Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phytother Res ; 37(9): 4133-4148, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37189016

RESUMO

Inflammation is a key contributor to diabetic kidney disease pathogenesis, including reactive oxidation stress (ROS)-mediated nuclear factor-κB (NF-κB) signaling pathway. In this study, we examined the effect of Astragaloside IV (AS-IV) on anti-inflammatory and anti-oxidative properties under high glucose (HG) condition and the potential mechanism in glomerular mesangial cells (GMCs). We showed that AS-IV concentration-dependently reduced GMCs proliferation, restrained ROS release and hydrogen peroxide content, and suppressed pro-inflammatory cytokines as well as pro-fibrotic factors expression, which were associated with the inhibition of NF-κB and nuclear factor-erythroid 2-related factor 2 (Nrf2) signaling activation. Accordingly, both NF-κB overexpression by using RNA plasmid and Nrf2 gene silencing by using RNA interference weakened the ability of AS-IV to ameliorate HG-induced oxidative stress, inflammation, and cell proliferation. Furthermore, phosphatidylinositide 3-kinases (PI3K)/serine/threonine protein kinase (Akt) and extracellular regulated protein kinases (ERK) signaling pathway regulated the process of AS-IV-induced Nrf2 activation and antioxidant capacity, which evidenced by using PI3K inhibitor LY294002 or ERK inhibitor PD98059 that largely abolished the AS-IV efficacy. Taken together, these results indicated that AS-IV protected against HG-induced GMCs damage by inhibiting ROS/NF-kB-induced increases of inflammatory cytokines, fibrosis biomarkers, and cell proliferation via up-regulation of Nrf2-dependent antioxidant enzyme expression, which were mediated by PI3K/Akt and ERK signaling pathway activation.


Assuntos
NF-kappa B , Proteínas Proto-Oncogênicas c-akt , Humanos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/farmacologia , Células Mesangiais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fosfatidilinositol 3-Quinase/metabolismo , Estresse Oxidativo , Citocinas/metabolismo , Glucose/metabolismo , Inflamação/metabolismo
2.
Life Sci ; 269: 119068, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33476631

RESUMO

AIMS: Podocyte apoptosis plays an important role in the pathogenesis of diabetic nephropathy (DN). Astragaloside IV (AS-IV) has been shown to protect against podocyte apoptosis. Here we aim to investigate the mechanism responsible for the protective effects of AS-IV. MAIN METHODS: Diabetic db/db mice and high glucose (HG)-cultured podocytes were treated with AS-IV. Renal function and histopathological changes were measured to evaluate the therapeutic effects of AS-IV against DN. Adenovirus-mediated Klotho overexpression, Klotho siRNA, and PPARγ inhibitor were applied in vitro to investigate the potential mechanism. The expression levels of mRNA and proteins were analyzed by qRT-PCR, western blot or immunofluorescence. Intracellular ROS and mitochondrial superoxide were detected by DHE and MitoSOx Red, respectively. Cell apoptosis was evaluated by TUNEL staining and flow cytometry. KEY FINDINGS: AS-IV improved renal function and ameliorated podocyte injury in db/db mice accompanied with enhanced Klotho expression in glomerular podocytes. In vitro, AS-IV inhibited HG-induced podocyte apoptosis and restored HG-inhibited Klotho expression, whereas Klotho knockdown abrogated the anti-apoptosis action of AS-IV. Further study showed that adenovirus-mediated Klotho overexpression enhanced Forkhead transcription factor O1 (FoxO1)-dependent antioxidant activity and attenuated HG-evoked oxidative stress and apoptosis. AS-IV prevented HG-induced FoxO1 inhibition and oxidative stress, whereas Klotho knockdown reversed these effects. Cotreatment with PPARγ inhibitor T0070907 abolished AS-IV-induced Klotho expression and anti-apoptosis action. SIGNIFICANCE: These data suggested that AS-IV attenuated podocyte apoptosis presumably by inhibiting oxidative stress via activating PPARγ-Klotho-FoxO1 signaling pathway, thereby ameliorating DN. This study provided new insights into the molecular mechanisms of AS-IV against DN.


Assuntos
Apoptose , Nefropatias Diabéticas/prevenção & controle , Proteína Forkhead Box O1/metabolismo , Glucuronidase/metabolismo , PPAR gama/metabolismo , Podócitos/efeitos dos fármacos , Saponinas/farmacologia , Triterpenos/farmacologia , Animais , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Proteína Forkhead Box O1/genética , Regulação da Expressão Gênica , Glucose/metabolismo , Glucuronidase/genética , Proteínas Klotho , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/genética , Podócitos/metabolismo , Podócitos/patologia , Substâncias Protetoras , Transdução de Sinais
3.
Biochem Biophys Res Commun ; 534: 450-456, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33256980

RESUMO

Oxidative stress plays a key role in the pathogenesis of diabetic nephropathy (DN). The anti-aging protein Klotho has been demonstrated to have antioxidant capacity. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a central transcription factor regulating antioxidant responses. The present study aimed to explore the effects of Klotho on DN and the underlying mechanisms related to Nrf2. Low glucose (LG) or high glucose (HG) medium-cultured podocytes and diabetic db/db mice were overexpressed with Klotho via adenoviral transfer to evaluate the effects of Klotho on Nrf2 signaling, oxidative stress, podocyte apoptosis, and renal function and histopathology. Klotho overexpression significantly induced the expression and activation of Nrf2 as well as its downstream targets SOD2 and NQO1 in podocytes. Moreover, Klotho overexpression inhibited HG-induced oxidative stress and apoptosis in podocytes. Co-treatment with Nrf2 inhibitor trigonelline prevented Klotho-induced expression of SOD2 and NQO1, and abolished Klotho-conferred antioxidant and anti-apoptotic effects. In db/db mice, Klotho overexpression also activated Nrf2 signaling, and suppressed diabetes-induced oxidative stress and podocyte apoptosis, which were accompanied by improved renal function and decreased glomerulosclerosis. Our data highlight a novel Nrf2-mediated antioxidant mechanism underlying the protective effects of Klotho in podocytes and indicate the therapeutic potential of targeting Klotho to activate Nrf2 in DN.


Assuntos
Nefropatias Diabéticas/metabolismo , Glucuronidase/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Podócitos/metabolismo , Transdução de Sinais , Animais , Apoptose , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/patologia , Glucose/metabolismo , Proteínas Klotho , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Podócitos/patologia
4.
Biochem Biophys Res Commun ; 527(2): 466-473, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32336543

RESUMO

The genetic variations of the apolipoprotein L1 (APOL1) gene are associated with non-diabetic kidney diseases. However, very little is known about the role of ApoL1 in glomerular damage. Here, we aimed to identify the function and mechanism of ApoL1 in glomerular damage. The mice were randomly divided into two groups: one group was intraperitoneally injected with phosphate buffer saline (PBS), while the other group was intraperitoneally injected with recombinant ApoL1 every other day for 3 months. Hematoxylin and eosin (HE) and periodic acid Schiff (PAS) staining were used to demonstrate the effects of ApoL1 on kidney inflammation and injury. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) analyses revealed that ApoL1-treated mice exhibited enhanced expression of various inflammation markers in the kidney and serum compared to the PBS-treated mice. Immunofluorescence staining revealed that ApoL1 accumulated in kidney podocytes. Treatment with ApoL1 dose-dependently increased the expression of inflammation markers and apoptotic markers. The abnormal gene expression associated with ApoL1-mediated podocyte inflammation was evaluated using microarray analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the upregulated genes were enriched in the inflammation-related processes, such as the RIG-I/NF-κB signaling pathway. Consistently, the knockdown of RIG-I significantly mitigated the ApoL1-induced upregulation of inflammatory and apoptotic markers in the human podocytes. Additionally, the ApoL1-induced glomerular damage was attenuated in AAV-shRIG-I mice. Therefore, the effects of ApoL1 on glomerular damage may be, at least partially, through inducing abnormal expression of inflammatory molecules, which may have important implications for treatment of kidney diseases.


Assuntos
Apolipoproteína L1/metabolismo , Proteína DEAD-box 58/metabolismo , Inflamação/patologia , Rim/patologia , NF-kappa B/metabolismo , Nefrite/patologia , Animais , Linhagem Celular , Humanos , Inflamação/metabolismo , Rim/metabolismo , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Masculino , Camundongos Endogâmicos C57BL , Nefrite/metabolismo , Podócitos/metabolismo
5.
Mol Med Rep ; 13(6): 5149-56, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27109610

RESUMO

Diabetic nephropathy (DN) is one of the most important causes of end­stage renal disease. Astragaloside IV (AS-IV) is a saponin isolated from Astragalus membranaceus, which possesses various pharmacological activities. AS­IV prevents podocyte apoptosis and ameliorates renal injury in DN; however, few studies have focused on its effects on ion channels. The transient receptor potential channel 6 (TRPC6) is an important Ca2+­permeable ion channel in podocytes, which is involved in high glucose (HG)-induced podocyte apoptosis. The aim of the present study was to investigate whether AS­IV prevented HG­induced podocyte apoptosis via TRPC6. Cultured podocytes were pre­treated with 10, 20 or 40 µM AS­IV for 1 h prior to HG exposure for 24 h. Apoptosis, cell viability, expression of TRPC6, nuclear factor of activated T cells (NFAT2) and B­cell lymphoma 2­associated X protein (Bax), as well as the intracellular Ca2+ concentration were subsequently analyzed. The results indicated that HG induced podocyte apoptosis and upregulation of TRPC6, and increased intracellular Ca2+. Furthermore, enhanced NFAT2 and Bax expression was detected. Conversely, AS­IV protected HG­induced podocyte apoptosis, downregulated TRPC6 expression and suppressed intracellular Ca2+ in HG-stimulated podocytes. AS­IV also suppressed NFAT2 and Bax expression. These results suggest that AS­IV may prevent HG-induced podocyte apoptosis via downregulation of TRPC6, which is possibly mediated via the calcineurin/NFAT signaling pathway.


Assuntos
Apoptose/efeitos dos fármacos , Glucose/metabolismo , Podócitos/metabolismo , Saponinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPC/biossíntese , Triterpenos/farmacologia , Calcineurina/metabolismo , Linhagem Celular Transformada , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Fatores de Transcrição NFATC/metabolismo , Podócitos/patologia , Canal de Cátion TRPC6
6.
Diagn Pathol ; 10: 120, 2015 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-26204936

RESUMO

BACKGROUND: It is well established that macrophage infiltration is involved in concanavalin A (conA)-induced liver injury. However, the role of macrophages in conA-induced renal injury remains unknown. The aims of this study were to investigate macrophage infiltration in conA-induced renal injury and determine whether paeoniflorin (PF) could inhibit macrophage infiltration into the kidney. METHODS: BALB/C mice were pre-treated with or without PF 2 h (h) before conA injection. At 8 h after con A injection, all the mice were sacrificed; The liver and kidney histology were studied. The renal CD68 expression was detected by immunohistochemical and real-time PCR analysis. The level of expression of C-X-C chemokine receptor type 3 (CXCR3) was analyzed by western blot, immunohistochemical and real-time PCR. The pathophysiological involvement of CXCR3 in macrophage infiltration were investigated using dual-colour immunofluorescence microscopy. RESULTS: PF administration significantly reduced the elevated serum levels of alanine transaminase (ALT), blood urea nitrogen (BUN), creatinine (Cr) and the severity of liver and renal damage compared with that in the conA-vehicle group. PF administration inhibited the increase in renal IL1ß mRNA expression and concentration. Furthermore, immunohistochemical analysis showed that macrophages secreted CXCR3 in the kidneys of the conA-vehicle mice. Immunofluorescence microscopy demonstrated CXCR3 bound tightly to C-X-C motif ligand 11 (CXCL11) in the kidneys of the conA-vehicle mice and showed that PF treatment could suppress CXCR3/CXCL11 over-activation. CONCLUSIONS: Macrophage infiltration was a notable pathological change in the kidneys of conA-treated mice. PF administration attenuated conA-induced renal damage, at least in part, by inhibiting the over-activated CXCR3/CXCL11 signal axis.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Glucosídeos/farmacologia , Rim/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Monoterpenos/farmacologia , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Animais , Western Blotting , Doença Hepática Induzida por Substâncias e Drogas/patologia , Quimiocina CXCL11/metabolismo , Concanavalina A/toxicidade , Modelos Animais de Doenças , Feminino , Imuno-Histoquímica , Rim/patologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Reação em Cadeia da Polimerase em Tempo Real , Receptores CXCR3/metabolismo
7.
Front Physiol ; 5: 94, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24653706

RESUMO

Curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione], a polyphenolic compound isolated from the rhizomes of Curcuma longa (turmeric), has been shown to exhibit a wide range of pharmacological activities including anti-inflammatory, anti-cancer, anti-oxidant, anti-atherosclerotic, anti-microbial, and wound healing effects. These activities of curcumin are based on its complex molecular structure and chemical features, as well as its ability to interact with multiple signaling molecules. The ability of curcumin to regulate ion channels and transporters was recognized a decade ago. The cystic fibrosis transmembrane conductance regulator (CFTR) is a well-studied ion channel target of curcumin. During the process of studying its anti-cancer properties, curcumin was found to inhibit ATP-binding cassette (ABC) family members including ABCA1, ABCB1, ABCC1, and ABCG2. Recent studies have revealed that many channels and transporters are modulated by curcumin, such as voltage-gated potassium (Kv) channels, high-voltage-gated Ca(2+) channels (HVGCC), volume-regulated anion channel (VRAC), Ca(2+) release-activated Ca(2+) channel (CRAC), aquaporin-4 (AQP-4), glucose transporters, etc., In this review, we aim to provide an overview of the interactions of curcumin with different types of ion channels and transporters and to help better understand and integrate the underlying molecular mechanisms of the multiple pharmacological activities of curcumin.

8.
PLoS One ; 8(3): e58848, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23544048

RESUMO

Tubulointerstitial fibrosis (TIF) is the final common pathway in the end-stage renal disease. Epithelial-to-mesenchymal transition (EMT) is considered a major contributor to the TIF by increasing the number of myofibroblasts. Curcumin, a polyphenolic compound derived from rhizomes of Curcuma, has been shown to possess potent anti-fibrotic properties but the mechanism remains elusive. We found that curcumin inhibited the EMT as assessed by reduced expression of α-SMA and PAI-1, and increased E-cadherin in TGF-ß1 treated proximal tubular epithelial cell HK-2 cells. Both of the conventional TGF-ß1/Smad pathway and non-Smad pathway were investigated. Curcumin reduced TGF-ß receptor type I (TßR-I) and TGF-ß receptor type II (TßR II), but had no effect on phosphorylation of Smad2 and Smad3. On the other hand, in non-Smad pathway curcumin reduced TGF-ß1-induced ERK phosphorylation and PPARγ phosphorylation, and promoted nuclear translocation of PPARγ. Further, the effect of curcumin on α-SMA, PAI-1, E-cadherin, TßR I and TßR II were reversed by ERK inhibitor U0126 or PPARγ inhibitor BADGE, or PPARγ shRNA. Blocking PPARγ signaling pathway by inhibitor BADGE or shRNA had no effect on the phosphorylation of ERK whereas the suppression of ERK signaling pathway inhibited the phosphorylation of PPARγ. We conclude that curcumin counteracted TGF-ß1-induced EMT in renal tubular epithelial cells via ERK-dependent and then PPARγ-dependent pathway.


Assuntos
Curcumina/farmacologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Túbulos Renais Proximais/citologia , PPAR gama/metabolismo , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Animais , Butadienos/farmacologia , Caderinas/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos , Nitrilas/farmacologia , Fosforilação/efeitos dos fármacos , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico/efeitos dos fármacos , Ratos , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Ren Fail ; 34(10): 1297-304, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23006043

RESUMO

BACKGROUND: This study investigated the effects of losartan intervention on the expressions of hypoxia-inducible factor-1α (HIF-1α), matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinase-1 (TIMP-1) in renal fibrosis in rats with 5/6 nephrectomy. METHODS: Sprague Dawley rats were randomly divided into three groups. Rats in the losartan group were gavaged with losartan (33.3 mg/kg/day) from 1 week after 5/6 nephrectomy, and those in the sham group and the model group only received an equal volume of saline solution by gavage. Rats were sacrificed at the ends of the 4, 8 and 12 weeks, respectively. Urinary N-acetyl-glucosaminidase (NAG), 24-h urinary protein, serum cystatin C, blood urea nitrogen (BUN), and serum creatinine (Scr) levels were assessed. Kidney tissues were observed under light and electron microscope. The expressions of HIF-1α, transforming growth factor-ß1 (TGF-ß1), MMP-9, and TIMP-1 were determined by immunohistochemistry and Western blotting. RESULTS: Twenty-four hour urinary protein, urinary NAG, serum cystatin C, BUN, and Scr levels in the model group were significantly higher than those in the sham group (p < 0.05), but losartan treatment improved these changes. The apparent glomerular sclerosis and tubulointerstitial fibrosis were also found in the model group, which were ameliorated by losartan. The expressions of HIF-1α, TGF-ß1, MMP-9, and TIMP-1 were elevated and MMp-9/TIMP-1 ratio was lowered in the model group (p < 0.05), but losartan increased the expression of MMP-9 and MMp-9/TIMP-1 ratio (p < 0.05) and lessened the expressions of HIF-1α, TGF-ß1, and TIMP-1 (p < 0.05). CONCLUSION: Losartan may ameliorate renal fibrosis partly by down-regulating HIF-1α and up-regulating MMP-9/TIMP-1 in rats with 5/6 nephrectomy.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/patologia , Losartan/farmacologia , Losartan/uso terapêutico , Metaloproteinase 9 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/efeitos dos fármacos , Nefrectomia/métodos , Inibidor Tecidual de Metaloproteinase-1/biossíntese , Inibidor Tecidual de Metaloproteinase-1/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Animais , Fibrose/tratamento farmacológico , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA