Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38908487

RESUMO

BACKGROUND & AIMS: Pancreatic ducts form an intricate network of tubules that secrete bicarbonate and drive acinar secretions into the duodenum. This network is formed by centroacinar cells, terminal, intercalated, intracalated ducts, and the main pancreatic duct. Ductal heterogeneity at the single-cell level has been poorly characterized; therefore, our understanding of the role of ductal cells in pancreas regeneration and exocrine pathogenesis has been hampered by the limited knowledge and unexplained diversity within the ductal network. METHODS: We used single cell RNA sequencing to comprehensively characterize mouse ductal heterogeneity at single-cell resolution of the entire ductal epithelium from centroacinar cells to the main duct. Moreover, we used organoid cultures, injury models, and pancreatic tumor samples to interrogate the role of novel ductal populations in pancreas regeneration and exocrine pathogenesis. RESULTS: We have identified the coexistence of 15 ductal populations within the healthy pancreas and characterized their organoid formation capacity and endocrine differentiation potential. Cluster isolation and subsequent culturing let us identify ductal cell populations with high organoid formation capacity and endocrine and exocrine differentiation potential in vitro, including a Wnt-responsive population, a ciliated population, and Flrt3+ cells. Moreover, we have characterized the location of these novel ductal populations in healthy pancreas, chronic pancreatitis, and tumor samples. The expression of Wnt-responsive, interferon-responsive, and epithelial-to-mesenchymal transition population markers increases in chronic pancreatitis and tumor samples. CONCLUSIONS: In light of our discovery of previously unidentified ductal populations, we unmask potential roles of specific ductal populations in pancreas regeneration and exocrine pathogenesis. Thus, novel lineage-tracing models are needed to investigate ductal-specific populations in vivo.

2.
Nat Commun ; 15(1): 3744, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702321

RESUMO

Cellular composition and anatomical organization influence normal and aberrant organ functions. Emerging spatial single-cell proteomic assays such as Image Mass Cytometry (IMC) and Co-Detection by Indexing (CODEX) have facilitated the study of cellular composition and organization by enabling high-throughput measurement of cells and their localization directly in intact tissues. However, annotation of cell types and quantification of their relative localization in tissues remain challenging. To address these unmet needs for atlas-scale datasets like Human Pancreas Analysis Program (HPAP), we develop AnnoSpat (Annotator and Spatial Pattern Finder) that uses neural network and point process algorithms to automatically identify cell types and quantify cell-cell proximity relationships. Our study of data from IMC and CODEX shows the higher performance of AnnoSpat in rapid and accurate annotation of cell types compared to alternative approaches. Moreover, the application of AnnoSpat to type 1 diabetic, non-diabetic autoantibody-positive, and non-diabetic organ donor cohorts recapitulates known islet pathobiology and shows differential dynamics of pancreatic polypeptide (PP) cell abundance and CD8+ T cells infiltration in islets during type 1 diabetes progression.


Assuntos
Algoritmos , Diabetes Mellitus Tipo 1 , Pâncreas , Proteômica , Humanos , Proteômica/métodos , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/metabolismo , Pâncreas/citologia , Pâncreas/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/citologia , Análise de Célula Única/métodos , Redes Neurais de Computação , Linfócitos T CD8-Positivos/metabolismo , Citometria por Imagem/métodos
3.
bioRxiv ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38463969

RESUMO

Background and aims: Pancreatic ducts form an intricate network of tubules that secrete bicarbonate and drive acinar secretions into the duodenum. This network is formed by centroacinar cells, terminal, intercalated, intracalated ducts, and the main pancreatic duct. Ductal heterogeneity at the single-cell level has been poorly characterized; therefore, our understanding of the role of ductal cells in pancreas regeneration and exocrine pathogenesis has been hampered by the limited knowledge and unexplained diversity within the ductal network. Methods: We used scRNA-seq to comprehensively characterize mouse ductal heterogeneity at single-cell resolution of the entire ductal epithelium from centroacinar cells to the main duct. Moreover, we used organoid cultures, injury models and pancreatic tumor samples to interrogate the role of novel ductal populations in pancreas regeneration and exocrine pathogenesis. Results: We have identified the coexistence of 15 ductal populations within the healthy pancreas and characterized their organoid formation capacity and endocrine differentiation potential. Cluster isolation and subsequent culturing let us identify ductal cell populations with high organoid formation capacity and endocrine and exocrine differentiation potential in vitro , including Wnt-responsive-population, ciliated-population and FLRT3 + cells. Moreover, we have characterized the location of these novel ductal populations in healthy pancreas, chronic pancreatitis, and tumor samples, highlighting a putative role of WNT-responsive, IFN-responsive and EMT-populations in pancreatic exocrine pathogenesis as their expression increases in chronic pancreatitis and PanIN lesions. Conclusions: In light of our discovery of previously unidentified ductal populations, we unmask the potential roles of specific ductal populations in pancreas regeneration and exocrine pathogenesis.

4.
bioRxiv ; 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36712052

RESUMO

Cellular composition and anatomical organization influence normal and aberrant organ functions. Emerging spatial single-cell proteomic assays such as Image Mass Cytometry (IMC) and Co-Detection by Indexing (CODEX) have facilitated the study of cellular composition and organization by enabling high-throughput measurement of cells and their localization directly in intact tissues. However, annotation of cell types and quantification of their relative localization in tissues remain challenging. To address these unmet needs, we developed AnnoSpat (Annotator and Spatial Pattern Finder) that uses neural network and point process algorithms to automatically identify cell types and quantify cell-cell proximity relationships. Our study of data from IMC and CODEX show the superior performance of AnnoSpat in rapid and accurate annotation of cell types compared to alternative approaches. Moreover, the application of AnnoSpat to type 1 diabetic, non-diabetic autoantibody-positive, and non-diabetic organ donor cohorts recapitulated known islet pathobiology and showed differential dynamics of pancreatic polypeptide (PP) cell abundance and CD8+ T cells infiltration in islets during type 1 diabetes progression.

5.
JCI Insight ; 6(7)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33621209

RESUMO

Studies of human hepatitis B virus (HBV) immune pathogenesis are hampered by limited access to liver tissues and technologies for detailed analyses. Here, utilizing imaging mass cytometry (IMC) to simultaneously detect 30 immune, viral, and structural markers in liver biopsies from patients with hepatitis B e antigen+ (HBeAg+) chronic hepatitis B, we provide potentially novel comprehensive visualization, quantitation, and phenotypic characterizations of hepatic adaptive and innate immune subsets that correlated with hepatocellular injury, histological fibrosis, and age. We further show marked correlations between adaptive and innate immune cell frequencies and phenotype, highlighting complex immune interactions within the hepatic microenvironment with relevance to HBV pathogenesis.


Assuntos
Hepatite B Crônica/patologia , Citometria por Imagem/métodos , Fígado/imunologia , Fígado/virologia , Adolescente , Adulto , Fatores Etários , Biópsia , Criança , Feminino , Antígenos E da Hepatite B/metabolismo , Hepatite B Crônica/imunologia , Humanos , Processamento de Imagem Assistida por Computador , Imunidade Inata , Antígenos Comuns de Leucócito/metabolismo , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
Proc Natl Acad Sci U S A ; 117(29): 17177-17186, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32631996

RESUMO

Hepatocyte nuclear factor 4α (HNF4α) is a master regulator of liver function and a tumor suppressor in hepatocellular carcinoma (HCC). In this study, we explore the reciprocal negative regulation of HNF4α and cyclin D1, a key cell cycle protein in the liver. Transcriptomic analysis of cultured hepatocyte and HCC cells found that cyclin D1 knockdown induced the expression of a large network of HNF4α-regulated genes. Chromatin immunoprecipitation-sequencing (ChIP-seq) demonstrated that cyclin D1 inhibits the binding of HNF4α to thousands of targets in the liver, thereby diminishing the expression of associated genes that regulate diverse metabolic activities. Conversely, acute HNF4α deletion in the liver induces cyclin D1 and hepatocyte cell cycle progression; concurrent cyclin D1 ablation blocked this proliferation, suggesting that HNF4α maintains proliferative quiescence in the liver, at least, in part, via repression of cyclin D1. Acute cyclin D1 deletion in the regenerating liver markedly inhibited hepatocyte proliferation after partial hepatectomy, confirming its pivotal role in cell cycle progression in this in vivo model, and enhanced the expression of HNF4α target proteins. Hepatocyte cyclin D1 gene ablation caused markedly increased postprandial liver glycogen levels (in a HNF4α-dependent fashion), indicating that the cyclin D1-HNF4α axis regulates glucose metabolism in response to feeding. In AML12 hepatocytes, cyclin D1 depletion led to increased glucose uptake, which was negated if HNF4α was depleted simultaneously, and markedly elevated glycogen synthesis. To summarize, mutual repression by cyclin D1 and HNF4α coordinately controls the cell cycle machinery and metabolism in the liver.


Assuntos
Ciclo Celular/fisiologia , Ciclina D1/genética , Ciclina D1/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Fígado/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Hepatócitos/metabolismo , Hepatócitos/patologia , Regeneração Hepática/genética , Regeneração Hepática/fisiologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Knockout
7.
Cell Mol Gastroenterol Hepatol ; 9(1): 121-143, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31629814

RESUMO

BACKGROUND & AIMS: The adult liver is the main detoxification organ and routinely is exposed to environmental insults but retains the ability to restore its mass and function upon tissue damage. However, extensive injury can lead to liver failure, and chronic injury causes fibrosis, cirrhosis, and hepatocellular carcinoma. Currently, the transcriptional regulation of organ repair in the adult liver is incompletely understood. METHODS: We isolated nuclei from quiescent as well as repopulating hepatocytes in a mouse model of hereditary tyrosinemia, which recapitulates the injury and repopulation seen in toxic liver injury in human beings. We then performed the assay for transposase accessible chromatin with high-throughput sequencing specifically in repopulating hepatocytes to identify differentially accessible chromatin regions and nucleosome positioning. In addition, we used motif analysis to predict differential transcription factor occupancy and validated the in silico results with chromatin immunoprecipitation followed by sequencing for hepatocyte nuclear factor 4α (HNF4α) and CCCTC-binding factor (CTCF). RESULTS: Chromatin accessibility in repopulating hepatocytes was increased in the regulatory regions of genes promoting proliferation and decreased in the regulatory regions of genes involved in metabolism. The epigenetic changes at promoters and liver enhancers correspond with the regulation of gene expression, with enhancers of many liver function genes showing a less accessible state during the regenerative process. Moreover, increased CTCF occupancy at promoters and decreased HNF4α binding at enhancers implicate these factors as key drivers of the transcriptomic changes in replicating hepatocytes that enable liver repopulation. CONCLUSIONS: Our analysis of hepatocyte-specific epigenomic changes during liver repopulation identified CTCF and HNF4α as key regulators of hepatocyte proliferation and regulation of metabolic programs. Thus, liver repopulation in the setting of toxic injury makes use of both general transcription factors (CTCF) for promoter activation, and reduced binding by a hepatocyte-enriched factor (HNF4α) to temporarily limit enhancer activity. All sequencing data in this study were deposited to the Gene Expression Omnibus database and can be downloaded with accession number GSE109466.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Regeneração Hepática/genética , Tirosinemias/patologia , Animais , Fator de Ligação a CCCTC/genética , Núcleo Celular/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Elementos Facilitadores Genéticos/genética , Epigênese Genética , Perfilação da Expressão Gênica , Fator 4 Nuclear de Hepatócito/genética , Hepatócitos/citologia , Hepatócitos/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hidrolases/genética , Fígado/citologia , Fígado/patologia , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Tirosinemias/genética
8.
J Clin Invest ; 128(6): 2297-2309, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29517978

RESUMO

Understanding the molecular basis of the regenerative response following hepatic injury holds promise for improved treatment of liver diseases. Here, we report an innovative method to profile gene expression specifically in the hepatocytes that regenerate the liver following toxic injury. We used the Fah-/- mouse, a model of hereditary tyrosinemia, which conditionally undergoes severe liver injury unless fumarylacetoacetate hydrolase (FAH) expression is reconstituted ectopically. We used translating ribosome affinity purification followed by high-throughput RNA sequencing (TRAP-seq) to isolate mRNAs specific to repopulating hepatocytes. We uncovered upstream regulators and important signaling pathways that are highly enriched in genes changed in regenerating hepatocytes. Specifically, we found that glutathione metabolism, particularly the gene Slc7a11 encoding the cystine/glutamate antiporter (xCT), is massively upregulated during liver regeneration. Furthermore, we show that Slc7a11 overexpression in hepatocytes enhances, and its suppression inhibits, repopulation following toxic injury. TRAP-seq allows cell type-specific expression profiling in repopulating hepatocytes and identified xCT, a factor that supports antioxidant responses during liver regeneration. xCT has potential as a therapeutic target for enhancing liver regeneration in response to liver injury.


Assuntos
Sistema y+ de Transporte de Aminoácidos/metabolismo , Hepatócitos/metabolismo , Regeneração Hepática , Fígado , Tirosinemias/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Hepatócitos/patologia , Fígado/lesões , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Tirosinemias/genética , Tirosinemias/patologia , Tirosinemias/fisiopatologia
9.
Hepatology ; 68(2): 663-676, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29091290

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 activation (CRISPRa) systems have enabled genetic screens in cultured cell lines to discover and characterize drivers and inhibitors of cancer cell growth. We adapted this system for use in vivo to assess whether modulating endogenous gene expression levels can result in functional outcomes in the native environment of the liver. We engineered the catalytically dead CRISPR-associated 9 (dCas9)-positive mouse, cyclization recombination-inducible (Cre) CRISPRa system for cell type-specific gene activation in vivo. We tested the capacity for genetic screening in live animals by applying CRISPRa in a clinically relevant model of liver injury and repopulation. We targeted promoters of interest in regenerating hepatocytes using multiple single guide RNAs (gRNAs), and employed high-throughput sequencing to assess enrichment of gRNA sequences during liver repopulation and to link specific gRNAs to the initiation of carcinogenesis. All components of the CRISPRa system were expressed in a cell type-specific manner and activated endogenous gene expression in vivo. Multiple gRNA cassettes targeting a proto-oncogene were significantly enriched following liver repopulation, indicative of enhanced division of cells expressing the proto-oncogene. Furthermore, hepatocellular carcinomas developed containing gRNAs that activated this oncogene, indicative of cancer initiation events. Also, we employed our system for combinatorial cancer genetics in vivo as we found that while clonal hepatocellular carcinomas were dependent on the presence of the oncogene-inducing gRNAs, they were depleted for multiple gRNAs activating tumor suppressors. CONCLUSION: The in vivo CRISPRa platform developed here allows for parallel and combinatorial genetic screens in live animals; this approach enables screening for drivers and suppressors of cell replication and tumor initiation. (Hepatology 2017).


Assuntos
Carcinogênese/genética , Carcinoma Hepatocelular/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Testes Genéticos/métodos , Neoplasias Hepáticas/genética , Animais , Western Blotting , Regulação Neoplásica da Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala , Imuno-Histoquímica , Fígado/metabolismo , Fígado/patologia , Camundongos , Oncogenes , RNA Guia de Cinetoplastídeos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Ativação Transcricional
10.
Hepatology ; 66(6): 2002-2015, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28653763

RESUMO

Liver regeneration (LR) happens after various types of injuries. Unlike the well-studied LR caused by partial hepatectomy (PHx), there is accumulating evidence suggesting that LR during other injuries may result from unknown mechanisms. In this study, we found that insulin-like growth factor 2 (IGF-2) was drastically induced following the liver injuries caused by tyrosinemia or long-term treatments of CCl4 . However, this was not observed during the early phase of acute liver injuries after PHx or single treatment of CCl4 . Remarkably, most IGF-2-expressing hepatocytes were located at the histological area around the central vein of the liver lobule after the liver injuries caused either in fumarylacetoacetate hydrolase-deficient mice or in CCl4 chronically treated mice. Hepatocyte proliferation in vivo was significantly promoted by induced IGF-2 overexpression, which could be inhibited by adeno-associated virus-delivered IGF-2 short hairpin RNAs or linsitinib, an inhibitor of IGF-2 signaling. Proliferating hepatocytes in vivo responded to IGF-2 through both insulin receptor and IGF-1 receptor. IGF-2 also significantly promoted DNA synthesis of primary hepatocytes in vitro. More interestingly, the significantly induced IGF-2 was also found to colocalize with glutamine synthetase in the region enriched with proliferating hepatocytes for the liver samples from patients with liver fibrosis. CONCLUSION: IGF-2 is produced by pericentral hepatocytes to promote hepatocyte proliferation and repair tissue damage in the setting of chronic liver injury, which is distinct from the signaling that occurs post-PHx. (Hepatology 2017;66:2002-2015).


Assuntos
Fator de Crescimento Insulin-Like II/metabolismo , Regeneração Hepática , Animais , Intoxicação por Tetracloreto de Carbono , Proliferação de Células , Hepatectomia , Hepatócitos/metabolismo , Humanos , Hidrolases/genética , Masculino , Camundongos
11.
Hepatology ; 64(4): 1163-1177, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27099001

RESUMO

UNLABELLED: The expression of biliary/progenitor markers by hepatocellular carcinoma (HCC) is often associated with poor prognosis and stem cell-like behaviors of tumor cells. Hepatocellular adenomas (HCAs) also often express biliary/progenitor markers and frequently act as precursor lesions for HCC. However, the cell of origin of HCA and HCC that expresses these markers remains unclear. Therefore, to evaluate if mature hepatocytes give rise to HCA and HCC tumors and to understand the molecular pathways involved in tumorigenesis, we lineage-labeled hepatocytes by injecting adeno-associated virus containing thyroxine-binding globulin promoter-driven causes recombination (AAV-TBG-Cre) into Rosa(YFP) mice. Yellow fluorescent protein (YFP) was present in >96% of hepatocytes before exposure to carcinogens. We treated AAV-TBG-Cre; Rosa(YFP) mice with diethylnitrosamine (DEN), followed by multiple injections of carbon tetrachloride to induce carcinogenesis and fibrosis and found that HCA and HCC nodules were YFP(+) lineage-labeled; positive for osteopontin, SRY (sex determining region Y)-box 9, and epithelial cell adhesion molecule; and enriched for transcripts of biliary/progenitor markers such as prominin 1, Cd44, and delta-like 1 homolog. Next, we performed the converse experiment and lineage-labeled forkhead box protein L1(Foxl1)-positive hepatic progenitor cells simultaneously with exposure to carcinogens. None of the tumor nodules expressed YFP, indicating that Foxl1-expressing cells are not the origin for hepatotoxin-induced liver tumors. We confirmed that HCA and HCC cells are derived from mature hepatocytes and not from Foxl1-Cre-marked cells in a second model of toxin-induced hepatic neoplasia, using DEN and 3,3',5,5'-tetrachloro-1,4-bis(pyridyloxy)benzene (TCPOBOP). CONCLUSION: Hepatocytes are the cell of origin of HCA and HCC in DEN/carbon tetrachloride and DEN/TCPOBOP induced liver tumors. (Hepatology 2016;64:1163-1177).


Assuntos
Adenoma de Células Hepáticas/genética , Adenoma de Células Hepáticas/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Adenoma de Células Hepáticas/induzido quimicamente , Animais , Carcinoma Hepatocelular/induzido quimicamente , Linhagem da Célula , Hepatócitos , Neoplasias Hepáticas/induzido quimicamente , Camundongos
12.
Cancer Res ; 76(11): 3351-63, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27032419

RESUMO

Aberrant regulation of cellular extrusion can promote invasion and metastasis. Here, we identify molecular requirements for early cellular invasion using a premalignant mouse model of pancreatic cancer with conditional knockout of p120 catenin (Ctnnd1). Mice with biallelic loss of p120 catenin progressively develop high-grade pancreatic intraepithelial neoplasia (PanIN) lesions and neoplasia accompanied by prominent acute and chronic inflammatory processes, which is mediated, in part, through NF-κB signaling. Loss of p120 catenin in the context of oncogenic Kras also promotes remarkable apical and basal epithelial cell extrusion. Abundant single epithelial cells exit PanIN epithelium basally, retain epithelial morphology, survive, and display features of malignancy. Similar extrusion defects are observed following p120 catenin knockdown in vitro, and these effects are completely abrogated by the activation of S1P/S1pr2 signaling. In the context of oncogenic Kras, p120 catenin loss significantly reduces expression of genes mediating S1P/S1pr2 signaling in vivo and in vitro, and this effect is mediated at least, in part, through activation of NF-κB. These results provide insight into mechanisms controlling early events in the metastatic process and suggest that p120 catenin and S1P/S1pr2 signaling enhance cancer progression by regulating epithelial cell invasion. Cancer Res; 76(11); 3351-63. ©2016 AACR.


Assuntos
Carcinoma in Situ/patologia , Carcinoma Ductal Pancreático/patologia , Cateninas/metabolismo , Células Epiteliais/patologia , Metaplasia/patologia , Neoplasias Pancreáticas/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Carcinoma in Situ/genética , Carcinoma in Situ/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Cateninas/genética , Proliferação de Células , Células Epiteliais/metabolismo , Humanos , Metaplasia/genética , Metaplasia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/genética , NF-kappa B/metabolismo , Invasividade Neoplásica , Estadiamento de Neoplasias , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Células Tumorais Cultivadas , delta Catenina
13.
Dev Biol ; 399(1): 41-53, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25523391

RESUMO

The intracellular protein p120 catenin aids in maintenance of cell-cell adhesion by regulating E-cadherin stability in epithelial cells. In an effort to understand the biology of p120 catenin in pancreas development, we ablated p120 catenin in mouse pancreatic progenitor cells, which resulted in deletion of p120 catenin in all epithelial lineages of the developing mouse pancreas: islet, acinar, centroacinar, and ductal. Loss of p120 catenin resulted in formation of dilated epithelial tubules, expansion of ductal epithelia, loss of acinar cells, and the induction of pancreatic inflammation. Aberrant branching morphogenesis and tubulogenesis were also observed. Throughout development, the phenotype became more severe, ultimately resulting in an abnormal pancreas comprised primarily of duct-like epithelium expressing early progenitor markers. In pancreatic tissue lacking p120 catenin, overall epithelial architecture remained intact; however, actin cytoskeleton organization was disrupted, an observation associated with increased cytoplasmic PKCζ. Although we observed reduced expression of adherens junction proteins E-cadherin, ß-catenin, and α-catenin, p120 catenin family members p0071, ARVCF, and δ-catenin remained present at cell membranes in homozygous p120(f/f) pancreases, potentially providing stability for maintenance of epithelial integrity during development. Adult mice homozygous for deletion of p120 catenin displayed dilated main pancreatic ducts, chronic pancreatitis, acinar to ductal metaplasia (ADM), and mucinous metaplasia that resembles PanIN1a. Taken together, our data demonstrate an essential role for p120 catenin in pancreas development.


Assuntos
Cateninas/metabolismo , Células Epiteliais/metabolismo , Epitélio/metabolismo , Pâncreas/metabolismo , Junções Aderentes/metabolismo , Animais , Animais Recém-Nascidos , Caderinas/metabolismo , Cateninas/genética , Citoesqueleto/metabolismo , Feminino , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Pâncreas/embriologia , Pâncreas/crescimento & desenvolvimento , Pancreatite Crônica/genética , Pancreatite Crônica/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , alfa Catenina/metabolismo , beta Catenina/metabolismo , delta Catenina
14.
PLoS One ; 9(11): e113127, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25405615

RESUMO

The role of miRNA processing in the maintenance of adult pancreatic acinar cell identity and during the initiation and progression of pancreatic neoplasia has not been studied in detail. In this work, we deleted Dicer specifically in adult pancreatic acinar cells, with or without simultaneous activation of oncogenic Kras. We found that Dicer is essential for the maintenance of acinar cell identity. Acinar cells lacking Dicer showed increased plasticity, as evidenced by loss of polarity, initiation of epithelial-to-mesenchymal transition (EMT) and acinar-to-ductal metaplasia (ADM). In the context of oncogenic Kras activation, the initiation of ADM and pancreatic intraepithelial neoplasia (PanIN) were both highly sensitive to Dicer gene dosage. Homozygous Dicer deletion accelerated the formation of ADM but not PanIN. In contrast, heterozygous Dicer deletion accelerated PanIN initiation, revealing complex roles for Dicer in the regulation of both normal and neoplastic pancreatic epithelial identity.


Assuntos
Células Acinares/metabolismo , RNA Helicases DEAD-box/metabolismo , Pâncreas/citologia , Neoplasias Pancreáticas/enzimologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ribonuclease III/metabolismo , Animais , Polaridade Celular/fisiologia , RNA Helicases DEAD-box/deficiência , Transição Epitelial-Mesenquimal/fisiologia , Imunofluorescência , Imuno-Histoquímica , Camundongos , Ribonuclease III/deficiência
15.
PLoS One ; 8(9): e74629, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040300

RESUMO

The Long interspersed element 1 (LINE1 or L1) retrotransposon constitutes 17% of the human genome. There are currently 80-100 human L1 elements that are thought to be active in any diploid human genome. These elements can mobilize into new locations of the genome, resulting in changes in genomic information. Active L1s are thus considered to be a type of endogenous mutagen, and L1 insertions can cause disease. Certain stresses, such as gamma radiation, oxidative stress, and treatment with some agents, can induce transcription and/or mobilization of retrotransposons. In this study, we used a reporter gene assay in HepG2 cells to screen compounds for the potential to enhance the transcription of human L1. We assessed 95 compounds including genotoxic agents, substances that induce cellular stress, and commercially available drugs. Treatment with 15 compounds increased the L1 promoter activity by >1.5-fold (p<0.05) after 6 or 24 hours of treatment. In particular, genotoxic agents (benzo[a]pyrene, camptothecin, cytochalasin D, merbarone, and vinblastine), PPARα agonists (bezafibrate and fenofibrate), and non-steroidal anti-inflammatory drugs (diflunisal, flufenamic acid, salicylamide, and sulindac) induced L1 promoter activity. To examine their effects on L1 retrotransposition, we developed a high-throughput real-time retrotransposition assay using a novel secreted Gaussia luciferase reporter cassette. Three compounds (etomoxir, WY-14643, and salicylamide) produced a significant enhancement in L1 retrotransposition. This is the first study to report the effects of a wide variety of compounds on L1 transcription and retrotransposition. These results suggest that certain chemical- and drug-induced stresses might have the potential to cause genomic mutations by inducing L1 mobilization. Thus, the risk of induced L1 transcription and retrotransposition should be considered during drug safety evaluation and environmental risk assessments of chemicals.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Elementos Nucleotídeos Longos e Dispersos/genética , Salicilamidas/química , Anti-Inflamatórios não Esteroides/química , Genes Reporter , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Mutagênicos/química , Estresse Oxidativo , PPAR alfa/agonistas , Regiões Promotoras Genéticas , Transcrição Gênica
16.
Methods Mol Biol ; 980: 281-90, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23359160

RESUMO

Sphere-forming assays are an in vitro technique to assay both normal and neoplastic cells for clonogenic growth potential. Currently, the identification of adult progenitors in the pancreas remains an area of intense investigation. The use of sphere-forming assays provides a critical step to identify new cell types in the pancreas that are capable of clonogenic growth and differentiation. In the field of cancer biology, cancer stem cells have been defined functionally by two major criteria: their ability to undergo self-renewal and their ability to produce differentiated progeny, two conditions which satisfy the criteria of stem cells. Here we briefly review both the capabilities of pancreatosphere and pancreatic tumorsphere assays, discuss important caveats regarding their use, and provide detailed protocols for the assay of both normal and neoplastic cells.


Assuntos
Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/patologia , Cultura Primária de Células/métodos , Animais , Linhagem Celular Tumoral , Separação Celular , Citometria de Fluxo , Humanos , Camundongos , Pâncreas/citologia , Esferoides Celulares , Células-Tronco/citologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA