Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.077
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Oncol ; 14: 1383809, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774408

RESUMO

PGC1α, a central player in mitochondrial biology, holds a complex role in the metabolic shifts seen in cancer cells. While its dysregulation is common across major cancers, its impact varies. In some cases, downregulation promotes aerobic glycolysis and progression, whereas in others, overexpression escalates respiration and aggression. PGC1α's interactions with distinct signaling pathways and transcription factors further diversify its roles, often in a tissue-specific manner. Understanding these multifaceted functions could unlock innovative therapeutic strategies. However, challenges exist in managing the metabolic adaptability of cancer cells and refining PGC1α-targeted approaches. This review aims to collate and present the current knowledge on the expression patterns, regulators, binding partners, and roles of PGC1α in diverse cancers. We examined PGC1α's tissue-specific functions and elucidated its dual nature as both a potential tumor suppressor and an oncogenic collaborator. In cancers where PGC1α is tumor-suppressive, reinstating its levels could halt cell proliferation and invasion, and make the cells more receptive to chemotherapy. In cancers where the opposite is true, halting PGC1α's upregulation can be beneficial as it promotes oxidative phosphorylation, allows cancer cells to adapt to stress, and promotes a more aggressive cancer phenotype. Thus, to target PGC1α effectively, understanding its nuanced role in each cancer subtype is indispensable. This can pave the way for significant strides in the field of oncology.

2.
Int J Med Sci ; 21(6): 1103-1116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774759

RESUMO

Background: Colorectal cancer (CRC) has a high morbidity and mortality. Ferroptosis is a phenomenon in which metabolism and cell death are closely related. The role of ferroptosis-related genes in the progression of CRC is still not clear. Therefore, we screened and validated the ferroptosis-related genes which could determine the prevalence, risk and prognosis of patients with CRC. Methods: We firstly screened differentially expressed ferroptosis-related genes by The Cancer Genome Atlas (TCGA) database. Then, these genes were used to construct a risk-score model using the least absolute shrinkage and selection operator (LASSO) regression algorithm. The function and prognosis of the ferroptosis-related genes were confirmed using multi-omics analysis. The gene expression results were validated using publicly available databases and qPCR. We also used publicly available data and ferroptosis-related genes to construct a prognostic prediction nomogram. Results: A total of 24 differential expressed genes associated with ferroptosis were screened in this study. A three-gene risk score model was then established based on these 24 genes and GPX3, CDKN2A and SLC7A11 were selected. The significant prognostic value of this novel three-gene signature was also assessed. Furthermore, we conducted RT-qPCR analysis on cell lines and tissues, and validated the high expression of CDKN2A, GPX3 and low expression of SLC7A11 in CRC cells. The observed mRNA expression of GPX3, CDKN2A and SLC7A11 was consistent with the predicted outcomes. Besides, eight variables including selected ferroptosis related genes were included to establish the prognostic prediction nomogram for patients with CRC. The calibration plots showed favorable consistency between the prediction of the nomogram and actual observations. Also, the time-dependent AUC (>0.7) indicated satisfactory discriminative ability of the nomogram. Conclusions: The present study constructed and validated a novel ferroptosis-related three-gene risk score signature and a prognostic prediction nomogram for patients with CRC. Also, we screened and validated the ferroptosis-related genes GPX3, CDKN2A, and SLC7A11 which could serve as novel biomarkers for patients with CRC.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Biomarcadores Tumorais , Neoplasias Colorretais , Ferroptose , Regulação Neoplásica da Expressão Gênica , Nomogramas , Humanos , Ferroptose/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/mortalidade , Prognóstico , Biomarcadores Tumorais/genética , Sistema y+ de Transporte de Aminoácidos/genética , Masculino , Feminino , Inibidor p16 de Quinase Dependente de Ciclina/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Pessoa de Meia-Idade , Perfilação da Expressão Gênica , Medição de Risco/métodos , Medição de Risco/estatística & dados numéricos , Idoso
3.
Pancreas ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710020

RESUMO

OBJECTIVES: To evaluate the suitability of the MIA PaCa-2 cell line for studying pancreatic cancer intratumor heterogeneity, we aim to further characterize the nature of MIA PaCa-2 cells' phenotypic, genomic, and transcriptomic heterogeneity. METHODS: MIA PaCa-2 single-cell clones were established through flow cytometry. For the phenotypic study, we quantified the cellular morphology, proliferation rate, migration potential, and drug sensitivity of the clones. The chromosome copy number and transcriptomic profiles were quantified using SNPa and RNA-seq, respectively. RESULTS: Four MIA PaCa-2 clones showed distinctive phenotypes, with differences in cellular morphology, proliferation rate, migration potential, and drug sensitivity. We also observed a degree of genomic variations between these clones in form of chromosome copy number alterations and single nucleotide variations, suggesting the genomic heterogeneity of the population, and the intrinsic genomic instability of MIA PaCa-2 cells. Lastly, transcriptomic analysis of the clones also revealed gene expression profile differences between the clones, including the uniquely regulated ITGAV, which dictates the morphology of MIA PaCa-2 clones. CONCLUSIONS: MIA PaCa-2 is comprised of cells with distinctive phenotypes, heterogeneous genomes, and differential transcriptomic profiles, suggesting its suitability as a model to study the underlying mechanisms behind pancreatic cancer heterogeneity.

4.
Int Immunopharmacol ; 134: 112217, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38718658

RESUMO

The imbalance between T helper cell 17 (Th17)and regulatory T cells (Treg) cells leading to inflammation has an important role in the pathogenesis of ulcerative colitis (UC). Mammalian target of rapamycin (mTOR) can regulate the differentiation of T cells, but the specific pathway leading mTOR to regulate Th17/Treg cells in UC remains unclear. Our aim with this study was to investigate the effects of mTOR overexpression and silencing on the hypoxia inducible factor-1α (HIF-1α) - Th17/Treg signaling pathway. To mimic a human study, we established a colon cancer epithelial cell line (HT-29) co-culture system with human CD4+ T cells, and we treated the cells with TNF-α. We observed the effects of mTOR on the HIF-Th17/Treg signaling pathway to determine whether mTOR is involved in the regulatory mechanism. Under the stimulation of TNF-α, the levels of HIF-1α in CD4+T cells were increased in the HT-29 co-culture with CD4+ T cells, promoting glycolysis, increasing the Th17 proportion, decreasing the Treg proportion, increasing the pro-inflammatory factors levels, and decreasing the anti-inflammatory factors levels. Moreover, after mTOR silencing, the HIF-1α level and cell glycolysis levels decreased, Th17 cell differentiation decreased, the pro-inflammatory factor levels decreased, and the anti-inflammatory factor levels increased. In contrast, mTOR overexpression lead to the opposite results.mTOR promotes inflammation by regulating the HIF signaling pathway during UC, and silencing mTOR may alleviate inflammation. An mTOR inhibitor is a potential therapeutic target for UC treatment.

5.
Research (Wash D C) ; 7: 0352, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711475

RESUMO

In this study, we systematically investigated the interactions between Cu2+ and various biomolecules, including double-stranded DNA, Y-shaped DNA nanospheres, the double strand of the hybridization chain reaction (HCR), the network structure of cross-linked HCR (cHCR), and small molecules (PPi and His), using Cu2+ as an illustrative example. Our research demonstrated that the coordination between Cu2+ and these biomolecules not only is suitable for modulating luminescent material signals through complexation reactions with Cu2+ but also enhances signal intensities in materials based on chemical reactions by increasing spatial site resistance and local concentration. Building upon these findings, we harnessed the potential for signal amplification in self-assembled DNA nanospheres and the selective complexation modulation of calcein in conjunction with the aptamer targeting mucin 1 as a recognition probe. We applied this approach to the analysis of circulating tumor cells, with the lung cancer cell line A549 serving as a representative model. Our assay, utilizing both a fluorometer and a handheld detector, achieved impressive detection limits of ag/ml and single-cell levels for mucin 1 and A549 cells, and this approach was successfully validated using 46 clinical samples, yielding 100% specificity and 86.5% sensitivity. Consequently, our strategy has paved the way for more portable and precise disease diagnosis.

6.
Front Pharmacol ; 15: 1380313, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725667

RESUMO

Introduction: Compared to other cancer immunotherapies, oncolytic viruses possess several advantages, including high killing efficiency, excellent targeting capabilities, minimal adverse reactions, and multiple pathways for tumor destruction. However, the efficacy of oncolytic viruses as a monotherapy often falls short of expectations. Consequently, combining oncolytic viruses with traditional treatments to achieve synergistic effects has emerged as a promising direction for the development of oncolytic virus therapies. Methods: This article provides a comprehensive review of the current progress in preclinical and clinical trials exploring the combination therapies involving oncolytic viruses. Results: Specifically, we discuss the combination of oncolytic viruses with immune checkpoint inhibitors, chemotherapy, targeted therapy, and cellular therapy. Discussion: The aim of this review is to offer valuable insights and references for the further advancement of these combination strategies in clinical applications. Further research is necessary to refine the design of combination therapies and explore novel strategies to maximize the therapeutic benefits offered by oncolytic viruses.

7.
Cancer Sci ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38705575

RESUMO

Persistent activation of estrogen receptor alpha (ERα)-mediated estrogen signaling plays a pivotal role in driving the progression of estrogen receptor positive (ER+) breast cancer (BC). In the current study, LINC00173, a long non-coding RNA, was found to bind both ERα and lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNFα) factor (LITAF), then cooperatively to inhibit ERα protein degradation by impeding the nuclear export of ERα. Concurrently, LITAF was found to attenuate TNFα transcription after binding to LINC00173, and this attenuating transcriptional effect was quite significant under lipopolysaccharide stimulation. Distinct functional disparities between estrogen subtypes emerge, with estradiol synergistically promoting ER+ BC cell growth with LINC00173, while estrone (E1) facilitated LITAF-transcriptional activation. In terms of therapeutic significance, silencing LINC00173 alongside moderate addition of E1 heightened TNFα and induced apoptosis, effectively inhibiting ER+ BC progression.

8.
Front Oncol ; 14: 1378662, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779093

RESUMO

Background: Definitive concurrent chemoradiotherapy (CCRT) followed by maintenance therapy with immune checkpoint inhibitors offers the best chance of cure for patients with stage III non-small cell lung cancer (NSCLC). A significant challenge in this regimen is the occurrence of acute severe lymphopenia (ASL), which can compromise treatment efficacy. Currently, there are no effective strategies for preventing and treating ASL. Shenglin decoction (SLD), a traditional Chinese herbal medicine formulation, has demonstrated preliminary efficacy in mitigating ASL. However, robust evidence from clinical trials and a clear understanding of its mechanism of action are still needed. This study aims to comprehensively assess the efficacy, safety, and underlying mechanisms of SLD in the prevention of ASL. Methods: This prospective, dual-center, open-label, randomized controlled trial will enroll 140 stage III NSCLC patients. Participants will be randomly allocated in a 1:1 ratio to a control group or an experimental group. Both groups will undergo definitive CCRT. Alongside the commencement of CCRT, the experimental group will receive an additional oral SLD intervention for a duration of three months. The primary outcome is the incidence rate of ASL, defined as the proportion of patients who experience at least one instance of a total lymphocyte count falling below 0.5 × 10^9 cells/L within 3 months of initiating CCRT treatment. Additionally, 16S rRNA gene sequencing analysis of fecal samples to assess gut microbiota, as well as metabolomic analysis of fecal/blood samples, will be conducted to explore potential mechanisms. Discussion: This study protocol aims to rigorously evaluate the efficacy and safety of SLD, as well as elucidate its mechanism of action in preventing ASL. Successful outcomes could establish SLD as an evidence-based intervention for ASL prevention in NSCLC patients undergoing CCRT. Trial Registration: The trial was registered at the Chinese Clinical Trials Registry (ChiCTR2300071788, https://www.chictr.org.cn/).

9.
Open Med (Wars) ; 19(1): 20240964, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737444

RESUMO

Fiber sheath interaction protein 1 (FSIP1) plays a crucial role in cancer development and occurrence, but its influence on gastric cancer is still unclear. In this study, differential mRNA analysis was performed by TCGA database for the Limma analysis algorithm, and the gene ontology, the Kyoto Encyclopedia of Genes and Genomes, and the gene set enrichment analysis (GSEA) were used for bioinformatics functional enrichment analysis. A gastric cancer cell model with FSIP1 mRNA knockdown was constructed by RNA interference. Cell counting kit-8 and transwell migration/invasion assay were performed to verify the cell function, and western blotting was employed to confirm the expression of target genes. The GSEA analysis revealed that FSIP1 was associated with epithelial-mesenchymal transition (EMT). The high expression group also had a significant positive correlation with the markers of fibroblast in tumor microenvironment (TME). Western blotting showed that FSIP1 was generally upregulated in gastric cancer cell lines. FSIP1 mRNA knockdown cell lines inhibited gastric cells proliferation, migration, and metastasis in vitro, and the protein levels of EMT-related markers N-cadherin and vimentin were reduced. Our work proved that FSIP1 promoted EMT by regulating fibroblasts in the TME, thereby promoting the carcinogenic activity of cancer cells in proliferation, invasion, and migration. FSIP1 may take a role of the occurrence and could be a potential therapeutic target and offer a new insight into the underlying mechanism of gastric cancer.

10.
Small ; : e2402025, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38766971

RESUMO

Aqueous aluminum ion batteries (AAIBs) possess the advantages of high safety, cost-effectiveness, eco-friendliness and high theoretical capacity. However, the Al2O3 film on the Al anode surface, a natural physical barrier to the plating of hydrated aluminum ions, is a key factor in the decomposition of the aqueous electrolyte and the severe hydrogen precipitation reaction. To circumvent the obnoxious Al anode, a proof-of-concept of an anode-free AAIB is first proposed, in which Al2TiO5, as a cathode pre-aluminum additive (Al source), can replenish Al loss by over cycling. The Al-Cu alloy layer, formed by plating Al on the Cu foil surface during the charge process, possesses a reversible electrochemical property and is paired with a polyaniline (cathode) to stimulate the battery to exhibit high initial discharge capacity (175 mAh g-1), high power density (≈410 Wh L-1) and ultra-long cycle life (4000 cycles) with the capacity retention of ≈60% after 1000 cycles. This work will act as a primer to ignite the enormous prospective researches on the anode-free aqueous Al ion batteries.

11.
Eur J Pharmacol ; 975: 176656, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754536

RESUMO

Cancer stem cells (CSCs) drive malignant tumor progression, recurrence, and metastasis with unique characteristics, including self-renewal and resistance to conventional treatments. Conventional differentiation inducers, although promising, have limited cytotoxicity and may inadvertently enhance CSC stemness. To address these challenges, ongoing efforts are dedicated to developing strategies that can effectively combine both cytotoxicity and differentiation-inducing effects. In this study, we introduce oridonin (Ori), a small molecule with dual differentiation-inducing and cytotoxicity properties capable of eliminating tumor CSCs. We isolated CSCs in B16F10 cells using the Hoechst side population method and assessed the differentiation effect of Ori. Ori's differentiation-inducing effect was further evaluated using human acute promyelocytic leukemia. The cytotoxic potential of Ori against MCF-7 and B16F10 cell lines was assessed through various methods. In vivo anti-tumor and anti-CSC efficacy of Ori was investigated using mouse melanoma and CSCs melanoma models. Safety evaluation included zebrafish embryotoxicity and mouse acute toxicity experiments. As a result, Ori effectively dismantles tumorspheres, inhibits proliferation, and reduces the expression of CSC-specific markers. It induces significant differentiation, especially in the case of NB4. Additionally, Ori upregulates TP53 expression, mitigates the hypoxic tumor microenvironment, suppresses stemness, and inhibits PD-L1 expression, prompting a robust anti-cancer immune response. Ori demonstrates pronounced cytotoxicity, inducing notable pro-apoptotic effects on B16F10 and MCF-7 cells, with specific triggering of mitochondrial apoptosis. Importantly, Ori maintains a commendable biosafety record. The dual-action prowess of Ori not only induces the differentiation of CSCs but also dispatches differentiated and residual tumor cells, effectively thwarting the relentless march of tumor progression.

12.
Med Oncol ; 41(6): 155, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744773

RESUMO

Interleukin-6 (IL-6) and hypoxia-inducible factor-1α (HIF-1α) play important roles in epithelial-mesenchymal transformation (EMT) and tumor development. Previous studies have demonstrated that IL-6 promotes EMT, invasion, and metastasis in epithelial ovarian cancer (EOC) cells by activating the STAT3/HIF-1α pathway. MicroRNA (miRNA) is non-coding small RNAs that also play an important role in tumor development. Notably, Let-7 and miR-200 families are prominently altered in EOC. However, whether IL-6 regulates the expression of Let-7 and miR-200 families through the STAT3/HIF-1α signaling to induce EMT in EOC remains poorly understood. In this study, we conducted in vitro and in vivo investigations using two EOC cell lines, SKOV3, and OVCAR3 cells. Our findings demonstrate that IL-6 down-regulates the mRNA levels of Let-7c and miR-200c while up-regulating their target genes HMGA2 and ZEB1 through the STAT3/HIF-1α signaling in EOC cells and in vivo. Additionally, to explore the regulatory role of HIF-1α on miRNAs, both exogenous HIF blockers YC-1 and endogenous high expression or inhibition of HIF-1α can be utilized. Both approaches can confirm that the downstream molecule HIF-1α inhibits the expression and function of Let-7c and miR-200c. Further mechanistic research revealed that the overexpression of Let-7c or miR-200c can reverse the malignant evolution of EOC cells induced by IL-6, including EMT, invasion, and metastasis. Consequently, our results suggest that IL-6 regulates the expression of Let-7c and miR-200c through the STAT3/HIF-1α pathway, thereby promoting EMT, invasion, and metastasis in EOC cells.


Assuntos
Carcinoma Epitelial do Ovário , Transição Epitelial-Mesenquimal , Subunidade alfa do Fator 1 Induzível por Hipóxia , Interleucina-6 , MicroRNAs , Invasividade Neoplásica , Neoplasias Ovarianas , Fator de Transcrição STAT3 , Transdução de Sinais , MicroRNAs/genética , Humanos , Transição Epitelial-Mesenquimal/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Carcinoma Epitelial do Ovário/patologia , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Linhagem Celular Tumoral , Animais , Invasividade Neoplásica/genética , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Camundongos , Metástase Neoplásica , Camundongos Endogâmicos BALB C
13.
Eur J Med Chem ; 272: 116508, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761583

RESUMO

The traditional clinical approaches for oral cancer consist of surgery, chemotherapy, radiotherapy, immunotherapy, and so on. However, these treatments often induce side effects and exhibit limited efficacy. Photothermal therapy (PTT) emerges as a promising adjuvant treatment, utilizing photothermal agents (PTAs) to convert light energy into heat for tumor ablation. Another innovative approach, photodynamic therapy (PDT), leverages photosensitizers (PSs) and specific wavelength laser irradiation to generate reactive oxygen species (ROS), offering an effective and non-toxic alternative. The relevant combination therapies have been reported in the field of oral cancer. Simultaneously, the advancement of nanomaterials has propelled the clinical application of PTT and PDT. Therefore, a comprehensive understanding of PTT and PDT is required for better application in oral cancer treatment. Here, we review the use of PTT and PDT in oral cancer, including noble metal materials (e.g., Au nanoparticles), carbon materials (e.g., graphene oxide), organic dye molecules (e.g., indocyanine green), organic molecule-based agents (e.g., porphyrin-analog phthalocyanine) and other inorganic materials (e.g., MXenes), exemplify the advantages and disadvantages of common PTAs and PSs, and summarize the combination therapies of PTT with PDT, PTT/PDT with chemotherapy, PTT with radiotherapy, PTT/PDT with immunotherapy, and PTT/PDT with gene therapy in the treatment of oral cancer. The challenges related to the PTT/PDT combination therapy and potential solutions are also discussed.

14.
Arch Oral Biol ; 164: 106000, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38759391

RESUMO

OBJECTIVE: To explore the expression of HAUS6 in squamous cell carcinoma of the tongue (TSCC) and its relationship with the clinicopathological features of patients, and to further provide new ideas and therapeutic targets for curing TSCC. DESIGN: The Cancer Genome Atlas (TCGA) database was used to screen for differentially expressed genes (DEGs) between TSCC and normal tissues and survival analysis. DEGs of HAUS6 were screened and analyzed for GO, KEGG and GSEA enrichment. Exploring the correlation of HAUS6 with immune cell infiltration and immune checkpoint-related genes. The expression of HAUS6 in tumor and paraneoplastic tissues was confirmed by immunohistochemistry and Western Blot. RESULTS: Analysis of the TCGA database results showed that expression of HAUS6 mRNA was significantly enhanced and correlated with overall survival (OS, p < 0.05) in TSCC. HAUS6 expression correlated with the level of immune cell infiltration and immune checkpoint-related genes. Immunohistochemistry and Western Blot confirmed that the expression level of HAUS6 protein was significantly higher in tumor tissues than in paraneoplastic tissues, and that tumor size and hypo-differentiation were higher in the HAUS6 high expression group than in the low expression group in TSCC (p < 0.05). CONCLUSIONS: In conclusion, these analyses suggest that HAUS6 can act as an independent predictor of prognosis (p < 0.05) and high HAUS6 expression is strongly associated with poor prognosis.

15.
EClinicalMedicine ; 72: 102626, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38756107

RESUMO

Background: Previous trials of renal denervation (RDN) have been designed to investigate reduction of blood pressure (BP) as the primary efficacy endpoint using non-selective RDN without intraoperatively verified RDN success. It is an unmet clinical need to map renal nerves, selectively denervate renal sympathetic nerves, provide readouts for the interventionalists and avoid futile RDN. We aimed to examine the safety and efficacy of renal nerve mapping/selective renal denervation (msRDN) in patients with uncontrolled hypertension (HTN) and determine whether antihypertensive drug burden is reduced while office systolic BP (OSBP) is controlled to target level (<140 mmHg). Methods: We conducted a randomized, prospective, multicenter, single-blinded, sham-controlled trial. The study combined two efficacy endpoints at 6 months as primary outcomes: The control rate of patients with OSBP <140 mmHg (non-inferior outcome) and change in the composite index of antihypertensive drugs (Drug Index) in the treatment versus Sham group (superior outcome). This design avoids confounding from excess drug-taking in the Sham group. Antihypertensive drug burden was assessed by a composite index constructed as: Class N (number of classes of antihypertensive drugs) × (sum of doses). 15 hospitals in China participated in the study and 220 patients were enrolled in a 1:1 ratio (msRDN vs Sham). The key inclusion criteria included: age (18-65 years old), history of essential HTN (at least 6 months), heart rate (≥70 bpm), OSBP (≥150 mmHg and ≤180 mmHg), ambulatory BP monitoring (ABPM, 24-h SBP ≥130 mmHg or daytime SBP ≥135 mmHg or nighttime SBP ≥120 mmHg), renal artery stenosis (<50%) and renal function (eGFR >45 mL/min/1.73 m2). The catheter with both stimulation and ablation functions was inserted in the distal renal main artery. The RDN site (hot spot) was selected if SBP increased (≥5 mmHg) by intra-renal artery (RA) electrical stimulation; an adequate RDN was confirmed by repeated electronic stimulation if no increase in BP otherwise, a 2nd ablation was performed at the same site. At sites where there was decreased SBP (≥5 mmHg, cold spot) or no BP response (neutral spot) to stimulation, no ablation was performed. The mapping, ablation and confirmation procedure was repeated until the entire renal main artery had been tested then either treated or avoided. After msRDN, patients had to follow a predefined, vigorous drug titration regimen in order to achieve target OSBP (<140 mmHg). Drug adherence was monitored by liquid chromatography-tandem mass spectrometry analysis using urine. This study is registered with ClinicalTrials.gov (NCT02761811) and 5-year follow-up is ongoing. Findings: Between July 8, 2016 and February 23, 2022, 611 patients were consented, 220 patients were enrolled in the study who received standardized antihypertensive drug treatments (at least two drugs) for at least 28 days, presented OSBP ≥150 mmHg and ≤180 mmHg and met all inclusion and exclusion criteria. In left RA and right RA, mapped sites were 8.2 (3.0) and 8.0 (2.7), hot/ablated sites were 3.7 (1.4) and 4.0 (1.6), cold spots were 2.4 (2.6) and 2.0 (2.2), neutral spots were 2.0 (2.1) and 2.0 (2.1), respectively. Hot, cold and neutral spots was 48.0%, 27.5% and 24.4% of total mapped sites, respectively. At 6 M, the Control Rate of OSBP was comparable between msRDN and Sham group (95.4% vs 92.8%, p = 0.429), achieved non-inferiority margin -10% (2.69%; 95% CI -4.11%, 9.83%, p < 0.001 for non-inferiority); the change in Drug Index was significantly lower in msRDN group compared to Sham group (4.37 (6.65) vs 7.61 (10.31), p = 0.010) and superior to Sham group (-3.25; 95% CI -5.56, -0.94, p = 0.003), indicating msRDN patients need significantly fewer drugs to control OSBP <140 mmHg. 24-hour ambulatory SBP decreased from 146.8 (13.9) mmHg by 10.8 (14.1) mmHg, and from 149.8 (12.8) mmHg by 10.0 (14.0) mmHg in msRDN and Sham groups, respectively (p < 0.001 from Baseline; p > 0.05 between groups). Safety profiles were comparable between msRDN and Sham groups, demonstrating the safety and efficacy of renal mapping/selective RDN to treat uncontrolled HTN. Interpretation: The msRDN therapy achieved the goals of reducing the drug burden of HTN patients and controlling OSBP <140 mmHg, with only approximately four targeted ablations per renal main artery, much lower than in previous trials. Funding: SyMap Medical (Suzhou), LTD, Suzhou, China.

16.
Microbiol Spectr ; : e0347223, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747599

RESUMO

Malignant central airway stenosis is treated with airway stent placement, but post-placement microbial characteristics remain unclear. We studied microbial features in 60 patients post-stent placement, focusing on changes during granulation tissue proliferation. Samples were collected before stent (N = 29), after stent on day 3 (N = 20), and after granulation tissue formation (AS-GTF, N = 43). Metagenomic sequencing showed significant respiratory tract microbiota changes with granulation tissue. The microbiota composition, dominated by Actinobacteria, Firmicutes, and Proteobacteria, was similar among the groups. At the species level, the AS-GTF group exhibited significant differences, with Peptostreptococcus stomatis and Achromobacter xylosoxidans enriched. Analysis based on tracheoesophageal fistula presence identified Tannerella forsythia and Stenotrophomonas maltophilia as the main differential species, enriched in the fistula subgroup. Viral and fungal detection showed Human gammaherpesvirus 4 and Candida albicans as the main species, respectively. These findings highlight microbiota changes after stent placement, potentially associated with granulation tissue proliferation, informing stent placement therapy and anti-infective treatment optimization. IMPORTANCE: Malignant central airway stenosis is a life-threatening condition that can be effectively treated with airway stent placement. However, despite its clinical importance, the microbial characteristics of the respiratory tract following stent insertion remain poorly understood. This study addresses this gap by investigating the microbial features in patients with malignant central airway stenosis after stent placement, with a specific focus on microbial changes during granulation tissue proliferation. The findings reveal significant alterations in the diversity and structure of the respiratory tract microbiota following the placement of malignant central airway stents. Notably, certain bacterial species, including Peptostreptococcus stomatis and Achromobacter xylosoxidans, exhibit distinct patterns in the after-stent granulation tissue formation group. Additionally, the presence of tracheoesophageal fistula further influences the microbial composition. These insights provide valuable references for optimizing stent placement therapy and enhancing clinical anti-infective strategies.

17.
Nat Commun ; 15(1): 3744, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702321

RESUMO

Cellular composition and anatomical organization influence normal and aberrant organ functions. Emerging spatial single-cell proteomic assays such as Image Mass Cytometry (IMC) and Co-Detection by Indexing (CODEX) have facilitated the study of cellular composition and organization by enabling high-throughput measurement of cells and their localization directly in intact tissues. However, annotation of cell types and quantification of their relative localization in tissues remain challenging. To address these unmet needs for atlas-scale datasets like Human Pancreas Analysis Program (HPAP), we develop AnnoSpat (Annotator and Spatial Pattern Finder) that uses neural network and point process algorithms to automatically identify cell types and quantify cell-cell proximity relationships. Our study of data from IMC and CODEX shows the higher performance of AnnoSpat in rapid and accurate annotation of cell types compared to alternative approaches. Moreover, the application of AnnoSpat to type 1 diabetic, non-diabetic autoantibody-positive, and non-diabetic organ donor cohorts recapitulates known islet pathobiology and shows differential dynamics of pancreatic polypeptide (PP) cell abundance and CD8+ T cells infiltration in islets during type 1 diabetes progression.


Assuntos
Algoritmos , Diabetes Mellitus Tipo 1 , Pâncreas , Proteômica , Humanos , Proteômica/métodos , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/metabolismo , Pâncreas/citologia , Pâncreas/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/citologia , Análise de Célula Única/métodos , Redes Neurais de Computação , Linfócitos T CD8-Positivos/metabolismo , Citometria por Imagem/métodos
18.
Int J Pharm ; 658: 124213, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38729382

RESUMO

Safe and effective Cu2+ supplementation in local lesion is crucial for minimizing toxicity of DSF-based chemotherapy. Targeted delivery of Cu2+ appears more promising. Intraperitoneal chemotherapy for peritoneal carcinoma (PC) establishes "face-to-face" contact between targeted nanocarriers and tumor tissue. Herein, this study developed a biodegradable, injectable thermosensitive hydrogel that coencapsulating DSF submicroemulsion (DSF-SE) and folate-modified liposome loading glycyrrhizic acid-Cu (FCDL). FCDL acted as 'beneficial horse' to target the tumor-localized folate receptor, thus liberating Cu2+ in tumor nidus. The prepared FCDL and DSF-SE were found with uniform sizes (160.2 nm, 175.4 nm), low surface charge (-25.77 mV, -16.40 mV) and high encapsulation efficiency (97.93 %, 90.08 %). In vitro drug release profile of FCDL, DSF-SE and FCDL&DSF-SE@G followed a sustained release pattern. And the release behavior of Cu2+ from FCDL was pH-related, i.e., Cu2+ was released faster under acidic condition. When FCDL and DSF-SE were loaded into an PLGA-PEG-PLGA-based hydrogel system, FCDL&DSF-SE@G was formed to ensure separated delivery of Cu2+ and DSF in space but synchronized release over time. The rheology experiment showed a satisfactory gelling temperature of 32.7 °C. In vitro cytotoxicity study demonstrated that FCDL&DSF-SE@G significantly lowered the IC50 of free Cu2+/DSF, Cu2+/DSF hydrogel and non-targeted analogue by almost 70 %, 65 % and 32 %, respectively. Accordingly, in tumor-bearing mice, FCDL&DSF-SE@G augmented the tumor inhibition rates for the same formulations by 352 %, 145 % and 44 %, respectively. The main mechanism was attributed to higher uptake of FCDL and DSF-SE, resulting in increased Cu(DDTC)2 formation, ROS production and cell apoptosis. In conclusion, this targeted nanotherapy approach with dual-nanocarriers loaded hydrogel system, with its focus on face-to-face contact between nanocarriers and tumor tissues in the peritoneal cavity, holds significant promise for intraperitoneal chemotherapy in PC.

19.
Sci Rep ; 14(1): 11755, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783043

RESUMO

Numerous studies establish a significant correlation between autoimmune disorders (AIDs) and prostate cancer (PCa). Our Mendelian randomization (MR) analysis investigates the potential connection between rheumatoid arthritis (RA) and PCa, aiming to confirm causal links between systemic lupus erythematosus (SLE), hyperthyroidism, and PCa. Summary statistics from genome-wide association studies provided data on PCa and three AIDs. MR analysis, using IVW as the main approach, assessed causal relationships, validated by sensitivity analysis. IVW revealed a correlation between genetically anticipated RA and PCa, notably in Europeans (OR = 1.03; 95% CI 1.01-1.04, p = 2*10-5). Evidence supported a lower PCa risk in individuals with SLE (OR = 0.94; 95% CI 0.91-0.97, p = 2*10-4) and hyperthyroidism (OR = 0.02; 95% CI 0.001-0.2, p = 2*10-3). Weighted mode and median confirmed these findings. No pleiotropic effects were observed, and MR heterogeneity tests indicated dataset homogeneity. Our study establishes a causal link between RA, SLE, hyperthyroidism, and PCa.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Estudo de Associação Genômica Ampla , Lúpus Eritematoso Sistêmico , Análise da Randomização Mendeliana , Neoplasias da Próstata , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/epidemiologia , Masculino , Doenças Autoimunes/genética , Doenças Autoimunes/epidemiologia , Artrite Reumatoide/genética , Artrite Reumatoide/epidemiologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/epidemiologia , Hipertireoidismo/genética , Hipertireoidismo/epidemiologia , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Fatores de Risco
20.
Sci Rep ; 14(1): 8095, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582932

RESUMO

Legumain (or asparagine endopeptidase/AEP) is a lysosomal cysteine endopeptidase associated with increased invasive and migratory behavior in a variety of cancers. In this study, co-delivery of Cas9 mRNA and guide RNA (gRNA) by lipid nanoparticles (LNP) for editing of LGMN gene was performed. For in-vitro transcription (IVT) of gRNA, two templates were designed: linearized pUC57-T7-gRNA and T7-gRNA oligos, and the effectiveness of gRNA was verified in multiple ways. Cas9 plasmid was modified and optimized for IVT of Cas9 mRNA. The effects of LGMN gene editing on lysosomal/autophagic function and cancer cell metastasis were investigated. Co-delivery of Cas9 mRNA and gRNA resulted in impaired lysosomal/autophagic degradation, clone formation, migration, and invasion capacity of cancer cells in-vitro. Experimental lung metastasis experiment indicates co-delivery of Cas9 mRNA and gRNA by LNP reduced the migration and invasion capacity of cancer cells in-vivo. These results indicate that co-delivery of Cas9 mRNA and gRNA can enhance the efficiency of CRISPR/Cas9-mediated gene editing in-vitro and in-vivo, and suggest that Cas9 mRNA and gRNA gene editing of LGMN may be a potential treatment for breast tumor metastasis.


Assuntos
Neoplasias da Mama , Sistemas CRISPR-Cas , Humanos , Feminino , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias da Mama/genética , Edição de Genes/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA