Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Am Chem Soc ; 146(12): 8768-8779, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38483318

RESUMO

2'-Deoxynucleosides and analogues play a vital role in drug development, but their preparation remains a significant challenge. Previous studies have focused on ß-2'-deoxynucleosides with the natural ß-configuration. In fact, their isomeric α-2'-deoxynucleosides also exhibit diverse bioactivities and even better metabolic stability. Herein, we report that both α- and ß-2'-deoxynucleosides can be prepared with high yields and stereoselectivity using a remote directing diphenylphosphinoyl (DPP) group. It is particularly efficient to prepare α-2'-deoxynucleosides with an easily accessible 3,5-di-ODPP donor. Instead of acting as a H-bond acceptor on a 2-(diphenylphosphinoyl)acetyl (DPPA) group in our previous studies for syn-facial O-glycosylation, the phosphine oxide moiety here acts as a remote participating group to enable highly antifacial N-glycosylation. This proposed remote participation mechanism is supported by our first characterization of an important 1,5-briged P-heterobicyclic intermediate via variable-temperature NMR spectroscopy. Interestingly, antiproliferative assays led to a α-2'-deoxynucleoside with IC50 values in the low micromole range against central nervous system tumor cell lines SH-SY5Y and LN229, whereas its ß-anomer exhibited no inhibition at 100 µM. Furthermore, the DPP group significantly enhanced the antitumor activities by 10 times.


Assuntos
Neuroblastoma , Fosfinas , Humanos , Glicosilação
2.
Pak J Med Sci ; 40(1Part-I): 159-164, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38196488

RESUMO

Objective: To explore the prognostic value and correlation between the risk of lymph node metastasis (LNM) and Guanylate-binding Protein 1 (GBP1) in breast cancer (BC) patients. Methods: In this retrospective study, the clinical data of 150 patients with BC who were surgically resected in The Affiliated Qingdao Central Hospital of Qingdao University from January 2019 to December 2021 were included. Patients were divided into metastasis group (n=110) or non-metastasis group (n=40) according to whether there was LNM post-surgery. Logistic regression was used to analyze the risk factors for LNM in BC, and Kaplan-Meier was used to assess the risk of disease progression 12 months post-operation in both groups. Patients were divided into a GBP1 low expression-group (n=75) or a GBP1 high expression-group (n=75). The risk of disease progression, one-year post-surgery was analyzed, and the predictive value of GBP1 in BC tissue was assessed by the receiver operating characteristics (ROC) curve. Results: Independent risk factors for BC with LNM were GBP1, CEA and TNM stage (P<0.05). There is a linear relationship between GBP1 expression and LNM risk in BC (χ2=0.88, P<0.05). Patients with high expression of GBP1 had a higher risk of LNM (χ2=3.204, P<0.001) and early postoperative progression (χ2=7.412, P<0.05). The AUC of GBP1 in predicting the risk of LNM was 0.840. Conclusions: Patients with BC and a higher expression of GBP1 could be at an increased risk of LNM. Elevations in GBP1 expression can also suggest a poor prognosis for patients with BC.

3.
Cell Death Discov ; 9(1): 335, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37673878

RESUMO

Allicin exhibits various pharmacological activities and has been suggested to be beneficial in the treatment of stroke. However, the underlying mechanisms are largely unknown. Here, we confirmed that allicin protected the brain from cerebral injury, which could be ascribed to its anti­apoptotic and anti­inflammatory effects, as well as the regulation of lipid metabolism, using proteomics and metabolomics analysis. Our results suggested that allicin could significantly ameliorate behavioral characteristics, cerebral infarct area, cell apoptosis, inflammatory factors, and lipid metabolic-related factors (arachidonic acid, 15-hydroperoxy-eicosatetraenoic acid (15S-HPETE), palmitoylcarnitine, and acylcarnitine) by recalibrating astrocyte homeostasis in mice with photothrombotic stroke (PT). In astrocytes, allicin significantly increased glutathione peroxidase 1 (GPX1) levels and inhibited the arachidonic acid-related pathway, which was also observed in the brains of mice with PT. Allicin was proven to inhibit hypoxia-induced astrocyte apoptosis by increasing GPX1 expression, activating proto-oncogene tyrosine-protein kinase Src (Src)- protein kinase B (AKT)-extracellular signal-regulated kinase (ERK) phosphorylation, and decreasing lipid peroxidation. Thus, we concluded that allicin significantly prevented and ameliorated ischemic stroke by increasing GPX1 levels to complete the complex physiological process.

4.
Front Plant Sci ; 14: 1144449, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909412

RESUMO

Flavonoids are one of the most important bioactive components in litchi (Litchi chinensis Sonn.) seeds and have broad-spectrum antiviral and antitumor activities. Litchi seeds have been shown to inhibit the proliferation of cancer cells and induce apoptosis, particularly effective against breast and liver cancers. Elucidating the distribution of flavonoids is important for understanding their physiological and biochemical functions and facilitating their efficient extraction and utilization. However, the spatial distribution patterns and expression states of flavonoids in litchi seeds remain unclear. Herein, matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) was used for in situ detection and imaging of the distribution of flavonoids in litchi seed tissue sections for the first time. Fifteen flavonoid ion signals, including liquiritigenin, apigenin, naringenin, luteolin, dihydrokaempferol, daidzein, quercetin, taxifolin, kaempferol, isorhamnetin, myricetin, catechin, quercetin 3-ß-d-glucoside, baicalin, and rutin, were successfully detected and imaged in situ through MALDI-MSI in the positive ion mode using 2-mercaptobenzothiazole as a matrix. The results clearly showed the heterogeneous distribution of flavonoids, indicating the potential of litchi seeds for flavonoid compound extraction. MALDI-MS-based multi-imaging enhanced the visualization of spatial distribution and expression states of flavonoids. Thus, apart from improving our understanding of the spatial distribution of flavonoids in litchi seeds, our findings also facilitate the development of MALDI-MSI-based metabolomics as a novel effective molecular imaging tool for evaluating the spatial distribution of endogenous compounds.

5.
Adv Mater ; 35(20): e2210517, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36915982

RESUMO

Silk fibroin (SF) and sericin (SS), the two major proteins of silk, are attractive biomaterials with great potential in tissue engineering and regenerative medicine. However, their biochemical interactions with stem cells remain unclear. In this study, multiomics are employed to obtain a global view of the cellular processes and pathways of mesenchymal stem cells (MSCs) triggered by SF and SS to discern cell-biomaterial interactions at an in-depth, high-throughput molecular level. Integrated RNA sequencing and proteomic analysis confirm that SF and SS initiate widespread but distinct cellular responses and potentiate the paracrine functions of MSCs that regulate extracellular matrix deposition, angiogenesis, and immunomodulation through differentially activating the integrin/PI3K/Akt and glycolysis signaling pathways. These paracrine signals of MSCs stimulated by SF and SS effectively improve skin regeneration by regulating the behavior of multiple resident cells (fibroblasts, endothelial cells, and macrophages) in the skin wound microenvironment. Compared to SS, SF exhibits better immunomodulatory effects in vitro and in vivo, indicating its greater potential as a carrier material of MSCs for skin regeneration. This study provides comprehensive and reliable insights into the cellular interactions with SF and SS, enabling the future development of silk-based therapeutics for tissue engineering and stem cell therapy.


Assuntos
Sericinas , Fibroínas/química , Fibroínas/farmacologia , Sericinas/química , Sericinas/farmacologia , Células Endoteliais/química , Células Endoteliais/fisiologia , Células-Tronco Mesenquimais , Seda , Engenharia Tecidual , Proteômica/métodos
6.
Clin Exp Med ; 23(6): 2583-2591, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36639599

RESUMO

Peripheral blood cell counts and cytokines can be used as predictors of multiple myeloma (MM) patients' outcomes. 313 newly diagnosed MM patients treated with novel agents were divided into training and validation cohorts. We selected the common peripheral blood cell counts, including the lymphocyte/monocyte ratio (LMR), neutrophil/lymphocyte ratio (NLR), and platelet/lymphocyte ratio (PLR), systemic inflammation response index (SIRI), and serum cytokines which contained tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-2 receptor (IL-2R), interleukin-8 (IL-8), interleukin-6 (IL-6), and interleukin-10 (IL-10) as related variables. The least absolute shrinkage and selection operator (LASSO) regression was conducted to sort the predictor variables in the training cohort, and then the developed nomogram was assessed in the training and validation cohort. Our study showed that SIRI, PLR, and IL-8 were independent prognostic factors for the survival of MM patients. Patients with lower SIRI (≤ 0.87) had superior survival than patients with higher SIRI (> 0.87). Further, according to the LASSO regression, a nomogram embracing LMR (> 3.78), SIRI (> 0.87), PLR (≤ 106.44), and IL-8 was established. The nomogram demonstrated a better correlation with the outcomes of MM patients in the training cohort than International Staging System (ISS) and Revised-International Staging System (R-ISS). The same results were verified in the validation cohort. The nomogram incorporating inflammatory cells and cytokines could be a helpful tool to stratify MM patients in the era of novel agents.


Assuntos
Interleucina-8 , Mieloma Múltiplo , Humanos , Prognóstico , Citocinas , Mieloma Múltiplo/diagnóstico , Nomogramas
7.
FASEB J ; 36(10): e22570, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36165217

RESUMO

The risk of high-grade gliomas is lower in young females, however, its incidence enhances after menopause, suggesting potential protective roles of female sex hormones. Hormone oscillations after menopause have received attention as a possible risk factor. Little is known about risk factors for adult gliomas. We examined the association of the aging brain after menopause, determining the risk of gliomas with proteomics and the MALDI-MSI experiment. Menopause caused low neurotransmitter levels such as GABA and ACH, high inflammatory factor levels like il-1ß, and increased lipid metabolism-related levels like triglycerides in the brain. Upregulated and downregulated proteins after menopause were correlated with differentially expressed glioma genes, such as ACTA2, CAMK2D, FNBPIL, ARL1, HEBP1, CAST, CLIC1, LPCAT4, MAST3, and DOCK9. Furthermore, differential gene expression analysis of monocytes showed that the downregulated gene LPCAT4 could be used as a marker to prevent menopausal gliomas in women. Our findings regarding the association of menopause with the risk of gliomas are consistent with several extensive cohort studies. In view of the available evidence, postmenopausal status is likely to represent a significant risk factor for gliomas.


Assuntos
Glioma , Menopausa , Adulto , Encéfalo , Canais de Cloreto , Progressão da Doença , Feminino , Glioma/genética , Hormônios Esteroides Gonadais , Hormônios , Humanos , Menopausa/genética , Triglicerídeos , Ácido gama-Aminobutírico
8.
Int J Mol Med ; 50(4)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35946461

RESUMO

The hypothalamus acts on the pituitary gland after signal integration, thus regulating various physiological functions of the body. The pituitary gland includes the adenohypophysis and neurohypophysis, which differ in structure and function. The hypothalamus­hypophysis axis controls the secretion of adenohypophyseal hormones through the pituitary portal vein system. Thyroid­stimulating hormone, adrenocorticotropic hormone, gonadotropin, growth hormone (GH), and prolactin (PRL) are secreted by the adenohypophysis and regulate the functions of the body in physiological and pathological conditions. The aim of this review was to summarize the functions of female­associated hormones (GH, PRL, luteinizing hormone, and follicle­stimulating hormone) in tumors. Their pathophysiology was described and the mechanisms underlying female hormone­related diseases were investigated.


Assuntos
Neoplasias , Adeno-Hipófise , Feminino , Hormônio do Crescimento , Humanos , Hipófise/fisiologia , Prolactina
9.
Phytomedicine ; 104: 154257, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35738117

RESUMO

BACKGROUND: Nardostachys jatamansi DC. is a common medicinal herb used to treat cardiovascular diseases, particularly hypertension. Previously, our lab characterized the chemical compounds of N. jatamansi. However, the bioactive compounds of N. jatamansi and their mechanisms of action on blood pressure and blood vessels are unknown. PURPOSE: The vasorelaxant effects of the methanolic extract (MeOH ext.) of the roots and rhizomes of N. jatamansi, its main compounds, and their underlying mode of action, were investigated. METHODS: The main compounds of N. jatamansi were isolated and identified using UHPLC-TOF MS. The antihypertensive effect of N. jatamansi extracts and (-)-aristolone were determined using spontaneously hypertensive rats. The extracts, fractions, and compounds were also evaluated for their vasorelaxant effects on U46619 contractile responses in isolated thoracic aortic and mesenteric arterial rings. The endothelial-dependent relaxation, as well as the regulatory pathways and targets of (-)-aristolone, were studied in-vitro and ex-vivo. Molecular docking and biophysical characterization (Surface plasmon resonance) studies were utilized to investigate the molecular interaction between (-)-aristolone and the target protein. RESULTS: MeOH ext. (200 mg/kg) reduces the systolic and diastolic blood pressure in spontaneously hypertensive rats. MeOH ext. and its ethyl acetate fraction (EtOAc Fr.), but not the H2O fraction, had a significant relaxing effect on the thoracic aorta. (-)-aristolone and kanshone H from EtOAc Fr. induced vasorelaxation of the thoracic aorta and mesenteric artery. In human umbilical vein endothelial cells, (-)-aristolone treatment upregulated phosphorylation of Akt (T308) and eNOS. Molecular docking and surface plasmon resonance experiments revealed an interaction between (-)-aristolone and phosphoinositide-dependent protein kinase 1 (PDK1), an upstream protein kinase that phosphorylates Akt at T308. Treatment with PDK1 inhibitor PHT-427 and eNOS inhibitor L-NAME consistently inhibited (-)-aristolone-induced vasorelaxation. In addition, KATP channel inhibitor glibenclamide dramatically inhibited the vasorelaxant effects of (-)-aristolone and kanshone H in the endothelium-denuded thoracic aorta. Finally, (-)-aristolone lowers hypertensive rats' systolic and diastolic blood pressure. CONCLUSIONS: The extracts of N. jatamansi promote vasorelaxation and alleviate hypertension. The essential chemicals responsible for producing vasorelaxation effects are (-)-aristolone and kanshone H, which activate the PDK1-Akt-eNOS-NO relaxing pathway and stimulate the opening of the KATP channel. These findings point to N. jatamansi and aristolone as possible antihypertensive agents.


Assuntos
Hipertensão , Nardostachys , Trifosfato de Adenosina/metabolismo , Animais , Anti-Hipertensivos/uso terapêutico , Aorta Torácica , Ciclopropanos , Células Endoteliais/metabolismo , Endotélio Vascular , Humanos , Hipertensão/metabolismo , Simulação de Acoplamento Molecular , Nardostachys/química , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Endogâmicos SHR , Tetra-Hidronaftalenos , Vasodilatação , Vasodilatadores/química
10.
Front Oncol ; 11: 790676, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917513

RESUMO

Glioma and pancreatic cancer are tumors with a high degree of malignancy, morbidity, and mortality. The present study explored possible molecular mechanisms and potential diagnostic and prognostic biomarker-PLPP4 of glioma and PAAD. PLPP4 is differentially elevated in glioma and PAAD tissues. Statistical analysis from TCGA demonstrated that high expression of PLPP4 significantly and positively correlated with clinicopathological features, including pathological grade and poor overall survival in glioma and PAAD patients. Following this, the methylation levels of PLPP4 also affected overall survival in clinical tissue samples. Silencing PLPP4 inhibited proliferation, invasion, and migration in LN229 cells and PANC-1 cells. Moreover, the combination of multiple proteins for the prognosis prediction of glioma and PAAD was evaluated. These results were conducted to elaborate on the potential roles of the biomarker-PLPP4 in clonability and invasion of glioma and PAAD cells.

11.
Leuk Lymphoma ; 61(10): 2351-2364, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32519901

RESUMO

The prognostic value of 1q21 Gain/Amplification (1q21 Gain/Amp) in multiple myeloma (MM) has always been controversial. A total of 419 newly diagnosed MM patients were included in this retrospective study. The positive rate of 1q21 Gain/Amp was 48.6%. MM patients with 1q21 Gain/Amp were characterized as being in more advanced clinical stages and were more likely to be accompanied by del(13q14), t(4;14) or complex karyotypes (CKs) as well as with more severe anemia and worse renal function. In these patients, the percentage of complete remission (CR) or very good partial response (VGPR) was higher, however, in the early treatment period, the probability of progressive disease (PD) was also higher. No significant difference on progression free survival (PFS) and overall survival (OS) was showed between the group of 1q21Amp and 1q21Gain. The prognostic impact of 1q21 Gain/Amp on PFS of MM patients was heterogeneous and was in accordance with the accompanying parameters.


Assuntos
Mieloma Múltiplo , Aberrações Cromossômicas , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Prognóstico , Indução de Remissão , Estudos Retrospectivos
12.
Metallomics ; 12(3): 427-434, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32022072

RESUMO

Sterically hindered platinum(ii) complexes have shown great advantages in overcoming platinum drug resistance. In this study, the antitumor actions of sterically hindered platinum(ii) complex 1 (cis-dichloro[(1R,2R)-N1-(2-fluorobenzyl)-1,2-diaminocyclohexane-N,N']platinum(ii), C13H19FPtCl2) were investigated by using saturation transfer difference nuclear magnetic resonance (STD NMR) and liquid chromatography-mass spectrometry (LCMS) techniques. STD NMR was applied to study the HSA (human serum albumin) binding properties, while the interactions between guanosine 5'-monophosphate (5'-GMP) and complex 1 were studied by LCMS. For HSA binding experiments, strong STD signals were observed for protons of sterically hindered parts of carrier ligands, indicating that the sterically hindered moieties of the carrier ligand could be situated inside the binding pocket of HSA. A 19F NMR experiment indicated that complex 1 could interact with HSA. Furthermore, the binding modes of complex 1 with guanosine 5'-monophosphate (5'-GMP) were studied in the absence and presence of glutathione by LCMS. According to the HPLC profiles, a mono-functional binding mode was observed for complex 1 both in the presence and in the absence of glutathione, while a bi-adduct was observed for Pt(DACH)Cl2, which may be one of the reasons for their different biological activities. Hence, this study demonstrated that the NMR method combined with the LCMS technique could provide valuable information to understand the transport and the underlying anticancer mechanisms of the platinum(ii) complex at the molecular level. Moreover, the results reported here can help to reveal the binding mechanisms of the sterically hindered platinum(ii) compounds with biomolecules, which may shed light on the design of novel platinum(ii) anticancer agents with suitable sterically hindered groups.


Assuntos
Antineoplásicos/metabolismo , Guanosina Monofosfato/metabolismo , Compostos Organoplatínicos/metabolismo , Albumina Sérica Humana/metabolismo , Antineoplásicos/química , Cromatografia Líquida , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Compostos Organoplatínicos/química , Ligação Proteica
13.
Int J Biol Sci ; 15(11): 2461-2470, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31595163

RESUMO

Exosomes, the nanosized vesicles released from various cell types, contain many bioactive molecules, such as proteins, lipids, and nucleic acids, which can participate in intercellular communication in a paracrine manner or an endocrine manner, in order to maintain the homeostasis and respond to stress adaptively. Currently, exosomes have already been utilized as diagnostic biomarkers and therapeutic tools in cancer clinical trials. There has also been great progress in cell and animal exosomes studies of coronary artery disease (CAD). Emerging evidence suggests that exosomes released from endothelial cells, smooth muscle cells, adipose cells, platelets, cardiomyocytes, and stem cells have been reported to play crucial roles in the development and progression of CAD. Moreover, it has been showed that exosomes released from different cell types exhibit diverse biological functions, either detrimental or protective, depending on the cell state and the microenvironment. However, the systematic knowledge of exosomes in CAD at the patient level has not been well established, which are far away from clinical application. This review summarizes the basic information about exosomes and provides an update of the recent findings on exosome-mediated intercellular communication in the development and progression of CAD, which could be helpful for understanding the pathophysiology of CAD and promoting the further potential clinical translation.


Assuntos
Doença da Artéria Coronariana/metabolismo , Exossomos/metabolismo , Animais , Comunicação Celular/fisiologia , Doença da Artéria Coronariana/patologia , Vesículas Extracelulares/metabolismo , Humanos
14.
Mediators Inflamm ; 2019: 7162976, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316302

RESUMO

BACKGROUND: Oscillatory shear stress (OSS) disrupts endothelial homeostasis and promotes oxidative stress, which can lead to atherosclerosis. In atherosclerotic lesions, Toll-like receptor 4 (TLR4) is highly expressed. However, the molecular mechanism by which TLR4 modulates oxidative changes and the cell signaling transudation upon OSS is yet to be determined. METHODS AND RESULTS: Carotid artery constriction (CAC) surgery and a parallel-plate flow chamber were used to modulate shear stress. The results showed that OSS significantly increased the oxidative burden, and this was partly due to TLR4 activation. OSS activated NOX2 and had no significant influence to NOX1 or NOX4 in endothelial cells (ECs). OSS phosphorylated caveolin-1, promoted its binding with endothelial nitric oxide synthase (eNOS), and resulted in deactivation of eNOS. TLR4 inhibition restored levels of nitric oxide (NO) and superoxide dismutase (SOD) in OSS-exposed cells. CONCLUSION: TLR4 modulates OSS-induced oxidative stress by activating NOX2 and suppressing eNOS.


Assuntos
Células Endoteliais/citologia , NADPH Oxidase 2/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo , Receptor 4 Toll-Like/metabolismo , Animais , Artérias Carótidas/patologia , Caveolina 1/metabolismo , Vasos Coronários/metabolismo , Modelos Animais de Doenças , Homeostase , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , NADPH Oxidase 1/metabolismo , NADPH Oxidase 4/metabolismo , Óxido Nítrico , Ratos , Resistência ao Cisalhamento , Transdução de Sinais , Estresse Mecânico , Superóxido Dismutase-1/metabolismo
15.
J Inorg Biochem ; 196: 110684, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31054419

RESUMO

Targeted delivery of clinically approved anticancer drug to tumor sites is an effective way to achieve enhanced drug efficacy as well as reduced side effects and toxicity. Here bicalutamide is caged by the Ru(II) center through the nitrile group, and three photoactive Ru(II) complexes were designed and synthesized. Docking study showed that the ruthenium(II) fragments can effectively block the binding of complexes 1-3 with AR (androgen receptor) owing to the large steric structures, thus bicalutamide in complexes 1-3 could not interact with AR-LBD (ligand binding domain). Once irradiation with blue light (465nm), complexes 1-3 can release bicalutamide and anticancer Ru(II) fragments, which possesses dual-action of AR binding and DNA interaction simultaneously. In vitro cytotoxicity study on these complexes further confirmed that complexes 1-3 exhibited considerable cytotoxicity upon irradiation with blue light. Significantly, complex 3 could be activated at 660nm, which greatly increases the scope of complex 3 to treat deeper within tissue. Theoretical calculations showed that the lowest singlet excitation energy of complex 3 is lower than those of complexes 1-2, which explains the experimental results well. Moreover, the 3MC (metal centered) states of these complexes are more stable than their 3MLCT (metal to ligand charge transfer) states, indicating that the photoactive processes of these complexes are likely to result in ligand dissociation.


Assuntos
Anilidas/química , Anilidas/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Luz , Nitrilas/química , Nitrilas/metabolismo , Neoplasias da Próstata/metabolismo , Rutênio/química , Compostos de Tosil/química , Compostos de Tosil/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/química , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Microscopia de Força Atômica , Células PC-3 , Fotólise , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Receptores Androgênicos/metabolismo
16.
Mol Med Rep ; 19(5): 4119-4128, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30942456

RESUMO

The Na+/K+­ATPase inhibitor cinobufagin exhibits numerous anticancer effects on hepatocellular carcinoma (HCC) cells expressing wild­type p53 via inhibition of aurora kinase A (AURKA) and activation of p53 signaling. However, the effects of cinobufagin on HCC cells expressing mutant p53 remain unclear. In the present study, the anticancer effects of cinobufagin were investigated on HCC Huh­7 cells with mutant p53, and the effects of AURKA overexpression or inhibition on the anticancer effects of cinobufagin were analyzed. Viability, cell cycle progression and apoptosis of cells were determined using an MTT assay, flow cytometry and Hoechst 33342 staining, respectively. The expression levels of p53 and p73 signaling­associated proteins were investigated via western blot analysis. The results demonstrated that the expression levels of AURKA, B­cell lymphoma 2 (Bcl­2), cyclin­dependent kinase 1, cyclin B1, proliferating cell nuclear antigen and heterogeneous nuclear ribonucleoprotein K, as well as the phosphorylation of p53 and mouse double minute 2 homolog, were significantly decreased in Huh­7 cells treated with 5 µmol/l cinobufagin for 24 h. Conversely, the expression levels of Bcl­2­associated X protein, p21, p53 upregulated modulator of apoptosis and phorbol­12­myristate­13­acetate­induced protein 1, were significantly increased by cinobufagin treatment. Overexpression or inhibition of AURKA suppressed or promoted the anticancer effects of cinobufagin on Huh­7 cells, respectively. These results indicated that cinobufagin may induce anticancer effects on Huh­7 cells via the inhibition of AURKA and p53 signaling, and via the activation of p73 signaling, in an AURKA­dependent manner.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Bufanolídeos/farmacologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Tumoral p73/metabolismo , Apoptose/efeitos dos fármacos , Aurora Quinase A/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Proteína Supressora de Tumor p53/metabolismo
17.
FASEB J ; 33(6): 7202-7212, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30860864

RESUMO

Low shear stress (LSS) increases degradation of the endothelial glycocalyx, leading to production of endothelial inflammation and atherosclerosis. However, the underlying mechanisms of how LSS diminishes the endothelial glycocalyx remain unclear. We showed that LSS inactivated AMPK, enhanced Na+-H+ exchanger (NHE)1 activity, and induced glycocalyx degradation. Activation of AMPK prevented LSS-induced NHE1 activity and endothelial glycocalyx impairment. We further identified hyaluronidase 2 (HYAL2) as a mediator of endothelial glycocalyx impairment in HUVECs exposed to LSS. Inactivation of AMPK by LSS up-regulates the activity of HYAL2, which acts downstream of NHE1. We characterized a left common carotid artery partial ligation (PL) model of LSS in C57BL/6 mice. The results showed decreased expression of hyaluronan (HA) in the endothelial glycocalyx and decreased thickness of the endothelial glycocalyx in PL mice. Pharmacological activation of AMPK by ampkinone not only attenuated glycocalyx impairment due to HA degradation but also blocked vascular cell adhesion molecule 1 and intercellular adhesion molecule 1 expression increase and macrophage recruitment in the endothelia of PL mice. Our results revealed that AMPK dephosphorylation induced by LSS activates NHE1 and HYAL2 to promote HA degradation and glycocalyx injury, which may contribute to endothelial inflammatory reaction and macrophage recruitment.-Zhang, J., Kong, X., Wang, Z., Gao, X., Ge, Z., Gu, Y., Ye, P., Chao, Y., Zhu, L., Li, X., Chen, S. AMP-activated protein kinase regulates glycocalyx impairment and macrophage recruitment in response to low shear stress.


Assuntos
Adenilato Quinase/fisiologia , Células Endoteliais/enzimologia , Glicocálix/metabolismo , Hemorreologia , Macrófagos/fisiologia , Animais , Artéria Carótida Primitiva , Estenose das Carótidas/metabolismo , Estenose das Carótidas/patologia , Moléculas de Adesão Celular/biossíntese , Moléculas de Adesão Celular/genética , Ativação Enzimática , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/genética , Glicocálix/ultraestrutura , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/biossíntese , Hialuronoglucosaminidase/genética , Ligadura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo , Trocador 1 de Sódio-Hidrogênio/fisiologia , Estresse Mecânico
18.
Eur J Med Chem ; 156: 666-679, 2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-30031977

RESUMO

It is well-known that cisplatin exhibited a broad spectrum of anticancer activities against many solid tumors, but its severe toxicity and drug resistance have largely limited wider clinical applications. Various strategies have been tried to discover new Pt (II) drugs with at least equal activity as well as low toxicity compared to cisplatin, but the inherent problem remains unsolved. Here we report that Pt (IV) complexes comprising a CA-4 analogue, as dual-targeting Pt (IV) prodrug, were synthesized and evaluated for anti-proliferative activity using MTT assay. Among them, complex 19 displayed most potent activity against the tested cancer cell lines, and simultaneously exhibited better cell selectivity between cancer cells and normal cells than that of cisplatin. Mechanism studies revealed that complex 19 effectively induced cell cycle arrest at the G2/M phase and dramatically disrupted the microtubule organization. Moreover, complex 19 significantly induced cell apoptosis and decreased MMP. Importantly, complex 19 significantly inhibited tumor growth in SK-OV-3 xenograft model in vivo without apparent toxicity.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Compostos Organoplatínicos/farmacologia , Pró-Fármacos/farmacologia , Moduladores de Tubulina/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Microtúbulos/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Compostos Organoplatínicos/química , Compostos Organoplatínicos/uso terapêutico , Pró-Fármacos/química , Pró-Fármacos/uso terapêutico , Moduladores de Tubulina/química , Moduladores de Tubulina/uso terapêutico
19.
Eur J Med Chem ; 148: 1-25, 2018 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-29448138

RESUMO

Many strategies have been developed to circumvent the shortcomings of Pt(II)-based chemotherapy, but the inherent problems still have not been effectively resolved. Here we report a new series of dual-targeting Pt(IV) prodrugs, conjugates of millepachine analogues with the related Pt(IV) complexes derived from cisplatin or oxaliplatin, respectively, which can inhibit tubulin polymerization and induce DNA damage. Among them, compound 19 possessed excellent antitumor activities against the tested human cancer cell lines, and arrested the cell cycle at the G2/M phases and ultimately induced cell apoptosis. Interestingly, its low cytotoxicity toward two human normal cells and sensitivity toward two cisplatin-resistant cells revealed the possibility for cancer therapy. More importantly, 19 displayed excellent antitumor efficacy in the SK-OV-3 xenograft model better than cisplatin and the corresponding millepachine analogue. Our research provided an efficient strategy for multi-targeting antitumor drug development.


Assuntos
Antineoplásicos/síntese química , Chalconas/química , Compostos Organoplatínicos/química , Animais , Antineoplásicos/farmacologia , Antineoplásicos Fitogênicos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/química , Dano ao DNA/efeitos dos fármacos , Xenoenxertos , Humanos , Camundongos , Oxaliplatina , Pró-Fármacos/síntese química , Tubulina (Proteína)/efeitos dos fármacos
20.
Eur J Med Chem ; 146: 435-450, 2018 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-29407969

RESUMO

Six novel of Pt(IV) complexes comprising chalcone analogues were synthesized and evaluated for anti-proliferative activity using MTT assay. In vitro evaluation revealed that all Pt(IV) complexes showed better and more potent activity against three human cancer cells including CDDP resistant cells than that of their corresponding mother Pt(II) species. Among them, two representative complexes, 14 and 17, exhibited better cell selectivity between cancer cells and normal cells than CDDP. Molecular docking study indicated that complexes 14 and 17 could bind to the colchicine site of tubulin. Moreover, complexes 14 and 17 also remarkably displayed inhibition of cell migration against HUVEC cells in vitro. Molecular mechanism studies suggested that 14 and 17 induced production of reactive oxygen species (ROS), cell cycle arrest at the G2/M phase, and mitochondria-mediated apoptosis by regulating the expression of Bcl-2 family members.


Assuntos
Antineoplásicos/farmacologia , Chalcona/farmacologia , Microtúbulos/efeitos dos fármacos , Compostos Organoplatínicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Chalcona/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Microtúbulos/metabolismo , Estrutura Molecular , Compostos Organoplatínicos/química , Polimerização/efeitos dos fármacos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA