the polyphosphoester core prior to reaching bacterial infection sites. However, once the TLN sensed the lipase-secreting bacteria, the PCL fence of the TLN degraded to release the antibiotic. Using Staphylococcus aureus (S. aureus) as the model bacterium and vancomycin as the model antimicrobial, we demonstrated that the TLN released almost all the encapsulated vancomycin within 24 h only in the presence of S. aureus, significantly inhibiting S. aureus growth. The TLN further delivered the drug into bacteria-infected cells and efficiently released the drug to kill intracellular bacteria. This technique can be generalized to selectively deliver a variety of antibiotics for the treatment of various infections caused by lipase-secreting bacteria and thus provides a new, safe, effective, and universal approach for the treatment of extracellular and intracellular bacterial infections.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Lipase/metabolismo , Polietilenoglicóis/química , Polietilenoimina/química , Polímeros/química , Antibacterianos/farmacologia , Portadores de Fármacos/metabolismo , Lipase/química , Testes de Sensibilidade Microbiana , Nanogéis , Polietilenoglicóis/metabolismo , Polietilenoimina/metabolismo , Polímeros/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Relação Estrutura-Atividade , Vancomicina/farmacologia
20.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 27(6): 694-6, 2011 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-21882483

RESUMO

AIM: To establish a sandwich method to detect tenascin-c on the basis of preparation of monoclonal antibodies (mAbs) against tenascin-C (TN-C). METHODS: The ascites of three stains of mAbs (No. 1A8, 3H7 and 4D6) were prepared and purified. The mAbs were conjugated with HRP and paired, respectively. The recombinant TN-C was taken as standard to analyze the optimal combination between mAbs. The sera TN-C concentrations of patients with osteosarocoma and the normal persons were evaluated with the sandwich ELISA method. RESULTS: Among these mAbs, the sensitivity was obtained when combined the coated 1A8 with HRP-4D6. The sera TN-C significantly higher than the normal controls. CONCLUSION: The sandwich ELISA method to detect TN-C was established successfully. The sera TN-C concentrations of patients with osteosarcoma and the normal persons were found distinct with the sandwich method.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/isolamento & purificação , Biomarcadores Tumorais/sangue , Ensaio de Imunoadsorção Enzimática/instrumentação , Osteossarcoma/sangue , Tenascina/sangue , Adolescente , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA