Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
1.
Biomed Pharmacother ; 177: 116962, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936195

RESUMO

Metabolic disorders are considered the hallmarks of cancer and metabolic reprogramming is emerging as a new strategy for cancer treatment. Exogenous and endogenous stressors can induce cellular senescence; the interactions between cellular senescence and systemic metabolism are dynamic. Cellular senescence disrupts metabolic homeostasis in various tissues, which further promotes senescence, creating a vicious cycle facilitating tumor occurrence, recurrence, and altered outcomes of anticancer treatments. Therefore, the regulation of cellular senescence and related secretory phenotypes is considered a breakthrough in cancer therapy; moreover, proteins involved in the associated pathways are prospective therapeutic targets. Although studies on the association between cellular senescence and tumors have emerged in recent years, further elucidation of this complex correlation is required for comprehensive knowledge. In this paper, we review the research progress on the correlation between cell aging and metabolism, focusing on the strategies of targeting metabolism to modulate cellular senescence and the progress of relevant research in the context of anti-tumor therapy. Finally, we discuss the significance of improving the specificity and safety of anti-senescence drugs, which is a potential challenge in cancer therapy.

2.
Int Urogynecol J ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869514

RESUMO

INTRODUCTION AND HYPOTHESIS: We investigate the feasibility, safety, and clinical therapeutic effect of laparoscopic sigmoid vaginoplasty in women with Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome. METHODS: We performed a retrospective case review cohort study of 56 patients with MRKHs undergoing laparoscopic sigmoid vaginoplasty in Wuhan Union Hospital between 2000 and 2020, and all patients were followed up. RESULTS: The median operating time was 165 min (120-420 min). The median hospital stay was 10 days (rang 7-15 days). A functional neovagina was created 11-15 cm in length and two fingers in breadth in all patients. No introitus stenosis was observed. No intra- or post-operative complications occurred. Two patients were lost to follow-up after 3 months of outpatient visits. Six patients had no intercourse and were required to wear a vaginal mold occasionally. None of the patients had complained of local irritation or dyspareunia. Patients who had post-surgery sexual intercourse were satisfied with their sexual life and the mean total Female Sexual Function Index (FSFI) score was 25.17 ± 0.63. The cosmetic results were excellent. CONCLUSIONS: The laparoscopic sigmoid vaginoplasty can achieve the goal of making a functional neovagina. The main advantage of this surgical technique is that it is minimally invasive and that there are fewer complications post-operation. It is an acceptable procedure for patients with MRKH syndrome.

3.
Precis Clin Med ; 7(2): pbae012, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38912415

RESUMO

Background: The prognosis of breast cancer is often unfavorable, emphasizing the need for early metastasis risk detection and accurate treatment predictions. This study aimed to develop a novel multi-modal deep learning model using preoperative data to predict disease-free survival (DFS). Methods: We retrospectively collected pathology imaging, molecular and clinical data from The Cancer Genome Atlas and one independent institution in China. We developed a novel Deep Learning Clinical Medicine Based Pathological Gene Multi-modal (DeepClinMed-PGM) model for DFS prediction, integrating clinicopathological data with molecular insights. The patients included the training cohort (n = 741), internal validation cohort (n = 184), and external testing cohort (n = 95). Result: Integrating multi-modal data into the DeepClinMed-PGM model significantly improved area under the receiver operating characteristic curve (AUC) values. In the training cohort, AUC values for 1-, 3-, and 5-year DFS predictions increased to 0.979, 0.957, and 0.871, while in the external testing cohort, the values reached 0.851, 0.878, and 0.938 for 1-, 2-, and 3-year DFS predictions, respectively. The DeepClinMed-PGM's robust discriminative capabilities were consistently evident across various cohorts, including the training cohort [hazard ratio (HR) 0.027, 95% confidence interval (CI) 0.0016-0.046, P < 0.0001], the internal validation cohort (HR 0.117, 95% CI 0.041-0.334, P < 0.0001), and the external cohort (HR 0.061, 95% CI 0.017-0.218, P < 0.0001). Additionally, the DeepClinMed-PGM model demonstrated C-index values of 0.925, 0.823, and 0.864 within the three cohorts, respectively. Conclusion: This study introduces an approach to breast cancer prognosis, integrating imaging and molecular and clinical data for enhanced predictive accuracy, offering promise for personalized treatment strategies.

4.
J Mol Med (Berl) ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850298

RESUMO

The tRNA-derived small RNAs (tsRNAs) can be categorized into two main groups: tRNA-derived fragments (tRFs) and tRNA-derived stress-induced RNAs (tiRNAs). Each group possesses specific molecular sizes, nucleotide compositions, and distinct physiological functions. Notably, hypoxia-inducible factor-1 (HIF-1), a transcriptional activator dependent on oxygen, comprises one HIF-1ß subunit and one HIF-α subunit (HIF-1α/HIF-2α/HIF-3α). The activation of HIF-1 plays a crucial role in gene transcription, influencing key aspects of cancer biology such as angiogenesis, cell survival, glucose metabolism, and invasion. The involvement of HIF-1α activation has been demonstrated in numerous human diseases, particularly cancer, making HIF-1 an attractive target for potential disease treatments. Through a series of experiments, researchers have identified two tiRNAs that interact with the HIF-1 pathway, impacting disease development: 5'tiRNA-His-GTG in colorectal cancer (CRC) and tiRNA-Val in diabetic retinopathy (DR). Specifically, 5'tiRNA-His-GTG promotes CRC development by targeting LATS2, while tiRNA-Val inhibits Sirt1, leading to HIF-1α accumulation and promoting DR development. Clinical data have further indicated that certain tsRNAs' expression levels are associated with the prognosis and pathological features of CRC patients. In CRC tumor tissues, the expression level of 5'tiRNA-His-GTG is significantly higher compared to normal tissues, and it shows a positive correlation with tumor size. Additionally, KEGG analysis has revealed multiple tRFs involved in regulating the HIF-1 pathway, including tRF-Val-AAC-016 in diabetic foot ulcers (DFU) and tRF-1001 in pathological ocular angiogenesis. This comprehensive article reviews the biological functions and mechanisms of tsRNAs related to the HIF-1 pathway in diseases, providing a promising direction for subsequent translational medicine research.

5.
Cancer Gene Ther ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858534

RESUMO

RhoJ is a Rho GTPase that belongs to the Cdc42 subfamily and has a molecular weight of approximately 21 kDa. It can activate the p21-activated kinase family either directly or indirectly, influencing the activity of various downstream effectors and playing a role in regulating the cytoskeleton, cell movement, and cell cycle. RhoJ's expression and activity are controlled by multiple upstream factors at different levels, including expression, subcellular localization, and activation. High RhoJ expression is generally associated with a poor prognosis for cancer patients and is mainly due to an increased number of tumor blood vessels and abnormal expression in malignant cells. RhoJ promotes tumor progression through several pathways, particularly in tumor angiogenesis and drug resistance. Clinical data also indicates that high RhoJ expression is closely linked to the pathological features of tumor malignancy. There are various cancer treatment methods that target RhoJ signaling, such as direct binding to inhibit the RhoJ effector pocket, inhibiting RhoJ expression, blocking RhoJ upstream and downstream signals, and indirectly inhibiting RhoJ's effect. RhoJ is an emerging cancer biomarker and a significant target for future cancer clinical research and drug development.

6.
Front Genet ; 15: 1332935, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756447

RESUMO

Background: In breast cancer oncogenesis, the precise role of cell apoptosis holds untapped potential for prognostic and therapeutic insights. Thus, it is important to develop a model predicated for breast cancer patients' prognosis and immunotherapy response based on apoptosis-related signature. Methods: Our approach involved leveraging a training dataset from The Cancer Genome Atlas (TCGA) to construct an apoptosis-related gene prognostic model. The model's validity was then tested across several cohorts, including METABRIC, Sun Yat-sen Memorial Hospital Sun Yat-sen University (SYSMH), and IMvigor210, to ensure its applicability and robustness across different patient demographics and treatment scenarios. Furthermore, we utilized Quantitative Polymerase Chain Reaction (qPCR) analysis to explore the expression patterns of these model genes in breast cancer cell lines compared to immortalized mammary epithelial cell lines, aiming to confirm their differential expression and underline their significance in the context of breast cancer. Results: Through the development and validation of our prognostic model based on seven apoptosis-related genes, we have demonstrated its substantial predictive power for the survival outcomes of breast cancer patients. The model effectively stratified patients into high and low-risk categories, with high-risk patients showing significantly poorer overall survival in the training cohort and across all validation cohorts. Importantly, qPCR analysis confirmed that the genes constituting our model indeed exhibit differential expression in breast cancer cell lines when contrasted with immortalized mammary epithelial cell lines. Conclusion: Our study establishes a groundbreaking prognostic model using apoptosis-related genes to enhance the precision of breast cancer prognosis and treatment, particularly in predicting immunotherapy response.

7.
Histol Histopathol ; : 18761, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38818655

RESUMO

PURPOSE: The biological function of p27Kip1 largely depends on its subcellular localization and phosphorylation status. Different subcellular localizations and phosphorylation statuses of p27Kip1 may represent distinct clinical values, which are unclear in ovarian cancer. This study aimed to elucidate different subcellular localizations of p27Kip1 and pSer10p27 in predicting prognosis and chemotherapy response in ovarian cancer. METHODS: Meta-analyses were executed to evaluate the association of p27Kip1 and phosphorylated p27Kip1 with the prognosis of ovarian cancer patients. The expression levels and patterns of p27Kip1 and pSer10p27 were evaluated by immunohistochemistry. The correlations between different p27Kip1 states, clinicopathological features, and prognosis were analyzed. p27Kip1 and pSer10p27 expression levels in cisplatin-sensitive and cisplatin-resistant ovarian cancer cell lines were detected using WB. KEGG analysis and WB were performed to evaluate the pathways in which p27Kip1 was involved. RESULTS: Meta-analyses showed that p27Kip1 was associated with significantly better overall survival (OS) in ovarian cancer (HR=2.14; 95% CI [1.71-2.68]) and pSer10p27 was associated with significantly poor OS in mixed solid tumors (HR=2.56; 95% CI [1.76-3.73]). In our cohort of ovarian cancer patients, low total p27Kip1 remained independent risk factors of OS (HR=2.097; 95% CI [1.121-3.922], P=0.021) and PFS (HR=2.483; 95% CI [1.364-4.518], P=0.003), while low cytoplasmic pSer10p27 had independent protective effects in terms of OS (HR=0.472; 95% CI [0.248-0.898], P=0.022) and PFS (HR=0.488; 95% CI [0.261-0.910], P=0.024). Patients with low total p27Kip1/pSer10p27 and low nuclear p27Kip1 had worse chemotherapy responses, while patients with low cytoplasmic pSer10p27 expression had better chemotherapy responses. The protein levels of p27Kip1 and pSer10p27 were significantly reduced in the cisplatin-resistant cell lines SKOV3-cDDP and A2780-cDDP, and the level of p27Kip1/pSer10p27 was subjective to Akt activation. CONCLUSIONS: The present study demonstrates that p27Kip1 and cytoplasmic pSer10p27 are promising biomarkers for predicting prognosis and chemotherapy response in ovarian cancer.

8.
Int J Biol Sci ; 20(6): 2297-2309, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617545

RESUMO

Background: Tyrosine kinase with immunoglobulin and EGF-like domains 1 (TIE1) is known as an orphan receptor prominently expressed in endothelial cells and participates in angiogenesis by regulating TIE2 activity. Our previous study demonstrated elevated TIE1 expression in cervical cancer cells. However, the role of TIE1 in cervical cancer progression, metastasis and treatment remains elusive. Methods: Immunohistochemistry staining for TIE1 and Basigin was performed in 135 human cervical cancer tissues. Overexpressing vectors and siRNAs were used to manipulate gene expression in tumor cells. Colony formation, wound healing, and transwell assays were used to assess cervical cancer cell proliferation and migration in vitro. Subcutaneous xenograft tumor and lung metastasis mouse models were established to examine tumor growth and metastasis. Co-Immunoprecipitation and Mass Spectrometry were applied to explore the proteins binding to TIE1. Immunoprecipitation and immunofluorescence staining were used to verify the interaction between TIE1 and Basigin. Cycloheximide chase assay and MG132 treatment were conducted to analyze protein stability. Results: High TIE1 expression was associated with poor survival in cervical cancer patients. TIE1 overexpression promoted the proliferation, migration and invasion of cervical cancer cells in vitro, as well as tumor growth and metastasis in vivo. In addition, Basigin, a transmembrane glycoprotein, was identified as a TIE1 binding protein, suggesting a pivotal role in matrix metalloproteinase regulation, angiogenesis, cell adhesion, and immune responses. Knockdown of Basigin or treatment with the Basigin inhibitor AC-73 reversed the tumor-promoting effect of TIE1 in vitro and in vivo. Furthermore, we found that TIE1 was able to interact with and stabilize the Basigin protein and stimulate the Basigin-matrix metalloproteinase axis. Conclusion: TIE1 expression in cervical cells exerts a tumor-promoting effect, which is at least in part dependent on its interaction with Basigin. These findings have revealed a TIE2-independent mechanism of TIE1, which may provide a new biomarker for cervical cancer progression, and a potential therapeutic target for the treatment of cervical cancer patients.


Assuntos
Neoplasias Pulmonares , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , Basigina , Adesão Celular , Células Endoteliais , Neoplasias do Colo do Útero/genética
9.
MedComm (2020) ; 5(3): e471, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38434763

RESUMO

The exact function of M1 macrophages and CXCL9 in forecasting the effectiveness of immune checkpoint inhibitors (ICIs) is still not thoroughly investigated. We investigated the potential of M1 macrophage and C-X-C Motif Chemokine Ligand 9 (CXCL9) as predictive markers for ICI efficacy, employing a comprehensive approach integrating multicohort analysis and single-cell RNA sequencing. A significant correlation between high M1 macrophage and improved overall survival (OS) and objective response rate (ORR) was found. M1 macrophage expression was most pronounced in the immune-inflamed phenotype, aligning with increased expression of immune checkpoints. Furthermore, CXCL9 was identified as a key marker gene that positively correlated with M1 macrophage and response to ICIs, while also exhibiting associations with immune-related pathways and immune cell infiltration. Additionally, through exploring RNA epigenetic modifications, we identified Apolipoprotein B MRNA Editing Enzyme Catalytic Subunit 3G (APOBEC3G) as linked to ICI response, with high expression correlating with improved OS and immune-related pathways. Moreover, a novel model based on M1 macrophage, CXCL9, and APOBEC3G-related genes was developed using multi-level attention graph neural network, which showed promising predictive ability for ORR. This study illuminates the pivotal contributions of M1 macrophages and CXCL9 in shaping an immune-active microenvironment, correlating with enhanced ICI efficacy. The combination of M1 macrophage, CXCL9, and APOBEC3G provides a novel model for predicting clinical outcomes of ICI therapy, facilitating personalized immunotherapy.

10.
Am J Nucl Med Mol Imaging ; 14(1): 72-77, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500744

RESUMO

High-grade serous ovarian cancer (HGSOC) is the most common type of epithelial ovarian cancer with insidious onset, rapid growth, and invasive spread. Here, we reported the diagnosis and treatment of a 53-year-old patient with a history of hysterectomy aided by the 68Ga-FAPI PET/MR scan. The patient was first presented to the local hospital with a lump on the left side of the neck with a biopsy suggesting metastatic cancer. Pelvic ultrasonography revealed two irregular masses. After admission, tumor markers, pathology consultation of the biopsy, and the 68Ga-FAPI PET/MR scan were administered. The biopsy of the lump suggested poorly differentiated adenocarcinoma and CA125 was elevated at 530.6 U/ml. The 68Ga-FAPI PET/MR scan showed several abnormal lymph nodes and two soft tissue masses with borders of dispersed restriction displaying internally uneven signals depicted by slightly elongated T1 and T2 signals within the pelvic cavity suggesting that pelvic mass could be the primary lesion. The patient received cytoreductive surgery including bilateral adnexectomy, omentectomy, and appendectomy. Post-surgical pathology suggested left and right HGSOC with left fallopian tube invasion. The patient completed six courses of first-line chemotherapy and remained progression-free for 14 months up to date. To conclude, 68Ga-FAPI PET/MR aids in primary tumor determination and tumor burden assessment and provides a guide for the management of late-stage HGSOC patients.

11.
ACS Nano ; 18(11): 7852-7867, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38437513

RESUMO

The clinical application of cisplatin (CisPt) is limited by its dose-dependent toxicity. To overcome this, we developed reduction-responsive nanoparticles (NP(3S)s) for the targeted delivery of a platinum(IV) (Pt(IV)) prodrug to improve efficacy and reduce the toxicity. NP(3S)s could release Pt(II) and hydrogen sulfide (H2S) upon encountering intracellular glutathione, leading to potent anticancer effects. Notably, NP(3S)s induced DNA damage and activated the STING pathway, which is a known promoter for T cell activation. Comparative RNA profiling revealed that NP(3S)s outperformed CisPt in enhancing T cell immunity, antitumor immunity, and oxidative stress pathways. In vivo experiments showed that NP(3S)s accumulated in tumors, promoting CD8+ T cell infiltration and boosting antitumor immunity. Furthermore, NP(3S)s exhibited robust in vivo anticancer efficacy while minimizing the CisPt-induced liver toxicity. Overall, the results indicate NP(3S)s hold great promise for clinical translation due to their low toxicity profile and potent anticancer activity.


Assuntos
Antineoplásicos , Pró-Fármacos , Pró-Fármacos/química , Cisplatino , Polímeros , Glutationa , Linhagem Celular Tumoral
12.
Heliyon ; 10(5): e27151, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38495207

RESUMO

The development of immune checkpoint inhibitors (ICIs) has significantly advanced cancer treatment. However, their efficacy is not consistent across all patients, underscoring the need for personalized approaches. In this study, we examined the relationship between activated CD4+ memory T cell expression and ICI responsiveness. A notable correlation was observed between increased activated CD4+ memory T cell expression and better patient survival in various cohorts. Additionally, the chemokine CXCL13 was identified as a potential prognostic biomarker, with higher expression levels associated with improved outcomes. Further analysis highlighted CXCL13's role in influencing the Tumor Microenvironment, emphasizing its relevance in tumor immunity. Using these findings, we developed a deep learning model by the Multi-Layer Aggregation Graph Neural Network method. This model exhibited promise in predicting ICI treatment efficacy, suggesting its potential application in clinical practice.

13.
J Cell Mol Med ; 28(7): e18198, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38506093

RESUMO

Mounting evidence has highlighted the multifunctional characteristics of glutamine metabolism (GM) in cancer initiation, progression and therapeutic regimens. However, the overall role of GM in the tumour microenvironment (TME), clinical stratification and therapeutic efficacy in patients with ovarian cancer (OC) has not been fully elucidated. Here, three distinct GM clusters were identified and exhibited different prognostic values, biological functions and immune infiltration in TME. Subsequently, glutamine metabolism prognostic index (GMPI) was constructed as a new scoring model to quantify the GM subtypes and was verified as an independent predictor of OC. Patients with low-GMPI exhibited favourable survival outcomes, lower enrichment of several oncogenic pathways, less immunosuppressive cell infiltration and better immunotherapy responses. Single-cell sequencing analysis revealed a unique evolutionary trajectory of OC cells from high-GMPI to low-GMPI, and OC cells with different GMPI might communicate with distinct cell populations through ligand-receptor interactions. Critically, the therapeutic efficacy of several drug candidates was validated based on patient-derived organoids (PDOs). The proposed GMPI could serve as a reliable signature for predicting patient prognosis and contribute to optimising therapeutic strategies for OC.


Assuntos
Glutamina , Neoplasias Ovarianas , Humanos , Feminino , Prognóstico , Microambiente Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Cognição
14.
iScience ; 27(3): 109160, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38414861

RESUMO

Neoadjuvant chemotherapy (NACT) is a therapeutic option for locally advanced cervical cancer (LACC) patients. This study was aimed to identify potential liquid biopsy biomarkers to monitor the NACT response. Through targeted next-generation sequencing (NGS) analysis of circulating tumor DNA (ctDNA) and tumor tissue DNA (ttDNA) taken from LACC patients undergoing platinum-based NACT, 64 genes with mutations emerge during NACT in the non-responders but none in the responders. Among them, the PBRM1, SETD2, and ROS1 mutations were frequently detected in the ctDNA and ttDNA of the non-responders, and mutant PBRM1 was associated with poorer survival of patients. In vitro, PBRM1 knockdown promoted resistance to cisplatin through boosting STAT3 signaling in cervical cancer cells, while it sensitized tumor cells to poly-ADP-ribose-polymerase inhibitor olaparib. These findings suggest that mutant PBRM1 is a potential ctDNA marker of emerging resistance to NACT and of increased sensitivity to olaparib, which warrants further clinical validation.

15.
Cell Commun Signal ; 22(1): 47, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233863

RESUMO

BACKGROUND: Omental metastasis is the major cause of ovarian cancer recurrence and shortens patient survival, which can be largely attributed to the dynamic evolution of the fertile metastatic microenvironment driven by cancer cells. Previously, we found that adipose-derived mesenchymal stem cells (ADSCs) undergoing a phenotype shift toward cancer-associated fibroblasts (CAFs) participated in the orchestrated omental premetastatic niche for ovarian cancer. Here, we aim to elucidate the underlying mechanisms. METHODS: Small extracellular vesicles were isolated from ovarian cancer cell lines (ES-2 and its highly metastatic subline, ES-2-HM) and patient ascites using ultracentrifugation. Functional experiments, including Transwell and EdU assays, and molecular detection, including Western blot, immunofluorescence, and RT-qPCR, were performed to investigate the activation of ADSCs in vitro. High-throughput transcriptional sequencing and functional assays were employed to identify the crucial functional molecules inducing CAF-like activation of ADSCs and the downstream effector of miR-320a. The impact of extracellular vesicles and miR-320a-activated ADSCs on tumor growth and metastasis was assessed in subcutaneous and orthotopic ovarian cancer xenograft mouse models. The expression of miR-320a in human samples was evaluated using in situ hybridization staining. RESULTS: Primary human ADSCs cocultured with small extracellular vesicles, especially those derived from ES-2-HM, exhibited boosted migration, invasion, and proliferation capacities and elevated α-SMA and FAP levels. Tumor-derived small extracellular vesicles increased α-SMA-positive stromal cells, fostered omental metastasis, and shortened the survival of mice harboring orthotopic ovarian cancer xenografts. miR-320a was abundant in highly metastatic cell-derived extracellular vesicles, evoked dramatic CAF-like transition of ADSCs, targeted the 3'-untranslated region of integrin subunit alpha 7 and attenuated its expression. miR-320a overexpression in ovarian cancer was associated with omental metastasis and shorter survival. miR-320a-activated ADSCs facilitated tumor cell growth and omental metastasis. Depletion of integrin alpha 7 triggered CAF-like activation of ADSCs in vitro. Video Abstract CONCLUSIONS: miR-320a in small extracellular vesicles secreted by tumor cells targets integrin subunit alpha 7 in ADSCs and drives CAF-like activation, which in turn facilitates omental metastasis of ovarian cancer.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Neoplasias Ovarianas , Humanos , Camundongos , Animais , Feminino , Recidiva Local de Neoplasia , Neoplasias Ovarianas/patologia , Vesículas Extracelulares/metabolismo , Proliferação de Células , Modelos Animais de Doenças , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo , Integrinas/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
16.
Sci Rep ; 14(1): 2407, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287102

RESUMO

Clear cell renal cell carcinoma (ccRCC) is a highly heterogeneous cancer that poses great challenge to clinical treatment and prognostic prediction. Characterizing the cellular landscape of ccRCC in a single-cell dimension can help better understand the tumor heterogeneity and molecular mechanisms of ccRCC. This study analyzed single-cell profiles in ccRCC samples and para-tumor samples from Gene Expression Omnibus and identified a highly heterogeneous subcluster of renal tubule cells. Single-cell regulatory network inference and clustering analyses and cell communication analysis were performed to develop transcription factor-target gene regulatory networks and cell-cell interactions. Additionally, the distribution and prognostic risk of renal tubule cells from spatial transcriptome data (GSM6415706) and The Cancer Genome Atlas-Kidney Clear Cell Carcinoma data were analyzed. A total of 10 cell types were identified in ccRCC and para-tumor samples. The ccRCC renal tubule cells showed a high expression of the oncogene nicotinamide N-methyltransferase and a significantly high degree of tumor heterogeneity. We further identified 6 cell subclusters with specific expression of BEX2, PTHLH, SFRP2, KLRB1, ADGRL4, and HGF from the ccRCC renal tubule cells. ADGRL4+ renal tubule cells had highly metastatic and angiogenesis-inducing characteristics, with more ADGRL4+ renal tubule cells indicating a worse survival. ADGRL4+ renal tubule cells regulated the metastasis of other renal tubule cells through metastasis-related receptor-ligand communication. We also found that ADGRL4+ renal tubule cells clustered around the glomeruli but the rest of the renal tubule cell subclusters rarely localized in ccRCC tissues. ETS1 and ELK3 -dominant GRNs were remarkably activated in ADGRL4+ renal tubule cells, functionally, knockdown of ELK3 in A498 significantly disturbedaffected the cell migration and invasion. ADGRL4+ renal tubule cells, which were highly metastatic and invasive, might be an essential cell subcluster for ccRCC, and ADGRL4 could be used a novel therapeutic target.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Rim/metabolismo , Prognóstico , Análise de Célula Única , Proteínas do Tecido Nervoso/metabolismo
17.
Nat Commun ; 15(1): 255, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177179

RESUMO

The multifaceted chemo-immune resistance is the principal barrier to achieving cure in cancer patients. Identifying a target that is critically involved in chemo-immune-resistance represents an attractive strategy to improve cancer treatment. iRhom1 plays a role in cancer cell proliferation and its expression is negatively correlated with immune cell infiltration. Here we show that iRhom1 decreases chemotherapy sensitivity by regulating the MAPK14-HSP27 axis. In addition, iRhom1 inhibits the cytotoxic T-cell response by reducing the stability of ERAP1 protein and the ERAP1-mediated antigen processing and presentation. To facilitate the therapeutic translation of these findings, we develop a biodegradable nanocarrier that is effective in codelivery of iRhom pre-siRNA (pre-siiRhom) and chemotherapeutic drugs. This nanocarrier is effective in tumor targeting and penetration through both enhanced permeability and retention effect and CD44-mediated transcytosis in tumor endothelial cells as well as tumor cells. Inhibition of iRhom1 further facilitates tumor targeting and uptake through inhibition of CD44 cleavage. Co-delivery of pre-siiRhom and a chemotherapy agent leads to enhanced antitumor efficacy and activated tumor immune microenvironment in multiple cancer models in female mice. Targeting iRhom1 together with chemotherapy could represent a strategy to overcome chemo-immune resistance in cancer treatment.


Assuntos
Células Endoteliais , Neoplasias , Humanos , Feminino , Animais , Camundongos , Linhagem Celular Tumoral , Portadores de Fármacos , Proliferação de Células , Neoplasias/tratamento farmacológico , Receptores de Hialuronatos , Aminopeptidases , Antígenos de Histocompatibilidade Menor , Proteínas de Membrana
18.
Int J Biol Macromol ; 261(Pt 1): 129847, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296142

RESUMO

Poly(vinyl alcohol) (PVA) hydrogels exhibit great potential as ideal biomaterials for tissue engineering, owing to their non-toxicity, high water content, and strong biocompatibility. However, limited mechanical strength and low bioactivity have constrained their application in bone tissue engineering. In this study, we have developed a tough PVA-based hydrogel using a facile physical crosslinking method, comprising of PVA, tannic acid (TA), and hydroxyapatite (HA). Systematic experiments were conducted to examine the physicochemical properties of PVA/HA/TA hydrogels, including their compositions, microstructures, and mechanical and rheological properties. The results demonstrated that the PVA/HA/TA hydrogels possessed the porous microstructures and excellent mechanical properties. Furthermore, collagen type I (ColI) was used to further improve the biocompatibility and bioactivity of PVA/HA/TA hydrogels. In vitro experiments revealed that PVA/HA/TA/COL hydrogel could offer a suitable microenvironment for the growth of MC3T3-E1 cells and promote their osteogenic differentiation. Meanwhile, the PVA/HA/TA/COL hydrogel demonstrated the ability to promote bone regeneration and osteointegration in a rat femoral defect model. This study provides a potential strategy for the use of PVA-based hydrogels in bone tissue engineering.


Assuntos
Colágeno Tipo I , Hidrogéis , Polifenóis , Ratos , Animais , Hidrogéis/farmacologia , Hidrogéis/química , Álcool de Polivinil/química , Osteogênese , Durapatita/química , Regeneração Óssea , Etanol
19.
Cancer Cell Int ; 24(1): 44, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273348

RESUMO

BACKGROUND: Gastric cancer (GC) ranks fifth for morbidity and third for mortality worldwide. The N6-methyladenosine (m6A) mRNA methylation is crucial in cancer biology and progression. However, the relationship between m6A methylation and gastric tumor microenvironment (TME) remains to be elucidated. METHODS: We combined single-cell and bulk transcriptome analyses to explore the roles of m6A-related genes (MRG) in gastric TME. RESULTS: Nine TME cell subtypes were identified from 23 samples. Fibroblasts were further grouped into four subclusters according to different cell markers. M6A-mediated fibroblasts may guide extensive intracellular communications in the gastric TME. The m6A-related genes score (MRGs) was output based on six differentially expressed single-cell m6A-related genes (SCMRDEGs), including GHRL, COL4A1, CAV1, GJA1, TIMP1, and IGFBP3. The protein expression level was assessed by immunohistochemistry. We identified the prognostic value of MRGs and constructed a nomogram model to predict GC patients' overall survival. MRGs may affect treatment sensitivity in GC patients. CONCLUSION: Our study visualized the cellular heterogeneity of TME at the single-cell level, revealed the association between m6A mRNA modification and intracellular communication, clarified MRGs as an independent risk factor of prognosis, and provided a reference for follow-up treatment.

20.
Mol Carcinog ; 63(3): 479-493, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38174862

RESUMO

Cancer-associated fibroblasts (CAFs) represent a major cellular component of the tumor (pre-)metastatic niche and play an essential role in omental dissemination of ovarian cancer. The omentum is rich in adipose, and adipose-derived mesenchymal stem cells (ADSCs) have been identified as a source of CAFs. However, the molecular events driving the phenotype shift of ADSCs remain largely unexplored. In this research, we focus on integrins, transmembrane receptors that have been widely involved in cellular plasticity. We found that integrin α7 (ITGA7) was the only member of the integrin family that positively correlated with both overall survival and progression-free survival in ovarian cancer through GEPIA2. The immunohistochemistry signal of ITGA7 was apparent in the tumor stroma, and a lower omental ITGA7 level was associated with metastasis. Primary ADSCs were isolated from the omentum of patients with ovarian cancer and identified by cellular morphology, biomarkers, and multilineage differentiation. The conditional medium of ovarian cancer cells induced ITGA7 expression decrease and phenotypic changes in ADSCs. Downregulation of ITGA7 in primary omental ADSCs led to decrease in stemness properties and emerge of characteristic morphology and biomarkers of CAFs. Moreover, the conditioned medium of ADSCs with ITGA7 depletion exhibited enhanced abilities to improve the migration and invasion of ovarian cancer cells in vitro. Overall, these findings indicate that loss of ITGA7 may induce the differentiation of ADSCs to CAFs that contribute to a tumor-supportive niche.


Assuntos
Antígenos CD , Fibroblastos Associados a Câncer , Cadeias alfa de Integrinas , Integrinas , Células-Tronco Mesenquimais , Neoplasias Ovarianas , Feminino , Humanos , Fibroblastos Associados a Câncer/patologia , Proliferação de Células , Células-Tronco Mesenquimais/metabolismo , Biomarcadores , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Tecido Adiposo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA