Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Arch Microbiol ; 204(7): 390, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35699786

RESUMO

Strain WGZ8T was isolated from a soil sample of Puerh tea garden in Pu'er city, Southwest China. The isolate was rod-shaped, Gram-stain negative, facultative anaerobic, non-motile. Growth occurred within 0-3.0% (w/v) NaCl (optimal concentration, 0-1.0%), pH 5.0-11.0 (optimal pH, 7.0) and 10-40 °C (optimal temperature, 28 °C). 16S rRNA gene sequence-based phylogenetic and phylogenomic analysis revealed that WGZ8T belonged to the genus Microvirga. Its major cellular fatty acids were C19:0 cyclo ω8c, C16:0, C18:1ω7c and/or C18:1ω6c. The profile of polar lipids included phosphatidyldimethylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, phosphatidylcholine, diphosphatidylglycerol and phosphatidylglycerol. The only respiratory quinone was detected as ubiquinone 10 (Q-10). The genome size of strain WGZ8T was 5.17 MB, and the content of DNA G + C was 61 mol%. Based on the results of digital DNA-DNA hybridization and phenotypic results, strain WGZ8T could be concluded as a novel species of the genus Microvirga, for which the name Microvirga puerhi sp. nov. is proposed. The type strain is WGZ8T (= CGMCC 1.19171 T = JCM 35317 T).


Assuntos
Bradyrhizobiaceae , Methylobacteriaceae , Técnicas de Tipagem Bacteriana , Composição de Bases , Bradyrhizobiaceae/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo , Microbiologia do Solo , Chá
3.
New Phytol ; 235(2): 801-809, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35460274

RESUMO

With advanced sequencing technology, dozens of complex polyploid plant genomes have been characterized. However, for many polyploid species, their diploid ancestors are unknown or extinct, making it impossible to unravel the subgenomes and genome evolution directly. We developed a novel subgenome-phasing algorithm, SubPhaser, specifically designed for a neoallopolyploid or a homoploid hybrid. SubPhaser first searches for the subgenome-specific sequence (k-mer), then assigns homoeologous chromosomes into subgenomes, and further provides tools to annotate and investigate specific sequences. SubPhaser works well on neoallopolyploids and homoploid hybrids containing subgenome-specific sequences like wheat, but fails on autopolyploids lacking subgenome-specific sequences like alfalfa, indicating that SubPhaser can phase neoallopolyploid/homoploid hybrids with high accuracy, sensitivity and performance. This highly accurate, highly sensitive, ancestral data free chromosome phasing algorithm, SubPhaser, offers significant application value for subgenome phasing in neoallopolyploids and homoploid hybrids, and for the subsequent exploration of genome evolution and related genetic/epigenetic mechanisms.


Assuntos
Genoma de Planta , Poliploidia , Diploide , Epigênese Genética , Triticum/genética
4.
Arch Microbiol ; 203(7): 4517-4523, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34146114

RESUMO

A novel Gram-negative, cream-colored, rod-shaped, aerobic, non-motile bacterium, designated MSA67T, was isolated from a subterranean sediment sample of the Mohe Basin in Northeast China. Strain MSA67T was detected to grow at 4-40 °C (optimum 28-30 °C), pH 5.0-10.0 (optimum, pH 7.0) and in 0.0-8.0% (w/v) NaCl (optimum 2.0-3.0%). Phylogenetic analysis based on 16S rRNA gene sequence revealed that strain MSA67T was a member of the genus Devosia, with the highest similarity with D. riboflavina IFO13584T (98.0%) and D. chinhatensis IPL18T (97.0%). The major cellular fatty acids are C16:0, C18:1ω7c 11-methyl and C18:1ω6c and/or C18:1ω7c. The major polar lipids are diphosphatidylglycerol, phosphatidylglycerol, glycolipids and three unidentified phospholipids. The major respiratory quinone is ubiquinone 10 (Q-10). The genomic size of strain MSA67T is 4.1 MB and DNA G + C content is 63.6%. Based on genotypic, phenotypic and phylogenetic results, strain MSA67T is concluded to represent a novel species of the genus Devosia, for which the name Devosia sediminis sp. nov. is proposed. The type strain is MSA67T (= CGMCC 1.18467T = KCTC 82192T).


Assuntos
Sedimentos Geológicos , Hyphomicrobiaceae , China , Ácidos Graxos/análise , Sedimentos Geológicos/microbiologia , Hyphomicrobiaceae/química , Hyphomicrobiaceae/classificação , Hyphomicrobiaceae/genética , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie , Ubiquinona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA