Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1352377, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425645

RESUMO

Low selectivity and tumor drug resistance are the main hinderances to conventional radiotherapy and chemotherapy against tumor. Ion interference therapy is an innovative anti-tumor strategy that has been recently reported to induce metabolic disorders and inhibit proliferation of tumor cells by reordering bioactive ions within the tumor cells. Calcium cation (Ca2+) are indispensable for all physiological activities of cells. In particular, calcium overload, characterized by the abnormal intracellular Ca2+ accumulation, causes irreversible cell death. Consequently, calcium overload-based ion interference therapy has the potential to overcome resistance to traditional tumor treatment strategies and holds promise for clinical application. In this review, we 1) Summed up the current strategies employed in this therapy; 2) Described the outcome of tumor cell death resulting from this therapy; 3) Discussed its potential application in synergistic therapy with immunotherapy.

2.
Plants (Basel) ; 13(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38202384

RESUMO

Cadmium (Cd) pollution has attracted global attention because it not only jeopardizes soil microbial ecology and crop production, but also threatens human health. As of now, microbe-assisted phytoremediation has proven to be a promising approach for the revegetation of Cd-contaminated soil. Therefore, it is important to find such tolerant microorganisms. In the present study, we inoculated a bacteria strain tolerant to Cd, Cdb8-1, to Cd-contaminated soils and then explored the effects of Cdb8-1 inoculation on the performance of the Chinese milk vetch. The results showed plant height, root length, and fresh and dry weight of Chinese milk vetch grown in Cdb8-1-inoculated soils increased compared to the non-inoculated control group. The inoculation of Cd-contaminated soils with Cdb8-1 also enhanced their antioxidant defense system and decreased the H2O2 and malondialdehyde (MDA) contents, which alleviated the phytotoxicity of Cd. The inoculation of Cdb8-1 in Cd-contaminated soils attenuated the contents of total and available Cd in the soil and augmented the BCF and TF of Chinese milk vetch, indicating that the combined application of Cd-tolerant bacteria Cdb8-1 and Chinese milk vetch is a potential solution to Cd-contaminated soils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA