Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Cell Physiol ; 238(1): 179-194, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436185

RESUMO

Hemogenic endothelial (HE) cells are specialized endothelial cells to give rise to hematopoietic stem/progenitor cells during hematopoietic development. The underlying mechanisms that regulate endothelial-to-hematopoietic transition (EHT) of human HE cells are not fully understand. Here, we identified platelet endothelial aggregation receptor-1 (PEAR1) as a novel regulator of early hematopoietic development in human pluripotent stem cells (hPSCs). We found that the expression of PEAP1 was elevated during hematopoietic development. A subpopulation of PEAR1+ cells overlapped with CD34+ CD144+ CD184+ CD73- arterial-type HE cells. Transcriptome analysis by RNA sequencing indicated that TAL1/SCL, GATA2, MYB, RUNX1 and other key transcription factors for hematopoietic development were mainly expressed in PEAR1+ cells, whereas the genes encoding for niche-related signals, such as fibronectin, vitronectin, bone morphogenetic proteins and jagged1, were highly expressed in PEAR1- cells. The isolated PEAR1+ cells exhibited significantly greater EHT capacity on endothelial niche, compared with the PEAR1- cells. Colony-forming unit (CFU) assays demonstrated the multilineage hematopoietic potential of PEAR1+ -derived hematopoietic cells. Furthermore, PEAR1 knockout in hPSCs by CRISPR/Cas9 technology revealed that the hematopoietic differentiation was impaired, resulting in decreased EHT capacity, decreased expression of hematopoietic-related transcription factors, and increased expression of niche-related signals. In summary, this study revealed a novel role of PEAR1 in balancing intrinsic and extrinsic signals for early hematopoietic fate decision.


Assuntos
Hemangioblastos , Hematopoese , Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes , Receptores de Superfície Celular , Humanos , Diferenciação Celular , Hemangioblastos/citologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Pluripotentes/citologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Fatores de Transcrição/metabolismo
2.
Sci Adv ; 7(36): eabi9787, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34516916

RESUMO

Hematopoietic differentiation of human pluripotent stem cells (hPSCs) requires orchestration of dynamic cell and gene regulatory networks but often generates blood cells that lack natural function. Here, we performed extensive single-cell transcriptomic analyses to map fate choices and gene expression patterns during hematopoietic differentiation of hPSCs and showed that oxidative metabolism was dysregulated during in vitro directed differentiation. Applying hypoxic conditions at the stage of endothelial-to-hematopoietic transition in vitro effectively promoted the development of arterial specification programs that governed the generation of hematopoietic progenitor cells (HPCs) with functional T cell potential. Following engineered expression of the anti-CD19 chimeric antigen receptor, the T cells generated from arterial endothelium-primed HPCs inhibited tumor growth both in vitro and in vivo. Collectively, our study provides benchmark datasets as a resource to further understand the origins of human hematopoiesis and represents an advance in guiding in vitro generation of functional T cells for clinical applications.

3.
Gastrointest Endosc ; 94(6): 1119-1130.e4, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34197834

RESUMO

BACKGROUND AND AIMS: Gene therapy could provide curative therapies to many inherited monogenic liver diseases. Clinical trials have largely focused on adeno-associated viruses (AAVs) for liver gene delivery. These vectors, however, are limited by small packaging size, capsid immune responses, and inability to redose. As an alternative, nonviral, hydrodynamic injection through vascular routes can successfully deliver plasmid DNA (pDNA) into mouse liver but has achieved limited success in large animal models. METHODS: We explored hydrodynamic delivery of pDNA through the biliary system into the liver of pigs using ERCP and a power injector to supply hydrodynamic force. Human factor IX (hFIX), deficient in hemophilia B, was used as a model gene therapy. RESULTS: Biliary hydrodynamic injection was well tolerated without significant changes in vital signs, liver enzymes, hematology, or histology. No off-target pDNA delivery to other organs was detected by polymerase chain reaction. Immunohistochemistry revealed that 50.19% of the liver stained positive for hFIX after hydrodynamic injection at 5.5 mg pDNA, with every hepatic lobule in all liver lobes demonstrating hFIX expression. hFIX-positive hepatocytes were concentrated around the central vein, radiating outward across all 3 metabolic zones. Biliary hydrodynamic injection in pigs resulted in significantly higher transfection efficiency than mouse vascular hydrodynamic injection at matched pDNA per liver weight dose (32.7%-51.9% vs 18.9%, P < .0001). CONCLUSIONS: Biliary hydrodynamic injection using ERCP can achieve higher transfection efficiency into hepatocytes compared with AAVs at magnitudes of less cost in a clinically relevant human-sized large animal. This technology may serve as a platform for gene therapy of human liver diseases.


Assuntos
Sistema Biliar , Hidrodinâmica , Animais , Técnicas de Transferência de Genes , Terapia Genética , Fígado , Camundongos , Suínos
4.
Cell Prolif ; 54(4): e13012, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33656760

RESUMO

OBJECTIVES: Vitronectin (VTN) has been widely used for the maintenance and expansion of human pluripotent stem cells (hPSCs) as feeder-free conditions. However, the effect of VTN on hPSC differentiation remains unclear. Here, we investigated the role of VTN in early haematopoietic development of hPSCs. MATERIALS AND METHODS: A chemically defined monolayer system was applied to study the role of different matrix or basement membrane proteins in haematopoietic development of hPSCs. The role of integrin signalling in VTN-mediated haematopoietic differentiation was investigated by integrin antagonists. Finally, small interfering RNA was used to knock down integrin gene expression in differentiated cells. RESULTS: We found that the haematopoietic differentiation of hPSCs on VTN was far more efficient than that on Matrigel that is also often used for hPSC culture. VTN promoted the fate determination of endothelial-haematopoietic lineage during mesoderm development to generate haemogenic endothelium (HE). Moreover, we demonstrated that the signals through αvß3 and αvß5 integrins were required for VTN-promoted haematopoietic differentiation. Blocking αvß3 and αvß5 integrins by the integrin antagonists impaired the development of HE, but not endothelial-to-haematopoietic transition (EHT). Finally, both αvß3 and αvß5 were confirmed acting synergistically for early haematopoietic differentiation by knockdown the expression of αv, ß3 or ß5. CONCLUSION: The established VTN-based monolayer system of haematopoietic differentiation of hPSCs presents a valuable platform for further investigating niche signals involved in human haematopoietic development.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Integrina alfaVbeta3/metabolismo , Receptores de Vitronectina/metabolismo , Vitronectina/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Integrina alfaVbeta3/antagonistas & inibidores , Integrina alfaVbeta3/genética , Mesoderma/citologia , Mesoderma/crescimento & desenvolvimento , Mesoderma/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores de Vitronectina/antagonistas & inibidores , Receptores de Vitronectina/genética , Transdução de Sinais/efeitos dos fármacos , Venenos de Serpentes/farmacologia
5.
J Cell Physiol ; 235(9): 6257-6267, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31994198

RESUMO

Ischemic heart disease and congestive heart failure are major contributors to high morbidity and mortality. Approximately 1.5 million cases of myocardial infarction occur annually in the United States; the yearly incidence rate is approximately 600 cases per 100,000 people. Although significant progress to improve the survival rate has been made by medications and implantable medical devices, damaged cardiomyocytes are unable to be recovered by current treatment strategies. After almost two decades of research, stem cell therapy has become a very promising approach to generate new cardiomyocytes and enhance the function of the heart. Along with clinical trials with stem cells conducted in cardiac regeneration, concerns regarding safety and potential risks have emerged. One of the contentious issues is the electrical dysfunctions of cardiomyocytes and cardiac arrhythmia after stem cell therapy. In this review, we focus on the cell sources currently used for stem cell therapy and discuss related arrhythmogenic risk.


Assuntos
Arritmias Cardíacas/patologia , Doenças Cardiovasculares/terapia , Miócitos Cardíacos/transplante , Transplante de Células-Tronco/efeitos adversos , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/terapia , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/patologia , Humanos , Fatores de Risco
6.
J Cell Physiol ; 234(9): 16136-16147, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30740687

RESUMO

Distinct regions of the primitive streak (PS) have diverse potential to differentiate into several tissues, including the hematopoietic lineage originated from the posterior region of PS. Although various signaling pathways have been identified to promote the development of PS and its mesoderm derivatives, there is a large gap in our understanding of signaling pathways that regulate the hematopoietic fate of PS. Here, we defined the roles of Wnt, activin, and bone morphogenetic protein (BMP) signaling pathways in generating hematopoietic-fated PS from human pluripotent stem cells (hPSCs). We found that the synergistic balance of these signaling pathways was crucial for controlling the PS fate determination towards hematopoietic lineage via mesodermal progenitors. Although the induction of PS depends largely on the Wnt and activin signaling, the PS generated without BMP4 lacks the hematopoietic potential, indicating that the BMP signaling is necessary for the PS to acquire hematopoietic property. Appropriate levels of Wnt signaling is crucial for the development of PS and its specification to the hematopoietic lineage. Although the development of PS is less sensitive to activin or BMP signaling, the fate of PS to mesoderm progenitors and subsequent hematopoietic lineage is determined by appropriate levels of activin or BMP signaling. Collectively, our study demonstrates that Wnt, activin, and BMP signaling pathways play cooperative and distinct roles in regulating the fate determination of PS for hematopoietic development. Our understanding of the regulatory networks of hematopoietic-fated PS would provide important insights into early hematopoietic patterning and possible guidance for generating functional hematopoietic cells from hPSCs in vitro.

7.
Stem Cells Transl Med ; 6(2): 589-600, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28191769

RESUMO

Transplantation of vascular cells derived from human pluripotent stem cells (hPSCs) offers an attractive noninvasive method for repairing the ischemic tissues and for preventing the progression of vascular diseases. Here, we found that in a serum-free condition, the proliferation rate of hPSC-derived endothelial cells is quickly decreased, accompanied with an increased cellular senescence, resulting in impaired gene expression of endothelial nitric oxide synthase (eNOS) and impaired vessel forming capability in vitro and in vivo. To overcome the limited expansion of hPSC-derived endothelial cells, we screened small molecules for specific signaling pathways and found that inhibition of transforming growth factor-ß (TGF-ß) signaling significantly retarded cellular senescence and increased a proliferative index of hPSC-derived endothelial cells. Inhibition of TGF-ß signaling extended the life span of hPSC-derived endothelial and improved endothelial functions, including vascular network formation on Matrigel, acetylated low-density lipoprotein uptake, and eNOS expression. Exogenous transforming growth factor-ß1 increased the gene expression of cyclin-dependent kinase inhibitors, p15Ink4b , p16Ink4a , and p21CIP1 , in endothelial cells. Conversely, inhibition of TGF-ß reduced the gene expression of p15Ink4b , p16Ink4a , and p21CIP1 . Our findings demonstrate that the senescence of newly generated endothelial cells from hPSCs is mediated by TGF-ß signaling, and manipulation of TGF-ß signaling offers a potential target to prevent vascular aging. Stem Cells Translational Medicine 2017;6:589-600.


Assuntos
Benzamidas/farmacologia , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Dioxóis/farmacologia , Células Progenitoras Endoteliais/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Linhagem Celular , Meios de Cultura Livres de Soro/metabolismo , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Modelos Animais de Doenças , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/transplante , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/transplante , Humanos , Isquemia/genética , Isquemia/metabolismo , Isquemia/fisiopatologia , Isquemia/cirurgia , Lipoproteínas LDL/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Neovascularização Fisiológica , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Fenótipo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
8.
J Cell Physiol ; 232(12): 3261-3272, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28079253

RESUMO

The lineage transition between epithelium and mesenchyme is a process known as epithelial-mesenchymal transition (EMT), by which polarized epithelial cells lose their adhesion property and obtain mesenchymal cell phenotypes. EMT is a biological process that is often involved in embryogenesis and diseases, such as cancer invasion and metastasis. The EMT and the reverse process, mesenchymal-epithelial transition (MET), also play important roles in stem cell differentiation and de-differentiation (or reprogramming). In this review, we will discuss current research progress of EMT in embryonic development, cellular differentiation and reprogramming, and cancer progression, all of which are representative models for researches of stem cell biology in normal and in diseases. Understanding of EMT and MET may help to identify specific markers to distinguish normal stem cells from cancer stem cells in future.


Assuntos
Diferenciação Celular , Transformação Celular Neoplásica , Transição Epitelial-Mesenquimal , Células-Tronco/citologia , Animais , Reprogramação Celular , Humanos
9.
J Cell Physiol ; 231(5): 1065-76, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26395760

RESUMO

Generation of fully functional hematopoietic multipotent progenitor (MPP) cells from human pluripotent stem cells (hPSCs) has a great therapeutic potential to provide an unlimited cell source for treatment of hematological disorders. We previously demonstrated that CD34(+) CD31(+) CD144(+) population derived from hPSCs contain hemato-endothelial progenitors (HEPs) that give rise to hematopoietic and endothelial cells. Here, we report a differentiation system to generate definitive hematopoietic MPP cells from HEPs via endothelial monolayer. In the presence of angiogenic factors, HEPs formed an endothelial monolayer, from which hematopoietic clusters emerged through the process of endothelial-to-hematopoietic transition (EHT). EHT was significantly enhanced by hematopoietic growth factors. The definitive MPP cells generated from endothelial monolayer were capable of forming multilineage hematopoietic colonies, giving rise to T lymphoid cells, and differentiating into enucleated erythrocytes. Emergence of hematopoietic cells from endothelial monolayer occurred transiently. Hematopoietic potential was lost during prolonged culture of HEPs in endothelial growth conditions. Our study demonstrated that CD34(+) CD31(+) CD144(+) HEPs gave rise to hematopoietic MPP cells via hemogenic endothelial cells that exist transiently. The established differentiation system provides a platform for future investigation of regulatory factors involved in de novo generation of hematopoietic MPP cells and their applications in transplantation.


Assuntos
Células Endoteliais/citologia , Hematopoese , Células-Tronco Multipotentes/citologia , Células-Tronco Pluripotentes/citologia , Antígenos CD/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem da Célula/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Eritroides/citologia , Células Eritroides/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Células-Tronco Multipotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos
10.
J Cell Biochem ; 116(12): 2735-43, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26012423

RESUMO

Patient-specific human induced-pluripotent stem cells (hiPSCs) represent important cell sources to treat patients with acquired blood disorders. To realize the therapeutic potential of hiPSCs, it is crucial to understand signals that direct hiPSC differentiation to a hematopoietic lineage fate. Our previous study demonstrated that CD34(+)CD31(+) cells derived from human pluripotent stem cells (hPSCs) contain hemato-endothelial progenitors (HEPs) that give rise to hematopoietic cells and endothelial cells. Here, we established a serum-free and feeder-free system to induce the differentiation of hPSC-derived CD34(+)CD31(+) progenitor cells to erythroid cells. We show that extracellular matrix (ECM) proteins promote the differentiation of CD34(+)CD31(+) progenitor cells into CD235a(+) erythroid cells through CD41(+)CD235a(+) megakaryocyte-erythroid progenitors (MEP). Erythropoietin (EPO) is a predominant factor for CD34(+)CD31(+) progenitor differentiation to erythroid cells, whereas transforming growth factor beta (TGF-ß) inhibits the development of CD34(+)CD31(+) progenitor cells. Apoptosis of progenitor cells is induced by TGF-ß in early erythroid differentiation. Suppression of TGF-ß signaling by SB431542 at early stage of CD34(+)CD31(+) progenitor differentiation induces the erythroid cell generation. Together, these findings suggest that TGF-ß suppression and EPO stimulation promote erythropoiesis of CD34(+)CD31(+) progenitor cells derived from hPSCs.


Assuntos
Células Eritroides/efeitos dos fármacos , Eritropoese/efeitos dos fármacos , Eritropoetina/antagonistas & inibidores , Células-Tronco Pluripotentes/metabolismo , Fator de Crescimento Transformador beta/antagonistas & inibidores , Antígenos CD34/metabolismo , Benzamidas/administração & dosagem , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem da Célula/efeitos dos fármacos , Dioxóis/administração & dosagem , Células Eritroides/citologia , Eritropoetina/genética , Células-Tronco Hematopoéticas/citologia , Humanos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/transplante , Fator de Crescimento Transformador beta/genética
11.
J Cell Biochem ; 116(7): 1179-89, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25740540

RESUMO

Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), provide a new cell source for regenerative medicine, disease modeling, drug discovery, and preclinical toxicity screening. Understanding of the onset and the sequential process of hematopoietic cells from differentiated hPSCs will enable the achievement of personalized medicine and provide an in vitro platform for studying of human hematopoietic development and disease. During embryogenesis, hemogenic endothelial cells, a specified subset of endothelial cells in embryonic endothelium, are the primary source of multipotent hematopoietic stem cells. In this review, we discuss current status in the generation of multipotent hematopoietic stem and progenitor cells from hPSCs via hemogenic endothelial cells. We also review the achievements in direct reprogramming from non-hematopoietic cells to hematopoietic stem and progenitor cells. Further characterization of hematopoietic differentiation in hPSCs will improve our understanding of blood development and expedite the development of hPSC-derived blood products for therapeutic purpose.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Multipotentes/citologia , Diferenciação Celular , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células-Tronco Multipotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Medicina de Precisão , Transdução de Sinais
12.
Stem Cells Transl Med ; 4(4): 309-19, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25713465

RESUMO

Megakaryocytes (MKs) are rare hematopoietic cells in the adult bone marrow and produce platelets that are critical to vascular hemostasis and wound healing. Ex vivo generation of MKs from human induced pluripotent stem cells (hiPSCs) provides a renewable cell source of platelets for treating thrombocytopenic patients and allows a better understanding of MK/platelet biology. The key requirements in this approach include developing a robust and consistent method to produce functional progeny cells, such as MKs from hiPSCs, and minimizing the risk and variation from the animal-derived products in cell cultures. In this study, we developed an efficient system to generate MKs from hiPSCs under a feeder-free and xeno-free condition, in which all animal-derived products were eliminated. Several crucial reagents were evaluated and replaced with Food and Drug Administration-approved pharmacological reagents, including romiplostim (Nplate, a thrombopoietin analog), oprelvekin (recombinant interleukin-11), and Plasbumin (human albumin). We used this method to induce MK generation from hiPSCs derived from 23 individuals in two steps: generation of CD34(+)CD45(+) hematopoietic progenitor cells (HPCs) for 14 days; and generation and expansion of CD41(+)CD42a(+) MKs from HPCs for an additional 5 days. After 19 days, we observed abundant CD41(+)CD42a(+) MKs that also expressed the MK markers CD42b and CD61 and displayed polyploidy (≥16% of derived cells with DNA contents >4N). Transcriptome analysis by RNA sequencing revealed that megakaryocytic-related genes were highly expressed. Additional maturation and investigation of hiPSC-derived MKs should provide insights into MK biology and lead to the generation of large numbers of platelets ex vivo.


Assuntos
Albuminas/administração & dosagem , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Megacariócitos/efeitos dos fármacos , Receptores Fc/administração & dosagem , Proteínas Recombinantes de Fusão/administração & dosagem , Trombocitopenia/terapia , Trombopoetina/administração & dosagem , Plaquetas/efeitos dos fármacos , Diferenciação Celular , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Megacariócitos/transplante , Trombocitopenia/patologia , Transcriptoma/genética , Estados Unidos , United States Food and Drug Administration , Cicatrização/efeitos dos fármacos
13.
J Cell Biochem ; 116(3): 467-75, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25359705

RESUMO

Eph receptor (Eph)-ephrin signaling plays an important role in organ development and tissue regeneration. Bidirectional signaling of EphB4-ephrinB2 regulates cardiovascular development. To assess the role of EphB4-ephrinB2 signaling in cardiac lineage development, we utilized two GFP reporter systems in embryonic stem (ES) cells, in which the GFP transgenes were expressed in Nkx2.5(+) cardiac progenitor cells and in α-MHC(+) cardiomyocytes, respectively. We found that both EphB4 and ephrinB2 were expressed in Nkx2.5-GFP(+) cardiac progenitor cells, but not in α-MHC-GFP(+) cardiomyocytes during cardiac lineage differentiation of ES cells. An antagonist of EphB4, TNYL-RAW peptides, that block the binding of EphB4 and ephrinB2, impaired cardiac lineage development in ES cells. Inhibition of EphB4-ephrinB2 signaling at different time points during ES cell differentiation demonstrated that the interaction of EphB4 and ephrinB2 was required for the early stage of cardiac lineage development. Forced expression of human full-length EphB4 or intracellular domain-truncated EphB4 in EphB4-null ES cells was established to investigate the role of EphB4-forward signaling in ES cells. Interestingly, while full-length EphB4 was able to restore the cardiac lineage development in EphB4-null ES cells, the truncated EphB4 that lacks the intracellular domain of tyrosine kinase and PDZ motif failed to rescue the defect of cardiomyocyte development, suggesting that EphB4 intracellular domain is essential for the development of cardiomyocytes. Our study provides evidence that receptor-kinase-dependent EphB4-forward signaling plays a crucial role in the development of cardiac progenitor cells.


Assuntos
Células-Tronco Embrionárias/citologia , Miócitos Cardíacos/citologia , Receptor EphB4/metabolismo , Transdução de Sinais , Animais , Diferenciação Celular , Linhagem Celular , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Efrina-B2/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Cadeias Pesadas de Miosina/metabolismo , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/metabolismo
14.
Biochem Biophys Res Commun ; 448(2): 212-7, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24780395

RESUMO

Mesenchymal stem cells (MSCs) can be polarized into two distinct populations, MSC1 and MSC2, by activation of different Toll-like receptors (TLRs). TLR4-primed MSC1 expressed proinflammatory factors, whereas TLR3-primed MSC2 expressed suppressive factors. However, little is known about the function of TLRs on B lymphocyte-related immune modulation. In this study, we investigated the expression of B cell activating factor (BAFF), a member of the tumor necrosis factor ligand superfamily with notable stimulating activity on B cells, in human MSCs (hMSCs) and in murine MSCs (mMSCs) after activation of TLRs. BAFF was increasingly expressed in presence of TLR4 agonist (lipopolysaccharide, LPS), while TLR2 agonist (Zymosan) and TLR3-agonist (polyinocinic-polycytidykic acid, poly I:C) had no effect on BAFF expression. In addition, we demonstrated that signaling pathways of NF-κB, p38 MAPK, and JNK were involved in TLR4-primed BAFF expression. Our results suggested that TLR4 and downstream pathways in MSCs exert an important function in B lymphocyte-related immune regulation. Further defining a homogeneous population of MSCs should provide insight into MSC-based immune-modulating therapy.


Assuntos
Fator Ativador de Células B/metabolismo , Células-Tronco Mesenquimais/metabolismo , Receptor 4 Toll-Like/metabolismo , Adulto , Animais , Fator Ativador de Células B/genética , Fator Ativador de Células B/imunologia , Diferenciação Celular/imunologia , Células Cultivadas , Humanos , Lipopolissacarídeos/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Poli I-C/farmacologia , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/imunologia , Zimosan/farmacologia
15.
Stem Cells ; 32(5): 1161-72, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24307629

RESUMO

Embryonic stem cells (ESCs), characterized by their ability to both self-renew and differentiate into multiple cell lineages, are a powerful model for biomedical research and developmental biology. Human and mouse ESCs share many features, yet have distinctive aspects, including fundamental differences in the signaling pathways and cell cycle controls that support self-renewal. Here, we explore the molecular basis of human ESC self-renewal using Bayesian network machine learning to integrate cell-type-specific, high-throughput data for gene function discovery. We integrated high-throughput ESC data from 83 human studies (~1.8 million data points collected under 1,100 conditions) and 62 mouse studies (~2.4 million data points collected under 1,085 conditions) into separate human and mouse predictive networks focused on ESC self-renewal to analyze shared and distinct functional relationships among protein-coding gene orthologs. Computational evaluations show that these networks are highly accurate, literature validation confirms their biological relevance, and reverse transcriptase polymerase chain reaction (RT-PCR) validation supports our predictions. Our results reflect the importance of key regulatory genes known to be strongly associated with self-renewal and pluripotency in both species (e.g., POU5F1, SOX2, and NANOG), identify metabolic differences between species (e.g., threonine metabolism), clarify differences between human and mouse ESC developmental signaling pathways (e.g., leukemia inhibitory factor (LIF)-activated JAK/STAT in mouse; NODAL/ACTIVIN-A-activated fibroblast growth factor in human), and reveal many novel genes and pathways predicted to be functionally associated with self-renewal in each species. These interactive networks are available online at www.StemSight.org for stem cell researchers to develop new hypotheses, discover potential mechanisms involving sparsely annotated genes, and prioritize genes of interest for experimental validation.


Assuntos
Diferenciação Celular , Proliferação de Células , Células-Tronco Embrionárias/citologia , Biologia de Sistemas/métodos , Algoritmos , Animais , Teorema de Bayes , Linhagem da Célula , Biologia Computacional/métodos , Células-Tronco Embrionárias/metabolismo , Redes Reguladoras de Genes , Humanos , Camundongos , Reprodutibilidade dos Testes , Transdução de Sinais
16.
Stem Cells Dev ; 22(20): 2765-76, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23758278

RESUMO

Derived from mesoderm precursors, hemangioblasts are bipotential common progenitors of hematopoietic cells and endothelial cells. The regulatory events controlling hematopoietic and endothelial lineage specification are largely unknown, especially in humans. In this study, we establish a serum-free and feeder-free system with a high-efficient embryoid body (EB) generation to investigate the signals that direct differentiation of human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs). Consistent with previous studies, the CD34(+)CD31(+)VE-cadherin(+) (VEC(+)) cells derived from hPSCs contain hematopoietic and endothelial progenitors. In the presence of hematopoietic and endothelial growth factors, some of CD34(+)CD31(+)VEC(+) cells give rise to blast colony-forming cells (BL-CFCs), which have been used to characterize bipotential hemangioblasts. We found that the level of the transforming growth factor beta (TGF-ß) 1 protein is increased during hPSC differentiation, and that TGF-ß signaling has the double-edged effect on hematopoietic and endothelial lineage differentiation in hPSCs. An addition of TGF-ß to hPSC differentiation before mesoderm induction promotes the development of mesoderm and the generation of CD34(+)CD31(+)VEC(+) cells. An addition of TGF-ß inhibitor, SB431542, before mesoderm induction downregulates the expression of mesodermal markers and reduces the number of CD34(+)CD31(+)VEC(+) progenitor cells. However, inhibition of TGF-ß signaling after mesoderm induction increases CD34(+)CD31(+)VEC(+) progenitors and BL-CFCs. These data provide evidence that a balance of positive and negative effects of TGF-ß signaling at the appropriate timing is critical, and potential means to improve hematopoiesis and vasculogenesis from hPSCs.


Assuntos
Corpos Embrioides/metabolismo , Células Endoteliais/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Benzamidas/farmacologia , Diferenciação Celular , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células , Técnicas de Cocultura , Dioxóis/farmacologia , Corpos Embrioides/citologia , Corpos Embrioides/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Ativação Linfocitária , Mesoderma/citologia , Mesoderma/metabolismo , Cultura Primária de Células , Transdução de Sinais , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/farmacologia
17.
Stem Cell Res ; 8(1): 26-37, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22099018

RESUMO

Robust expansion and genetic manipulation of human embryonic stem cells (hESCs) and induced-pluripotent stem (iPS) cells are limited by poor cell survival after enzymatic dissociation into single cells. Although inhibition of apoptosis is implicated for the single-cell survival of hESCs, the protective role of attenuation of apoptosis in hESC survival has not been elucidated. Bcl-xL is one of several anti-apoptotic proteins, which are members of the Bcl-2 family of proteins. Using an inducible system, we ectopically expressed Bcl-xL gene in hESCs, and found a significant increase of hESC colonies in the single-cell suspension cultures. Overexpression of Bcl-xL in hESCs decreased apoptotic caspase-3(+) cells, suggesting attenuation of apoptosis in hESCs. Without altering the kinetics of pluripotent gene expression, the efficiency to generate embryoid bodies (EBs) in vitro and the formation of teratoma in vivo were significantly increased in Bcl-xL-overexpressing hESCs after single-cell dissociation. Interestingly, the number and size of hESC colonies from cluster cultures were not affected by Bcl-xL overexpression. Several genes of extracellular matrix and adhesion molecules were upregulated by Bcl-xL in hESCs without single-cell dissociation, suggesting that Bcl-xL regulates adhesion molecular expression independent of cell dissociation. In addition, the gene expressions of FAS and several TNF signaling mediators were downregulated by Bcl-xL. These data support a model in which Bcl-xL promotes cell survival and increases cloning efficiency of dissociated hESCs without altering hESC self-renewal by i) attenuation of apoptosis, and ii) upregulation of adhesion molecules to facilitate cell-cell or cell-matrix interactions.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteína bcl-X/metabolismo , Animais , Apoptose , Caspase 3/metabolismo , Moléculas de Adesão Celular/metabolismo , Proliferação de Células , Sobrevivência Celular , Células Clonais , Regulação para Baixo , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Humanos , Camundongos , Camundongos Nus , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Transdução de Sinais , Teratoma/patologia , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
18.
PLoS One ; 6(10): e26592, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22046312

RESUMO

Direct reprogramming of human somatic cells into induced pluripotent stem (iPS) cells by defined transcription factors (TFs) provides great potential for regenerative medicine and biomedical research. This procedure has many challenges, including low reprogramming efficiency, many partially reprogrammed colonies, somatic coding mutations in the genome, etc. Here, we describe a simple approach for generating fully reprogrammed human iPS cells by using a single polycistronic retroviral vector expressing four human TFs in a single open reading frame (ORF), combined with a cocktail containing three small molecules (Sodium butyrate, SB431542, and PD0325901). Our results demonstrate that human iPS cells generated by this approach express human ES cells markers and exhibit pluripotency demonstrated by their abilities to differentiate into the three germ layers in vitro and in vivo. Notably, this approach not only provides a much faster reprogramming process but also significantly diminishes partially reprogrammed iPS cell colonies, thus facilitating efficient isolation of desired fully reprogrammed iPS cell colonies.


Assuntos
Reprogramação Celular , Vetores Genéticos , Células-Tronco Pluripotentes Induzidas/citologia , Benzamidas , Butiratos , Técnicas de Cultura de Células , Dioxóis , Difenilamina/análogos & derivados , Humanos , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Retroviridae , Fatores de Transcrição
19.
J Cell Biochem ; 111(1): 29-39, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20506197

RESUMO

The molecules and environment that direct pluripotent stem cell differentiation into cardiomyocytes are largely unknown. Here, we determined a critical role of receptor tyrosine kinase, EphB4, in regulating cardiomyocyte generation from embryonic stem (ES) cells through endothelial cells. The number of spontaneous contracting cardiomyocytes, and the expression of cardiac-specific genes, including alpha-MHC and MLC-2V, was significantly decreased in EphB4-null ES cells. EphB4 was expressed in endothelial cells underneath contracting cardiomyocytes, but not in cardiomyocytes. Angiogenic inhibitors, including endostatin and angiostatin, inhibited endothelial cell differentiation and diminished cardiomyogenesis in ES cells. Generation of functional cardiomyocytes and the expression of cardiac-specific genes were significantly enhanced by co-culture of ES cells with human endothelial cells. Furthermore, the defects of cardiomyocyte differentiation in EphB4-deficient ES cells were rescued by human endothelial cells. For the first time, our study demonstrated that endothelial cells play an essential role in facilitating cardiomyocyte differentiation from pluripotent stem cells. EphB4 signaling is a critical component of the endothelial niche to regulate regeneration of cardiomyocytes.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Células Endoteliais/fisiologia , Miócitos Cardíacos/fisiologia , Inibidores da Angiogênese/farmacologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Efrina-B2/genética , Efrina-B2/metabolismo , Humanos , Camundongos , Camundongos Knockout , Miócitos Cardíacos/citologia , Receptor EphB4/genética , Receptor EphB4/metabolismo , Transdução de Sinais
20.
Blood ; 115(23): 4707-14, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20360471

RESUMO

Bone marrow injury is a major adverse side effect of radiation and chemotherapy. Attempts to limit such damage are warranted, but their success requires a better understanding of how radiation and anticancer drugs harm the bone marrow. Here, we report one pivotal role of the BH3-only protein Puma in the radiosensitivity of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs). Puma deficiency in mice confers resistance to high-dose radiation in a hematopoietic cell-autonomous manner. Unexpectedly, loss of one Puma allele is sufficient to confer mice radioresistance. Interestingly, null mutation in Puma protects both primitive and differentiated hematopoietic cells from damage caused by low-dose radiation but selectively protects HSCs and HPCs against high-dose radiation, thereby accelerating hematopoietic regeneration. Consistent with these findings, Puma is required for radiation-induced apoptosis in HSCs and HPCs, and Puma is selectively induced by irradiation in primitive hematopoietic cells, and this induction is impaired in Puma-heterozygous cells. Together, our data indicate that selective targeting of p53 downstream apoptotic targets may represent a novel strategy to protecting HSCs and HPCs in patients undergoing intensive cancer radiotherapy and chemotherapy.


Assuntos
Proteínas Reguladoras de Apoptose , Apoptose/efeitos da radiação , Raios gama/efeitos adversos , Células-Tronco Hematopoéticas/metabolismo , Tolerância a Radiação/fisiologia , Proteínas Supressoras de Tumor , Animais , Apoptose/fisiologia , Relação Dose-Resposta à Radiação , Camundongos , Camundongos Knockout , Mutação , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA