Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Technol Cancer Res Treat ; 23: 15330338241254075, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720626

RESUMO

Objective: Since the update of the 2018 International Federation of Gynecology and Obstetrics (FIGO) staging criteria, there have been few reports on the prognosis of stage III C cervical cancer. Moreover, some studies have drawn controversial conclusions, necessitating further verification. This study aims to evaluate the clinical outcomes and determine the prognostic factors for stage III C cervical cancer patients treated with radical radiotherapy or radiochemotherapy. Methods: The data of 117 stage III C cervical cancer patients (98 III C1 and 19 III C2) who underwent radical radiotherapy or radiochemotherapy were retrospectively analyzed. We evaluated 3-year overall survival (OS) and disease-free survival (DFS) using the Kaplan-Meier method. Prognostic factors were analyzed using the Log-rank test and Cox proportional hazard regression model. The risk of para-aortic lymph node metastasis (LNM) in all patients was assessed through Chi-squared test and logistic regression analysis. Results: For stage III C1 and III C2 patients, the 3-year OS rates were 77.6% and 63.2% (P = .042), and the 3-year DFS rates were 70.4% and 47.4% (P = .003), respectively. The pretreatment location of pelvic LNM, histological type, and FIGO stage was associated with OS (P = .033, .003, .042, respectively); the number of pelvic LNM and FIGO stage were associated with DFS (P = .015, .003, respectively). The histological type was an independent prognostic indicator for OS, and the numbers of pelvic LNM and FIGO stage were independent prognostic indicators for DFS. Furthermore, a pelvic LNM largest short-axis diameter ≥ 1.5 cm and the presence of common iliac LNM were identified as high-risk factors influencing para-aortic LNM in stage III C patients (P = .046, .006, respectively). Conclusions: The results of this study validated the 2018 FIGO staging criteria for stage III C cervical cancer patients undergoing concurrent chemoradiotherapy. These findings may enhance our understanding of the updated staging criteria and contribute to better management of patients in stage III C.


Assuntos
Quimiorradioterapia , Estadiamento de Neoplasias , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/terapia , Neoplasias do Colo do Útero/mortalidade , Feminino , Pessoa de Meia-Idade , Prognóstico , Adulto , Idoso , Estudos Retrospectivos , Metástase Linfática , Estimativa de Kaplan-Meier , Resultado do Tratamento , Modelos de Riscos Proporcionais , Taxa de Sobrevida
2.
New Phytol ; 242(6): 2635-2651, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38634187

RESUMO

Endosperm is the main storage organ in cereal grain and determines grain yield and quality. The molecular mechanisms of heat shock proteins in regulating starch biosynthesis and endosperm development remain obscure. Here, we report a rice floury endosperm mutant flo24 that develops abnormal starch grains in the central starchy endosperm cells. Map-based cloning and complementation test showed that FLO24 encodes a heat shock protein HSP101, which is localized in plastids. The mutated protein FLO24T296I dramatically lost its ability to hydrolyze ATP and to rescue the thermotolerance defects of the yeast hsp104 mutant. The flo24 mutant develops more severe floury endosperm when grown under high-temperature conditions than normal conditions. And the FLO24 protein was dramatically induced at high temperature. FLO24 physically interacts with several key enzymes required for starch biosynthesis, including AGPL1, AGPL3 and PHO1. Combined biochemical and genetic evidence suggests that FLO24 acts cooperatively with HSP70cp-2 to regulate starch biosynthesis and endosperm development in rice. Our results reveal that FLO24 acts as an important regulator of endosperm development, which might function in maintaining the activities of enzymes involved in starch biosynthesis in rice.


Assuntos
Endosperma , Regulação da Expressão Gênica de Plantas , Mutação , Oryza , Proteínas de Plantas , Amido , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Endosperma/metabolismo , Endosperma/crescimento & desenvolvimento , Amido/metabolismo , Amido/biossíntese , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Mutação/genética , Ligação Proteica , Plastídeos/metabolismo , Teste de Complementação Genética , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/biossíntese , Termotolerância , Fatores de Transcrição
3.
Micromachines (Basel) ; 15(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38675268

RESUMO

The printing process of box packaging paper can generate volatile organic compounds, resulting in odors that impact product quality and health. An efficient, objective, and cost-effective detection method is urgently needed. We utilized a self-developed electronic nose system to test four different cigarette packaging paper samples. Employing multivariate statistical methods like Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Statistical Quality Control (SQC), and Similarity-based Independent Modeling of Class Analogy (SIMCA), we analyzed and processed the collected data. Comprehensive evaluation and quality control models were constructed to assess sample stability and distinguish odors. Results indicate that our electronic nose system rapidly detects odors and effectively performs quality control. By establishing models for quality stability control, we successfully identified samples with acceptable quality and those with odors. To further validate the system's performance and extend its applications, we collected two types of cigarette packaging paper samples with odor data. Using data augmentation techniques, we expanded the dataset and achieved an accuracy rate of 0.9938 through classification and discrimination. This highlights the significant potential of our self-developed electronic nose system in recognizing cigarette packaging paper odors and odorous samples.

4.
Environ Pollut ; 348: 123843, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552770

RESUMO

Micro/nano-plastics (MPs/NPs) represent an emerging contaminant, posing a significant threat to oceanic halobios. While the adverse effects of joint pollutants on marine organisms are well-documented, the potential biological impacts on the food chain transmission resulting from combinations of MPs/NPs and heavy metals (HMs) remain largely unexplored. This study exposed the microbial loop to combined contaminants (MPs/NPs + HMs) for 48h, bacteria and contaminants are washed away before feeding to the traditional food chain, employing microscopic observation, biochemical detection, and transcriptome analysis to elucidate the toxicological mechanisms of the top predator. The findings revealed that MPs/NPs combined with Cd2+ could traverse both the microbial loop and classical food chain. Acute exposure significantly affected the carbon biomass of the top predator Tigriopus japonicus (75.8% lower). Elevated antioxidant enzyme activity led to lipid peroxidation, manifesting in increased malondialdehyde levels. Transcriptome sequencing showed substantial differential gene expression levels in T. japonicus under various treatments. The upregulation of genes associated with apoptosis and inflammatory responses, highlighting the impact of co-exposure on oxidative damage and necroptosis within cells. Notably, NPs-Cd exhibited stronger toxicity than MPs-Cd. NPs-Cd led to a greater decrease in the biomass of top predators, accompanied by lower activities of GSH, SOD, CAT, and GSH-PX, resulting in increased production of lipid peroxidation product MDA and higher oxidative stress levels. This investigation provides novel insights into the potential threats of MPs/NPs combined with Cd2+ on the microbial loop across traditional food chain, contributing to a more comprehensive assessment of the ecological risks associated with micro/nano-plastics and heavy metals.


Assuntos
Transcriptoma , Poluentes Químicos da Água , Cádmio/toxicidade , Poliestirenos , Cadeia Alimentar , Microplásticos , Perfilação da Expressão Gênica , Água do Mar , Plásticos , Antioxidantes , Poluentes Químicos da Água/toxicidade
5.
Mol Cell Biochem ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443748

RESUMO

Extranodal NK/T cell lymphoma (ENKTCL) is an extremely aggressive form of lymphoma and lacks of specific diagnostic markers. The study intended to unearth the role of interleukin-33 (IL-33) in ENKTCL. RT-qPCR was conducted to assess mRNA levels of ENKTCL tissues and cells, while western blot assay was performed for evaluating protein levels. Plate cloning experiment and transwell assay were employed to measure aggressiveness of ENKTCL. Tube formation assay was executed to determine the angiogenesis ability. Mice ENKTCL xenograft model was designed to probe the impacts of IL-33 in vivo. IL-33 and suppression of tumorigenicity 2 receptor (ST2, receptor of IL-33) were enhanced in ENKTCL. IL-33 inhibition suppressed viability, migration, and invasion of ENKTCL cells. Moreover, IL-33 knockdown restricted angiogenesis in human umbilical vein endothelial cells (HUVECs). Furthermore, Wnt/ß-catenin pathway associated proteins (ß-catenin, c-myc, and cyclin D1) were downregulated by loss of IL-33. However, these impacts were overturned by Wnt/ß-catenin signaling agonist lithium chloride (LiCl). Additionally, IL-33 silencing exerted anti-tumor effect via Wnt/ß-catenin pathway in vivo. Silencing of IL-33 inhibited ENKTCL tumorigenesis and angiogenesis by inactivating Wnt/ß-catenin signaling pathway. As such, IL-33 might be a prospective treatment target for ENKTCL.

6.
Neuro Oncol ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554116

RESUMO

BACKGROUND: The mesenchymal (MES) subtype of glioblastoma (GBM) is believed to be influenced by both cancer cell-intrinsic alterations and extrinsic cellular interactions, yet the underlying mechanisms remain unexplored. METHODS: Identification of microglial heterogeneity by bioinformatics analysis. Transwell migration, invasion assays, and tumor models were used to determine gene function and the role of small molecule inhibitors. RNA sequencing, chromatin immunoprecipitation, and dual-luciferase reporter assays were performed to explore the underlying regulatory mechanisms. RESULTS: We identified the inflammatory microglial subtype of tumor-associated microglia (TAM) and found that its specific gene ITGB2 was highly expressed in TAM of MES GBM tissues. Mechanistically, the activation of ITGB2 in microglia promoted the interaction between the SH2 domain of STAT3 and the cytoplasmic domain of ITGB2, thereby stimulating the JAK1/STAT3/IL-6 signaling feedback to promote the MES transition of GBM cells. Additionally, microglia communicated with GBM cells through the interaction between the receptor ITGB2 on microglia and the ligand ICAM-1 on GBM cells, while an increased secretion of ICAM-1 was induced by the proinflammatory cytokine LIF. Further studies demonstrated that inhibition of CDK7 substantially reduced the recruitment of SNW1 to the super-enhancer of LIF, resulting in transcriptional inhibition of LIF. We identified notoginsenoside R1 as a novel LIF inhibitor that exhibited synergistic effects in combination with temozolomide. CONCLUSIONS: Our research reveals that the epigenetic-mediated interaction of GBM cells with TAM drives the MES transition of GBM and provides a novel therapeutic avenue for patients with MES GBM.

7.
Front Microbiol ; 15: 1365289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550857

RESUMO

Low temperature is one of the limiting factors for anaerobic digestion in cold regions. To improve the efficiency of anaerobic digestion for methane production in stationary reactors under low-temperature conditions, and to improve the structure of the microbial community for anaerobic digestion at low temperatures. We investigated the effects of different concentrations of exogenous Methanomicrobium (10, 20, 30%) and different volumes of carbon fiber carriers (0, 10, 20%) on gas production and microbial communities to improve the performance of low-temperature anaerobic digestion systems. The results show that the addition of 30% exogenous microorganisms and a 10% volume of carbon fiber carrier led to the highest daily (128.15 mL/g VS) and cumulative (576.62 mL/g VS) methane production. This treatment effectively reduced the concentrations of COD and organic acid, in addition to stabilizing the pH of the system. High-throughput sequencing analysis revealed that the dominant bacteria under these conditions were Acidobacteria and Firmicutes and the dominant archaea were Candidatus_Udaeobacter and Methanobacterium. While the abundance of microorganisms that metabolize organic acids was reduced, the functional abundance of hydrogenophilic methanogenic microorganisms was increased. Therefore, the synergistic effect of Methanomicrobium bioaugmentation with carbon fiber carriers can significantly improve the performance and efficiency of low-temperature anaerobic fermentation systems.

8.
Mar Pollut Bull ; 201: 116204, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430678

RESUMO

Protozoan ciliates represent a common biological contaminant during microalgae cultivation, which will lead to a decline in microalgae productivity. This study investigated the effectiveness of sodium dodecyl benzene sulfonate (SDBS) in controlling ciliate populations within microalgae cultures. SDBS concentrations of 160 mg/L and 100 mg/L were found to effectively manage the representative species of ciliates contamination by Euplotes vannus and Uronema marinum during the cultivation of Synechococcus and Chlorella, and the growth vitality of microalgae has been restored. Additionally, SDBS at these concentrations reduced oxidative stress resistance and induced membrane damage to remove biological pollutants by modulating enzyme activity, affecting lipid, energy, amino acid metabolism pathways, and processes such as translation and protein folding. This research provides insights into the mechanisms through which SDBS effectively combats protozoan ciliates during the microalgal cultivation. This contributes to reduce biological pollution, ensure the overall productivity and healthy and sustainable management of microalgae ecosystems.


Assuntos
Benzenossulfonatos , Chlorella , Cilióforos , Microalgas , Praguicidas , Ecossistema , Biomassa
9.
Nat Commun ; 15(1): 636, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245537

RESUMO

Robust hydrogels offer a candidate for artificial skin of bionic robots, yet few hydrogels have a comprehensive performance comparable to real human skin. Here, we present a general method to convert traditional elastomers into tough hydrogels via a unique radiation-induced penetrating polymerization method. The hydrogel is composed of the original hydrophobic crosslinking network from elastomers and grafted hydrophilic chains, which act as elastic collagen fibers and water-rich substances. Therefore, it successfully combines the advantages of both elastomers and hydrogels and provides similar Young's modulus and friction coefficients to human skin, as well as better compression and puncture load capacities than double network and polyampholyte hydrogels. Additionally, responsive abilities can be introduced during the preparation process, granting the hybrid hydrogels shape adaptability. With these unique properties, the hybrid hydrogel can be a candidate for artificial skin, fluid flow controller, wound dressing layer and many other bionic application scenarios.


Assuntos
Hidrogéis , Pele Artificial , Humanos , Hidrogéis/química , Polimerização , Elastômeros
11.
Nat Commun ; 14(1): 4767, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553370

RESUMO

The efficient use of renewable X/γ-rays or accelerated electrons for chemical transformation of CO2 and water to fuels holds promise for a carbon-neutral economy; however, such processes are challenging to implement and require the assistance of catalysts capable of sensitizing secondary electron scattering and providing active metal sites to bind intermediates. Here we show atomic Cu-Ni dual-metal sites embedded in a metal-organic framework enable efficient and selective CH3OH production (~98%) over multiple irradiated cycles. The usage of practical electron-beam irradiation (200 keV; 40 kGy min-1) with a cost-effective hydroxyl radical scavenger promotes CH3OH production rate to 0.27 mmol g-1 min-1. Moreover, time-resolved experiments with calculations reveal the direct generation of CO2•‒ radical anions via aqueous electrons attachment occurred on nanosecond timescale, and cascade hydrogenation steps. Our study highlights a radiolytic route to produce CH3OH with CO2 feedstock and introduces a desirable atomic structure to improve performance.

12.
Nucleic Acids Res ; 51(18): 9733-9747, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37638744

RESUMO

RAP80 has been characterized as a component of the BRCA1-A complex and is responsible for the recruitment of BRCA1 to DNA double-strand breaks (DSBs). However, we and others found that the recruitment of RAP80 and BRCA1 were not absolutely temporally synchronized, indicating that other mechanisms, apart from physical interaction, might be implicated. Recently, liquid-liquid phase separation (LLPS) has been characterized as a novel mechanism for the organization of key signaling molecules to drive their particular cellular functions. Here, we characterized that RAP80 LLPS at DSB was required for RAP80-mediated BRCA1 recruitment. Both cellular and in vitro experiments showed that RAP80 phase separated at DSB, which was ascribed to a highly disordered region (IDR) at its N-terminal. Meanwhile, the Lys63-linked poly-ubiquitin chains that quickly formed after DSBs occur, strongly enhanced RAP80 phase separation and were responsible for the induction of RAP80 condensation at the DSB site. Most importantly, abolishing the condensation of RAP80 significantly suppressed the formation of BRCA1 foci, encovering a pivotal role of RAP80 condensates in BRCA1 recruitment and radiosensitivity. Together, our study disclosed a new mechanism underlying RAP80-mediated BRCA1 recruitment, which provided new insight into the role of phase separation in DSB repair.

13.
Front Public Health ; 11: 1222762, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521985

RESUMO

Ozone pollution is a major environmental concern. According to recent epidemiological studies, ozone exposure increases the risk of metabolic liver disease. However, studies on the mechanisms underlying the effects of ozone exposure on hepatic oxidative damage, lipid synthesis, and catabolism are limited. In this study, Huh-7 human hepatocellular carcinoma cells were randomly divided into five groups and exposed to 200 ppb O3 for 0, 1, 2, 4, and 8 h. We measured the levels of oxidative stress and analyzed the changes in molecules related to lipid metabolism. The levels of oxidative stress were found to be significantly elevated in Huh-7 hepatocellular carcinoma cells after O3 exposure. Moreover, the expression levels of intracellular lipid synthases, including SREBP1, FASN, SCD1, and ACC1, were enhanced. Lipolytic enzymes, including ATGL and HSL, and the mitochondrial fatty acid oxidase, CPT1α, were inhibited after O3 exposure. In addition, short O3 exposure enhanced the expression of the intracellular peroxisomal fatty acid ß-oxidase, ACOX1; however, its expression decreased adaptively with longer exposure times. Overall, O3 exposure induces an increase in intracellular oxidative stress and disrupts the normal metabolism of lipids in hepatocytes, leading to intracellular lipid accumulation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ozônio , Humanos , Metabolismo dos Lipídeos , Ácidos Graxos , Oxirredutases , Ozônio/efeitos adversos
14.
BMC Cancer ; 23(1): 467, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217903

RESUMO

BACKGROUND: Neoadjuvant chemoradiotherapy (NCRT) and total mesorectal excision are standard treatment regimen for patients with locally advanced rectal cancer (LARC). This sphincter-saving treatment strategy may be accompanied by a series of anorectal functional disorders. Yet, prospective studies that dynamically evaluating the respective roles of radiotherapy, chemotherapy and surgery on anorectal function are lacking. PATIENTS/DESIGN: The study is a prospective, observational, controlled, multicentre study. After screening for eligibility and obtaining informed consent, a total of 402 LARC patients undergoing NCRT followed by surgery, or neoadjuvant chemotherapy followed by surgery, or surgery only would be included in the trial. The primary outcome measure is the average resting pressure of anal sphincter. The secondary outcome measures are maximum anal sphincter contraction pressure, Wexner continence score and low anterior resection syndrome (LARS) score. Evaluations will be carried out at the following stages: baseline (T1), after radiotherapy or chemotherapy (before surgery, T2), after surgery (before closing the temporary stoma, T3), and at follow-up visits (every 3 to 6 months, T4, T5……). Follow-up for each patient will be at least 2 years. DISCUSSION: We expect the program to provide more information of neoadjuvant radiotherapy and/or chemotherapy on anorectal function, and to optimize the treatment strategy to reduce anorectal dysfunction for LARC patients. TRIAL REGISTRATION: ClinicalTrials.gov (NCT05671809). Registered on 26 December 2022.


Assuntos
Terapia Neoadjuvante , Neoplasias Retais , Humanos , Terapia Neoadjuvante/métodos , Neoplasias Retais/patologia , Estudos Prospectivos , Complicações Pós-Operatórias/etiologia , Resultado do Tratamento , Quimiorradioterapia/métodos , Estadiamento de Neoplasias , Estudos Observacionais como Assunto , Estudos Multicêntricos como Assunto
16.
ACS Nano ; 17(6): 5713-5726, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36897187

RESUMO

The specific recognition of cancer cells by the body's immune system is an essential step in initiating antitumor immunity. However, the decreased expression of major histocompatibility complex class I (MHC-1) and overexpression of programmed death ligand 1 (PD-L1) causes insufficient tumor-associated antigens presentation and inactivation of T cells, which accounts for poor immunogenicity. To remodel tumor immunogenicity, herein, a dual-activatable binary CRISPR nanomedicine (DBCN) that can efficiently deliver a CRISPR system into tumor tissues and specifically control its activation is reported. This DBCN is made of a thioketal-cross-linked polyplex core and an acid-detachable polymer shell, which can maintain stability during blood circulation, while detaching a polymer shell to facilitate the cellular internalization of the CRISPR system after entering tumor tissues and ultimately activating gene editing under exogenous laser irradiation, thereby maximizing the therapeutic benefits and reducing potential safety concerns. With the collaborative application of multiple CRISPR systems, DBCN efficiently corrects both dysregulation of MHC-1 and PD-L1 expression in tumors, thus initiating robust T cell-dependent antitumor immune responses to inhibit malignant tumor growth, metastasis, and recurrence. Given the increasing abundance of CRISPR toolkits, this research provides an appealing therapeutic strategy and a universal delivery platform to develop more advanced CRISPR-based cancer treatments.


Assuntos
Antígeno B7-H1 , Neoplasias , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Nanomedicina , Linhagem Celular Tumoral , Imunoterapia , Polímeros , Antígenos de Neoplasias/genética , Microambiente Tumoral , Neoplasias/terapia
17.
J Mater Chem B ; 11(12): 2674-2683, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36857702

RESUMO

Protein cages have played a long-standing role in biomedicine applications, especially in tumor chemotherapy. Among protein cages, virus like particles (VLPs) have received attention for their potential applications in vaccine development and targeted drug delivery. However, most of the existing protein-based platform technologies are plagued with immunological problems that may limit their systemic delivery efficiency as drug carriers. Here, we show that using immune-orthogonal protein cages sequentially and modifying the dominant loop epitope can circumvent adaptive immune responses and enable effective drug delivery using repeated dosing. We genetically modified three different hepadnavirus core protein derived VLPs as delivery vectors for doxorubicin (DOX). These engineered VLPs have similar assembly characteristics, particle sizes, and immunological properties. Our results indicated that there was negligible antibody cross-reactivity in either direction between these three RGD-VLPs in mice that were previously immunized against HBc VLPs. Moreover, the sequential administration of multiple RGD-VLP-based nanomedicine (DOX@RGD-VLPs) could effectively reduce immune clearance and inhibited tumor growth. Hence, this study could provide an attractive protein cage-based platform for therapeutic drug delivery.


Assuntos
Neoplasias , Vacinas de Partículas Semelhantes a Vírus , Camundongos , Animais , Nanomedicina , Sistemas de Liberação de Medicamentos , Doxorrubicina/farmacologia , Neoplasias/tratamento farmacológico , Oligopeptídeos
18.
Radiol Oncol ; 57(1): 51-58, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653949

RESUMO

BACKGROUND: Pancreatic islet transplantation via infusion through the portal vein, has become an established clinical treatment for patients with type 1 diabetes. Because the engraftment efficiency is low, new approaches for pancreatic islets implantation are sought. The goal of this study is to explore the possibility that a non-thermal irreversible electroporation (NTIRE) decellularized matrix in the liver could be used as an engraftment site for pancreatic islets. MATERIALS AND METHODS: Pancreatic islets or saline controls were injected at sites pre-treated with NTIRE in the livers of 7 rats, 16 hours after NTIRE treatment. Seven days after the NTIRE treatment, islet graft function was assessed by detecting insulin and glucagon in the liver with immunohistochemistry. RESULTS: Pancreatic islets implanted into a NTIRE-treated volume of liver became incorporated into the liver parenchyma and produced insulin and glucagon in 2 of the 7 rat livers. Potential reasons for the failure to observe pancreatic islets in the remaining 5/7 rats may include local inflammatory reaction, graft rejection, low numbers of starting islets, timing of implantation. CONCLUSIONS: This study shows that pancreatic islets can become incorporated and function in an NTIRE-generated extracellular matrix niche, albeit the success rate is low. Advances in the field could be achieved by developing a better understanding of the mechanisms of failure and ways to combat these mechanisms.


Assuntos
Glucagon , Ilhotas Pancreáticas , Ratos , Animais , Fígado/cirurgia , Insulina , Matriz Extracelular , Eletroporação
19.
Plant Mol Biol ; 111(3): 291-307, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36469200

RESUMO

KEY MESSAGE: We identified a dosage-dependent dominant negative form of Sar1c, which confirms the essential role of COPII system in mediating ER export of storage proteins in rice endosperm. Higher plants accumlate large amounts of seed storage proteins (SSPs). However, mechanisms underlying SSP trafficking are largely unknown, especially the ER-Golgi anterograde process. Here, we showed that a rice glutelin precursor accumulation13 (gpa13) mutant exhibited floury endosperm and overaccumulated glutelin precursors, which phenocopied the reported RNAi-Sar1abc line. Molecular cloning revealed that the gpa13 allele encodes a mutated Sar1c (mSar1c) with a deletion of two conserved amino acids Pro134 and Try135. Knockdown or knockout of Sar1c alone caused no obvious phenotype, while overexpression of mSar1c resulted in seedling lethality similar to the gpa13 mutant. Transient expression experiment in tobacco combined with subcellular fractionation experiment in gpa13 demonstrated that the expression of mSar1c affects the subcellular distribution of all Sar1 isoforms and Sec23c. In addition, mSar1c failed to interact with COPII component Sec23. Conversely, mSar1c competed with Sar1a/b/d to interact with guanine nucleotide exchange factor Sec12. Together, we identified a dosage-dependent dominant negative form of Sar1c, which confirms the essential role of COPII system in mediating ER export of storage proteins in rice endosperm.


Assuntos
Oryza , Proteínas de Armazenamento de Sementes , Proteínas de Armazenamento de Sementes/metabolismo , Oryza/genética , Transporte Proteico/genética , Glutens/genética , Retículo Endoplasmático/metabolismo
20.
Pathol Res Pract ; 241: 154224, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36566599

RESUMO

BACKGROUND: AJAP1 is down-regulated in multiple cancer types and plays a suppressive role in cancer progression. However, its molecular regulatory mechanism in prostate cancer has not been reported. METHODS: Bioinformatics methods were employed to analyze AJAP1 expression in prostate cancer tissues and its association with TNM staging. MSP and qRT-PCR were used to quantify promoter methylation and AJAP1 expression after 5-aza-20-deoxycytidine (5-AzaC) treatment. Scratch healing assay and Transwell method were adopted to analyze the effects of aberrant AJAP1 expression, 5-AzaC and AG490 on cell migration and invasion. The levels of AJAP1 protein, EMT-related and JAK/STAT pathway-related proteins were determined by Western blot. The effects of AJAP1 aberrant expression and AG490 treatment on the sphere forming ability of prostate cancer cells were analyzed by sphere formation assay. RESULTS: This study confirmed the significant down-regulation of AJAP1 expression in prostate cancer tissues and cells, and its negative correlation with TNM staging. 5-AzaC treatment led to a significant reduction of AJAP1 methylation level and a significant upregulation of AJAP1 expression, indicating that the methylation level of AJAP1 promoter may affect the expression of AJAP1. Cell function experiments found that overexpression or decreased methylation of AJAP1 inhibited epithelial mesenchymal transition (EMT), migration, and invasion, while silencing or increased methylation of AJAP1 had the opposite functions. JAK2/STAT3 pathway inhibiting assay found that inhibition of JAK2/STAT3 pathway significantly reduced EMT, cell migration, and stem cell sphere formation in prostate cancer. SIGNIFICANCE: Therefore, investigating the influence of aberrant AJAP1 expression on functions of prostate cancer cells is conducive to our in-depth understanding of the mechanism of prostate cancer genesis and development.


Assuntos
Janus Quinases , Neoplasias da Próstata , Masculino , Humanos , Janus Quinases/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição STAT/metabolismo , Metilação de DNA/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Transição Epitelial-Mesenquimal/genética , Movimento Celular/genética , Células-Tronco/metabolismo , Regiões Promotoras Genéticas/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica/genética , Moléculas de Adesão Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA